/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ //// //// Includes //// #include #include #include "bitcount.h" #include "evaluate.h" #include "material.h" #include "pawns.h" #include "scale.h" #include "thread.h" #include "ucioption.h" //// //// Local definitions //// namespace { const int Sign[2] = { 1, -1 }; // Evaluation grain size, must be a power of 2 const int GrainSize = 8; // Evaluation weights, initialized from UCI options enum { Mobility, PawnStructure, PassedPawns, Space, KingDangerUs, KingDangerThem }; Score Weights[6]; typedef Value V; #define S(mg, eg) make_score(mg, eg) // Internal evaluation weights. These are applied on top of the evaluation // weights read from UCI parameters. The purpose is to be able to change // the evaluation weights while keeping the default values of the UCI // parameters at 100, which looks prettier. // // Values modified by Joona Kiiski const Score WeightsInternal[] = { S(248, 271), S(233, 201), S(252, 259), S(46, 0), S(247, 0), S(259, 0) }; // Knight mobility bonus in middle game and endgame, indexed by the number // of attacked squares not occupied by friendly piecess. const Score KnightMobilityBonus[16] = { S(-38,-33), S(-25,-23), S(-12,-13), S( 0,-3), S( 12, 7), S( 25, 17), S( 31, 22), S(38, 27), S(38, 27) }; // Bishop mobility bonus in middle game and endgame, indexed by the number // of attacked squares not occupied by friendly pieces. X-ray attacks through // queens are also included. const Score BishopMobilityBonus[16] = { S(-25,-30), S(-11,-16), S( 3, -2), S(17, 12), S( 31, 26), S( 45, 40), S(57, 52), S(65, 60), S( 71, 65), S( 74, 69), S(76, 71), S(78, 73), S( 79, 74), S( 80, 75), S(81, 76), S(81, 76) }; // Rook mobility bonus in middle game and endgame, indexed by the number // of attacked squares not occupied by friendly pieces. X-ray attacks through // queens and rooks are also included. const Score RookMobilityBonus[16] = { S(-20,-36), S(-14,-19), S(-8, -3), S(-2, 13), S( 4, 29), S( 10, 46), S(14, 62), S(19, 79), S( 23, 95), S( 26,106), S(27,111), S(28,114), S( 29,116), S( 30,117), S(31,118), S(32,118) }; // Queen mobility bonus in middle game and endgame, indexed by the number // of attacked squares not occupied by friendly pieces. const Score QueenMobilityBonus[32] = { S(-10,-18), S(-8,-13), S(-6, -7), S(-3, -2), S(-1, 3), S( 1, 8), S( 3, 13), S( 5, 19), S( 8, 23), S(10, 27), S(12, 32), S(15, 34), S( 16, 35), S(17, 35), S(18, 35), S(20, 35), S(20, 35), S(20, 35), S( 20, 35), S(20, 35), S(20, 35), S(20, 35), S(20, 35), S(20, 35), S( 20, 35), S(20, 35), S(20, 35), S(20, 35), S(20, 35), S(20, 35), S( 20, 35), S(20, 35) }; // Pointers table to access mobility tables through piece type const Score* MobilityBonus[8] = { 0, 0, KnightMobilityBonus, BishopMobilityBonus, RookMobilityBonus, QueenMobilityBonus, 0, 0 }; // Outpost bonuses for knights and bishops, indexed by square (from white's // point of view). const Value KnightOutpostBonus[64] = { // A B C D E F G H V(0), V(0), V(0), V(0), V(0), V(0), V(0), V(0), // 1 V(0), V(0), V(0), V(0), V(0), V(0), V(0), V(0), // 2 V(0), V(0), V(4), V(8), V(8), V(4), V(0), V(0), // 3 V(0), V(4),V(17),V(26),V(26),V(17), V(4), V(0), // 4 V(0), V(8),V(26),V(35),V(35),V(26), V(8), V(0), // 5 V(0), V(4),V(17),V(17),V(17),V(17), V(4), V(0), // 6 V(0), V(0), V(0), V(0), V(0), V(0), V(0), V(0), // 7 V(0), V(0), V(0), V(0), V(0), V(0), V(0), V(0) // 8 }; const Value BishopOutpostBonus[64] = { // A B C D E F G H V(0), V(0), V(0), V(0), V(0), V(0), V(0), V(0), // 1 V(0), V(0), V(0), V(0), V(0), V(0), V(0), V(0), // 2 V(0), V(0), V(5), V(5), V(5), V(5), V(0), V(0), // 3 V(0), V(5),V(10),V(10),V(10),V(10), V(5), V(0), // 4 V(0),V(10),V(21),V(21),V(21),V(21),V(10), V(0), // 5 V(0), V(5), V(8), V(8), V(8), V(8), V(5), V(0), // 6 V(0), V(0), V(0), V(0), V(0), V(0), V(0), V(0), // 7 V(0), V(0), V(0), V(0), V(0), V(0), V(0), V(0) // 8 }; // ThreatBonus[attacking][attacked] contains bonus according to which // piece type attacks which one. const Score ThreatBonus[8][8] = { {}, {}, { S(0, 0), S(18,37), S( 0, 0), S(37,47), S(55,97), S(55,97) }, // KNIGHT { S(0, 0), S(18,37), S(37,47), S( 0, 0), S(55,97), S(55,97) }, // BISHOP { S(0, 0), S( 9,27), S(27,47), S(27,47), S( 0, 0), S(37,47) }, // ROOK { S(0, 0), S(27,37), S(27,37), S(27,37), S(27,37), S( 0, 0) } // QUEEN }; // ThreatedByPawnPenalty[] contains a penalty according to which piece // type is attacked by an enemy pawn. const Score ThreatedByPawnPenalty[8] = { S(0, 0), S(0, 0), S(56, 70), S(56, 70), S(76, 99), S(86, 118) }; #undef S // Bonus for unstoppable passed pawns const Value UnstoppablePawnValue = Value(0x500); // Rooks and queens on the 7th rank (modified by Joona Kiiski) const Score RookOn7thBonus = make_score(47, 98); const Score QueenOn7thBonus = make_score(27, 54); // Rooks on open files (modified by Joona Kiiski) const Score RookOpenFileBonus = make_score(43, 43); const Score RookHalfOpenFileBonus = make_score(19, 19); // Penalty for rooks trapped inside a friendly king which has lost the // right to castle. const Value TrappedRookPenalty = Value(180); // Penalty for a bishop on a7/h7 (a2/h2 for black) which is trapped by // enemy pawns. const Score TrappedBishopA7H7Penalty = make_score(300, 300); // Bitboard masks for detecting trapped bishops on a7/h7 (a2/h2 for black) const Bitboard MaskA7H7[2] = { ((1ULL << SQ_A7) | (1ULL << SQ_H7)), ((1ULL << SQ_A2) | (1ULL << SQ_H2)) }; // Penalty for a bishop on a1/h1 (a8/h8 for black) which is trapped by // a friendly pawn on b2/g2 (b7/g7 for black). This can obviously only // happen in Chess960 games. const Score TrappedBishopA1H1Penalty = make_score(100, 100); // Bitboard masks for detecting trapped bishops on a1/h1 (a8/h8 for black) const Bitboard MaskA1H1[2] = { ((1ULL << SQ_A1) | (1ULL << SQ_H1)), ((1ULL << SQ_A8) | (1ULL << SQ_H8)) }; // The SpaceMask[color] contains the area of the board which is considered // by the space evaluation. In the middle game, each side is given a bonus // based on how many squares inside this area are safe and available for // friendly minor pieces. const Bitboard SpaceMask[2] = { (1ULL< Value do_evaluate(const Position& pos, EvalInfo& ei, int threadID); template void evaluate_pieces_of_color(const Position& pos, EvalInfo& ei); template void evaluate_king(const Position& pos, EvalInfo& ei); template void evaluate_threats(const Position& pos, EvalInfo& ei); template void evaluate_space(const Position& pos, EvalInfo& ei); template void evaluate_passed_pawns(const Position& pos, EvalInfo& ei); void evaluate_unstoppable_pawns(const Position& pos, EvalInfo& ei); void evaluate_trapped_bishop_a7h7(const Position& pos, Square s, Color us, EvalInfo& ei); void evaluate_trapped_bishop_a1h1(const Position& pos, Square s, Color us, EvalInfo& ei); inline Score apply_weight(Score v, Score weight); Value scale_by_game_phase(const Score& v, Phase ph, const ScaleFactor sf[]); Score weight_option(const std::string& mgOpt, const std::string& egOpt, Score internalWeight); void init_safety(); } //// //// Functions //// /// evaluate() is the main evaluation function. It always computes two /// values, an endgame score and a middle game score, and interpolates /// between them based on the remaining material. Value evaluate(const Position& pos, EvalInfo& ei, int threadID) { return CpuHasPOPCNT ? do_evaluate(pos, ei, threadID) : do_evaluate(pos, ei, threadID); } namespace { template Value do_evaluate(const Position& pos, EvalInfo& ei, int threadID) { Bitboard b; ScaleFactor factor[2]; assert(pos.is_ok()); assert(threadID >= 0 && threadID < MAX_THREADS); assert(!pos.is_check()); memset(&ei, 0, sizeof(EvalInfo)); // Initialize by reading the incrementally updated scores included in the // position object (material + piece square tables) ei.value = pos.value(); // Probe the material hash table ei.mi = MaterialTable[threadID]->get_material_info(pos); ei.value += ei.mi->material_value(); // If we have a specialized evaluation function for the current material // configuration, call it and return if (ei.mi->specialized_eval_exists()) return ei.mi->evaluate(pos); // After get_material_info() call that modifies them factor[WHITE] = ei.mi->scale_factor(pos, WHITE); factor[BLACK] = ei.mi->scale_factor(pos, BLACK); // Probe the pawn hash table ei.pi = PawnTable[threadID]->get_pawn_info(pos); ei.value += apply_weight(ei.pi->pawns_value(), Weights[PawnStructure]); // Initialize king attack bitboards and king attack zones for both sides ei.attackedBy[WHITE][KING] = pos.attacks_from(pos.king_square(WHITE)); ei.attackedBy[BLACK][KING] = pos.attacks_from(pos.king_square(BLACK)); ei.kingZone[WHITE] = ei.attackedBy[BLACK][KING] | (ei.attackedBy[BLACK][KING] >> 8); ei.kingZone[BLACK] = ei.attackedBy[WHITE][KING] | (ei.attackedBy[WHITE][KING] << 8); // Initialize pawn attack bitboards for both sides ei.attackedBy[WHITE][PAWN] = ei.pi->pawn_attacks(WHITE); b = ei.attackedBy[WHITE][PAWN] & ei.attackedBy[BLACK][KING]; if (b) ei.kingAttackersCount[WHITE] = count_1s_max_15(b)/2; ei.attackedBy[BLACK][PAWN] = ei.pi->pawn_attacks(BLACK); b = ei.attackedBy[BLACK][PAWN] & ei.attackedBy[WHITE][KING]; if (b) ei.kingAttackersCount[BLACK] = count_1s_max_15(b)/2; // Evaluate pieces evaluate_pieces_of_color(pos, ei); evaluate_pieces_of_color(pos, ei); // Kings. Kings are evaluated after all other pieces for both sides, // because we need complete attack information for all pieces when computing // the king safety evaluation. evaluate_king(pos, ei); evaluate_king(pos, ei); // Evaluate tactical threats, we need full attack info including king evaluate_threats(pos, ei); evaluate_threats(pos, ei); // Evaluate passed pawns, we need full attack info including king evaluate_passed_pawns(pos, ei); evaluate_passed_pawns(pos, ei); // If one side has only a king, check whether exsists any unstoppable passed pawn if (!pos.non_pawn_material(WHITE) || !pos.non_pawn_material(BLACK)) evaluate_unstoppable_pawns(pos, ei); Phase phase = ei.mi->game_phase(); // Middle-game specific evaluation terms if (phase > PHASE_ENDGAME) { // Pawn storms in positions with opposite castling if ( square_file(pos.king_square(WHITE)) >= FILE_E && square_file(pos.king_square(BLACK)) <= FILE_D) ei.value += make_score(ei.pi->queenside_storm_value(WHITE) - ei.pi->kingside_storm_value(BLACK), 0); else if ( square_file(pos.king_square(WHITE)) <= FILE_D && square_file(pos.king_square(BLACK)) >= FILE_E) ei.value += make_score(ei.pi->kingside_storm_value(WHITE) - ei.pi->queenside_storm_value(BLACK), 0); // Evaluate space for both sides if (ei.mi->space_weight() > 0) { evaluate_space(pos, ei); evaluate_space(pos, ei); } } // Mobility ei.value += apply_weight(ei.mobility, Weights[Mobility]); // If we don't already have an unusual scale factor, check for opposite // colored bishop endgames, and use a lower scale for those if ( phase < PHASE_MIDGAME && pos.opposite_colored_bishops() && ( (factor[WHITE] == SCALE_FACTOR_NORMAL && eg_value(ei.value) > Value(0)) || (factor[BLACK] == SCALE_FACTOR_NORMAL && eg_value(ei.value) < Value(0)))) { ScaleFactor sf; // Only the two bishops ? if ( pos.non_pawn_material(WHITE) == BishopValueMidgame && pos.non_pawn_material(BLACK) == BishopValueMidgame) { // Check for KBP vs KB with only a single pawn that is almost // certainly a draw or at least two pawns. bool one_pawn = (pos.piece_count(WHITE, PAWN) + pos.piece_count(BLACK, PAWN) == 1); sf = one_pawn ? ScaleFactor(8) : ScaleFactor(32); } else // Endgame with opposite-colored bishops, but also other pieces. Still // a bit drawish, but not as drawish as with only the two bishops. sf = ScaleFactor(50); if (factor[WHITE] == SCALE_FACTOR_NORMAL) factor[WHITE] = sf; if (factor[BLACK] == SCALE_FACTOR_NORMAL) factor[BLACK] = sf; } // Interpolate between the middle game and the endgame score return Sign[pos.side_to_move()] * scale_by_game_phase(ei.value, phase, factor); } } // namespace /// init_eval() initializes various tables used by the evaluation function void init_eval(int threads) { assert(threads <= MAX_THREADS); for (int i = 0; i < MAX_THREADS; i++) { if (i >= threads) { delete PawnTable[i]; delete MaterialTable[i]; PawnTable[i] = NULL; MaterialTable[i] = NULL; continue; } if (!PawnTable[i]) PawnTable[i] = new PawnInfoTable(PawnTableSize); if (!MaterialTable[i]) MaterialTable[i] = new MaterialInfoTable(MaterialTableSize); } } /// quit_eval() releases heap-allocated memory at program termination void quit_eval() { for (int i = 0; i < MAX_THREADS; i++) { delete PawnTable[i]; delete MaterialTable[i]; PawnTable[i] = NULL; MaterialTable[i] = NULL; } } /// read_weights() reads evaluation weights from the corresponding UCI parameters void read_weights(Color us) { // King safety is asymmetrical. Our king danger level is weighted by // "Cowardice" UCI parameter, instead the opponent one by "Aggressiveness". const int kingDangerUs = (us == WHITE ? KingDangerUs : KingDangerThem); const int kingDangerThem = (us == WHITE ? KingDangerThem : KingDangerUs); Weights[Mobility] = weight_option("Mobility (Middle Game)", "Mobility (Endgame)", WeightsInternal[Mobility]); Weights[PawnStructure] = weight_option("Pawn Structure (Middle Game)", "Pawn Structure (Endgame)", WeightsInternal[PawnStructure]); Weights[PassedPawns] = weight_option("Passed Pawns (Middle Game)", "Passed Pawns (Endgame)", WeightsInternal[PassedPawns]); Weights[Space] = weight_option("Space", "Space", WeightsInternal[Space]); Weights[kingDangerUs] = weight_option("Cowardice", "Cowardice", WeightsInternal[KingDangerUs]); Weights[kingDangerThem] = weight_option("Aggressiveness", "Aggressiveness", WeightsInternal[KingDangerThem]); // If running in analysis mode, make sure we use symmetrical king safety. We do this // by replacing both Weights[kingDangerUs] and Weights[kingDangerThem] by their average. if (get_option_value_bool("UCI_AnalyseMode")) Weights[kingDangerUs] = Weights[kingDangerThem] = (Weights[kingDangerUs] + Weights[kingDangerThem]) / 2; init_safety(); } namespace { // evaluate_outposts() evaluates bishop and knight outposts squares template void evaluate_outposts(const Position& pos, EvalInfo& ei, Square s) { const Color Them = (Us == WHITE ? BLACK : WHITE); // Initial bonus based on square Value bonus = (Piece == BISHOP ? BishopOutpostBonus[relative_square(Us, s)] : KnightOutpostBonus[relative_square(Us, s)]); // Increase bonus if supported by pawn, especially if the opponent has // no minor piece which can exchange the outpost piece if (bonus && bit_is_set(ei.attackedBy[Us][PAWN], s)) { if ( pos.pieces(KNIGHT, Them) == EmptyBoardBB && (SquaresByColorBB[square_color(s)] & pos.pieces(BISHOP, Them)) == EmptyBoardBB) bonus += bonus + bonus / 2; else bonus += bonus / 2; } ei.value += Sign[Us] * make_score(bonus, bonus); } // evaluate_pieces<>() assigns bonuses and penalties to the pieces of a given color template void evaluate_pieces(const Position& pos, EvalInfo& ei, Bitboard no_mob_area) { Bitboard b; Square s, ksq; int mob; File f; const Color Them = (Us == WHITE ? BLACK : WHITE); const Square* ptr = pos.piece_list_begin(Us, Piece); while ((s = *ptr++) != SQ_NONE) { // Find attacked squares, including x-ray attacks for bishops and rooks if (Piece == KNIGHT || Piece == QUEEN) b = pos.attacks_from(s); else if (Piece == BISHOP) b = bishop_attacks_bb(s, pos.occupied_squares() & ~pos.pieces(QUEEN, Us)); else if (Piece == ROOK) b = rook_attacks_bb(s, pos.occupied_squares() & ~pos.pieces(ROOK, QUEEN, Us)); else assert(false); // Update attack info ei.attackedBy[Us][Piece] |= b; // King attacks if (b & ei.kingZone[Us]) { ei.kingAttackersCount[Us]++; ei.kingAttackersWeight[Us] += KingAttackWeights[Piece]; Bitboard bb = (b & ei.attackedBy[Them][KING]); if (bb) ei.kingAdjacentZoneAttacksCount[Us] += count_1s_max_15(bb); } // Mobility mob = (Piece != QUEEN ? count_1s_max_15(b & no_mob_area) : count_1s(b & no_mob_area)); ei.mobility += Sign[Us] * MobilityBonus[Piece][mob]; // Decrease score if we are attacked by an enemy pawn. Remaining part // of threat evaluation must be done later when we have full attack info. if (bit_is_set(ei.attackedBy[Them][PAWN], s)) ei.value -= Sign[Us] * ThreatedByPawnPenalty[Piece]; // Bishop and knight outposts squares if ((Piece == BISHOP || Piece == KNIGHT) && pos.square_is_weak(s, Them)) evaluate_outposts(pos, ei, s); // Special patterns: trapped bishops on a7/h7/a2/h2 // and trapped bishops on a1/h1/a8/h8 in Chess960. if (Piece == BISHOP) { if (bit_is_set(MaskA7H7[Us], s)) evaluate_trapped_bishop_a7h7(pos, s, Us, ei); if (Chess960 && bit_is_set(MaskA1H1[Us], s)) evaluate_trapped_bishop_a1h1(pos, s, Us, ei); } // Queen or rook on 7th rank if ( (Piece == ROOK || Piece == QUEEN) && relative_rank(Us, s) == RANK_7 && relative_rank(Us, pos.king_square(Them)) == RANK_8) { ei.value += Sign[Us] * (Piece == ROOK ? RookOn7thBonus : QueenOn7thBonus); } // Special extra evaluation for rooks if (Piece == ROOK) { // Open and half-open files f = square_file(s); if (ei.pi->file_is_half_open(Us, f)) { if (ei.pi->file_is_half_open(Them, f)) ei.value += Sign[Us] * RookOpenFileBonus; else ei.value += Sign[Us] * RookHalfOpenFileBonus; } // Penalize rooks which are trapped inside a king. Penalize more if // king has lost right to castle. if (mob > 6 || ei.pi->file_is_half_open(Us, f)) continue; ksq = pos.king_square(Us); if ( square_file(ksq) >= FILE_E && square_file(s) > square_file(ksq) && (relative_rank(Us, ksq) == RANK_1 || square_rank(ksq) == square_rank(s))) { // Is there a half-open file between the king and the edge of the board? if (!ei.pi->has_open_file_to_right(Us, square_file(ksq))) ei.value -= Sign[Us] * make_score(pos.can_castle(Us) ? (TrappedRookPenalty - mob * 16) / 2 : (TrappedRookPenalty - mob * 16), 0); } else if ( square_file(ksq) <= FILE_D && square_file(s) < square_file(ksq) && (relative_rank(Us, ksq) == RANK_1 || square_rank(ksq) == square_rank(s))) { // Is there a half-open file between the king and the edge of the board? if (!ei.pi->has_open_file_to_left(Us, square_file(ksq))) ei.value -= Sign[Us] * make_score(pos.can_castle(Us) ? (TrappedRookPenalty - mob * 16) / 2 : (TrappedRookPenalty - mob * 16), 0); } } } } // evaluate_threats<>() assigns bonuses according to the type of attacking piece // and the type of attacked one. template void evaluate_threats(const Position& pos, EvalInfo& ei) { const Color Them = (Us == WHITE ? BLACK : WHITE); Bitboard b; Score bonus = make_score(0, 0); // Enemy pieces not defended by a pawn and under our attack Bitboard weakEnemies = pos.pieces_of_color(Them) & ~ei.attackedBy[Them][PAWN] & ei.attackedBy[Us][0]; if (!weakEnemies) return; // Add bonus according to type of attacked enemy pieces and to the // type of attacking piece, from knights to queens. Kings are not // considered because are already special handled in king evaluation. for (PieceType pt1 = KNIGHT; pt1 < KING; pt1++) { b = ei.attackedBy[Us][pt1] & weakEnemies; if (b) for (PieceType pt2 = PAWN; pt2 < KING; pt2++) if (b & pos.pieces(pt2)) bonus += ThreatBonus[pt1][pt2]; } ei.value += Sign[Us] * bonus; } // evaluate_pieces_of_color<>() assigns bonuses and penalties to all the // pieces of a given color. template void evaluate_pieces_of_color(const Position& pos, EvalInfo& ei) { const Color Them = (Us == WHITE ? BLACK : WHITE); // Do not include in mobility squares protected by enemy pawns or occupied by our pieces const Bitboard no_mob_area = ~(ei.attackedBy[Them][PAWN] | pos.pieces_of_color(Us)); evaluate_pieces(pos, ei, no_mob_area); evaluate_pieces(pos, ei, no_mob_area); evaluate_pieces(pos, ei, no_mob_area); evaluate_pieces(pos, ei, no_mob_area); // Sum up all attacked squares ei.attackedBy[Us][0] = ei.attackedBy[Us][PAWN] | ei.attackedBy[Us][KNIGHT] | ei.attackedBy[Us][BISHOP] | ei.attackedBy[Us][ROOK] | ei.attackedBy[Us][QUEEN] | ei.attackedBy[Us][KING]; } // evaluate_king<>() assigns bonuses and penalties to a king of a given color template void evaluate_king(const Position& pos, EvalInfo& ei) { const Color Them = (Us == WHITE ? BLACK : WHITE); Bitboard undefended, b, b1, b2, safe; bool sente; int attackUnits, shelter = 0; const Square ksq = pos.king_square(Us); // King shelter if (relative_rank(Us, ksq) <= RANK_4) { shelter = ei.pi->get_king_shelter(pos, Us, ksq); ei.value += Sign[Us] * make_score(shelter, 0); } // King safety. This is quite complicated, and is almost certainly far // from optimally tuned. if ( pos.piece_count(Them, QUEEN) >= 1 && ei.kingAttackersCount[Them] >= 2 && pos.non_pawn_material(Them) >= QueenValueMidgame + RookValueMidgame && ei.kingAdjacentZoneAttacksCount[Them]) { // Is it the attackers turn to move? sente = (Them == pos.side_to_move()); // Find the attacked squares around the king which has no defenders // apart from the king itself undefended = ei.attacked_by(Them) & ei.attacked_by(Us, KING); undefended &= ~( ei.attacked_by(Us, PAWN) | ei.attacked_by(Us, KNIGHT) | ei.attacked_by(Us, BISHOP) | ei.attacked_by(Us, ROOK) | ei.attacked_by(Us, QUEEN)); // Initialize the 'attackUnits' variable, which is used later on as an // index to the KingDangerTable[] array. The initial value is based on // the number and types of the enemy's attacking pieces, the number of // attacked and undefended squares around our king, the square of the // king, and the quality of the pawn shelter. attackUnits = Min(25, (ei.kingAttackersCount[Them] * ei.kingAttackersWeight[Them]) / 2) + 3 * (ei.kingAdjacentZoneAttacksCount[Them] + count_1s_max_15(undefended)) + InitKingDanger[relative_square(Us, ksq)] - shelter / 32; // Analyse enemy's safe queen contact checks. First find undefended // squares around the king attacked by enemy queen... b = undefended & ei.attacked_by(Them, QUEEN) & ~pos.pieces_of_color(Them); if (b) { // ...then remove squares not supported by another enemy piece b &= ( ei.attacked_by(Them, PAWN) | ei.attacked_by(Them, KNIGHT) | ei.attacked_by(Them, BISHOP) | ei.attacked_by(Them, ROOK)); if (b) attackUnits += QueenContactCheckBonus * count_1s_max_15(b) * (sente ? 2 : 1); } // Analyse enemy's safe distance checks for sliders and knights safe = ~(pos.pieces_of_color(Them) | ei.attacked_by(Us)); b1 = pos.attacks_from(ksq) & safe; b2 = pos.attacks_from(ksq) & safe; // Enemy queen safe checks b = (b1 | b2) & ei.attacked_by(Them, QUEEN); if (b) attackUnits += QueenCheckBonus * count_1s_max_15(b); // Enemy rooks safe checks b = b1 & ei.attacked_by(Them, ROOK); if (b) attackUnits += RookCheckBonus * count_1s_max_15(b); // Enemy bishops safe checks b = b2 & ei.attacked_by(Them, BISHOP); if (b) attackUnits += BishopCheckBonus * count_1s_max_15(b); // Enemy knights safe checks b = pos.attacks_from(ksq) & ei.attacked_by(Them, KNIGHT) & safe; if (b) attackUnits += KnightCheckBonus * count_1s_max_15(b); // Analyse enemy's discovered checks (only for non-pawns right now, // consider adding pawns later). b = pos.discovered_check_candidates(Them) & ~pos.pieces(PAWN); if (b) attackUnits += DiscoveredCheckBonus * count_1s_max_15(b) * (sente ? 2 : 1); // To index KingDangerTable[] attackUnits must be in [0, 99] range attackUnits = Min(99, Max(0, attackUnits)); // Finally, extract the king danger score from the KingDangerTable[] // array and subtract the score from evaluation. Set also ei.kingDanger[] // value that will be used for pruning because this value can sometimes // be very big, and so capturing a single attacking piece can therefore // result in a score change far bigger than the value of the captured piece. ei.value -= Sign[Us] * KingDangerTable[Us][attackUnits]; ei.kingDanger[Us] = mg_value(KingDangerTable[Us][attackUnits]); } } // evaluate_passed_pawns<>() evaluates the passed pawns of the given color template void evaluate_passed_pawns(const Position& pos, EvalInfo& ei) { const Color Them = (Us == WHITE ? BLACK : WHITE); Bitboard squaresToQueen, defendedSquares, unsafeSquares, supportingPawns; Bitboard b = ei.pi->passed_pawns() & pos.pieces_of_color(Us); while (b) { Square s = pop_1st_bit(&b); assert(pos.piece_on(s) == piece_of_color_and_type(Us, PAWN)); assert(pos.pawn_is_passed(Us, s)); int r = int(relative_rank(Us, s) - RANK_2); int tr = Max(0, r * (r - 1)); // Base bonus based on rank Value mbonus = Value(20 * tr); Value ebonus = Value(10 + r * r * 10); if (tr) { Square blockSq = s + pawn_push(Us); // Adjust bonus based on kings proximity ebonus -= Value(square_distance(pos.king_square(Us), blockSq) * 3 * tr); ebonus -= Value(square_distance(pos.king_square(Us), blockSq + pawn_push(Us)) * 1 * tr); ebonus += Value(square_distance(pos.king_square(Them), blockSq) * 6 * tr); // If the pawn is free to advance, increase bonus if (pos.square_is_empty(blockSq)) { squaresToQueen = squares_in_front_of(Us, s); defendedSquares = squaresToQueen & ei.attacked_by(Us); // There are no enemy pawns in the pawn's path assert(!(squaresToQueen & pos.pieces(PAWN, Them))); // If there is an enemy rook or queen attacking the pawn from behind, // add all X-ray attacks by the rook or queen. Otherwise consider only // the squares in the pawn's path attacked or occupied by the enemy. if ( (squares_behind(Us, s) & pos.pieces(ROOK, QUEEN, Them)) && (squares_behind(Us, s) & pos.pieces(ROOK, QUEEN, Them) & pos.attacks_from(s))) unsafeSquares = squaresToQueen; else unsafeSquares = squaresToQueen & (ei.attacked_by(Them) | pos.pieces_of_color(Them)); // If there aren't enemy attacks or pieces along the path to queen give // huge bonus. Even bigger if we protect the pawn's path. if (!unsafeSquares) ebonus += Value(tr * (squaresToQueen == defendedSquares ? 17 : 15)); else // OK, there are enemy attacks or pieces (but not pawns). Are those // squares which are attacked by the enemy also attacked by us ? // If yes, big bonus (but smaller than when there are no enemy attacks), // if no, somewhat smaller bonus. ebonus += Value(tr * ((unsafeSquares & defendedSquares) == unsafeSquares ? 13 : 8)); // At last, add a small bonus when there are no *friendly* pieces // in the pawn's path. if (!(squaresToQueen & pos.pieces_of_color(Us))) ebonus += Value(tr); } } // tr != 0 // Increase the bonus if the passed pawn is supported by a friendly pawn // on the same rank and a bit smaller if it's on the previous rank. supportingPawns = pos.pieces(PAWN, Us) & neighboring_files_bb(s); if (supportingPawns & rank_bb(s)) ebonus += Value(r * 20); else if (supportingPawns & rank_bb(s - pawn_push(Us))) ebonus += Value(r * 12); // Rook pawns are a special case: They are sometimes worse, and // sometimes better than other passed pawns. It is difficult to find // good rules for determining whether they are good or bad. For now, // we try the following: Increase the value for rook pawns if the // other side has no pieces apart from a knight, and decrease the // value if the other side has a rook or queen. if (square_file(s) == FILE_A || square_file(s) == FILE_H) { if ( pos.non_pawn_material(Them) <= KnightValueMidgame && pos.piece_count(Them, KNIGHT) <= 1) ebonus += ebonus / 4; else if (pos.pieces(ROOK, QUEEN, Them)) ebonus -= ebonus / 4; } // Add the scores for this pawn to the middle game and endgame eval ei.value += Sign[Us] * apply_weight(make_score(mbonus, ebonus), Weights[PassedPawns]); } // while } // evaluate_unstoppable_pawns() evaluates the unstoppable passed pawns for both sides void evaluate_unstoppable_pawns(const Position& pos, EvalInfo& ei) { int movesToGo[2] = {0, 0}; Square pawnToGo[2] = {SQ_NONE, SQ_NONE}; for (Color c = WHITE; c <= BLACK; c++) { // Skip evaluation if other side has non-pawn pieces if (pos.non_pawn_material(opposite_color(c))) continue; Bitboard b = ei.pi->passed_pawns() & pos.pieces_of_color(c); while (b) { Square s = pop_1st_bit(&b); Square queeningSquare = relative_square(c, make_square(square_file(s), RANK_8)); int d = square_distance(s, queeningSquare) - square_distance(pos.king_square(opposite_color(c)), queeningSquare) + int(c != pos.side_to_move()); if (d < 0) { int mtg = RANK_8 - relative_rank(c, s); int blockerCount = count_1s_max_15(squares_in_front_of(c, s) & pos.occupied_squares()); mtg += blockerCount; d += blockerCount; if (d < 0 && (!movesToGo[c] || movesToGo[c] > mtg)) { movesToGo[c] = mtg; pawnToGo[c] = s; } } } } // Neither side has an unstoppable passed pawn? if (!(movesToGo[WHITE] | movesToGo[BLACK])) return; // Does only one side have an unstoppable passed pawn? if (!movesToGo[WHITE] || !movesToGo[BLACK]) { Color winnerSide = movesToGo[WHITE] ? WHITE : BLACK; ei.value += make_score(0, Sign[winnerSide] * (UnstoppablePawnValue - Value(0x40 * movesToGo[winnerSide]))); } else { // Both sides have unstoppable pawns! Try to find out who queens // first. We begin by transforming 'movesToGo' to the number of // plies until the pawn queens for both sides. movesToGo[WHITE] *= 2; movesToGo[BLACK] *= 2; movesToGo[pos.side_to_move()]--; Color winnerSide = movesToGo[WHITE] < movesToGo[BLACK] ? WHITE : BLACK; Color loserSide = opposite_color(winnerSide); // If one side queens at least three plies before the other, that side wins if (movesToGo[winnerSide] <= movesToGo[loserSide] - 3) ei.value += Sign[winnerSide] * make_score(0, UnstoppablePawnValue - Value(0x40 * (movesToGo[winnerSide]/2))); // If one side queens one ply before the other and checks the king or attacks // the undefended opponent's queening square, that side wins. To avoid cases // where the opponent's king could move somewhere before first pawn queens we // consider only free paths to queen for both pawns. else if ( !(squares_in_front_of(WHITE, pawnToGo[WHITE]) & pos.occupied_squares()) && !(squares_in_front_of(BLACK, pawnToGo[BLACK]) & pos.occupied_squares())) { assert(movesToGo[loserSide] - movesToGo[winnerSide] == 1); Square winnerQSq = relative_square(winnerSide, make_square(square_file(pawnToGo[winnerSide]), RANK_8)); Square loserQSq = relative_square(loserSide, make_square(square_file(pawnToGo[loserSide]), RANK_8)); Bitboard b = pos.occupied_squares(); clear_bit(&b, pawnToGo[winnerSide]); clear_bit(&b, pawnToGo[loserSide]); b = queen_attacks_bb(winnerQSq, b); if ( (b & pos.pieces(KING, loserSide)) ||(bit_is_set(b, loserQSq) && !bit_is_set(ei.attacked_by(loserSide), loserQSq))) ei.value += Sign[winnerSide] * make_score(0, UnstoppablePawnValue - Value(0x40 * (movesToGo[winnerSide]/2))); } } } // evaluate_trapped_bishop_a7h7() determines whether a bishop on a7/h7 // (a2/h2 for black) is trapped by enemy pawns, and assigns a penalty // if it is. void evaluate_trapped_bishop_a7h7(const Position& pos, Square s, Color us, EvalInfo &ei) { assert(square_is_ok(s)); assert(pos.piece_on(s) == piece_of_color_and_type(us, BISHOP)); Square b6 = relative_square(us, (square_file(s) == FILE_A) ? SQ_B6 : SQ_G6); Square b8 = relative_square(us, (square_file(s) == FILE_A) ? SQ_B8 : SQ_G8); if ( pos.piece_on(b6) == piece_of_color_and_type(opposite_color(us), PAWN) && pos.see(s, b6) < 0 && pos.see(s, b8) < 0) { ei.value -= Sign[us] * TrappedBishopA7H7Penalty; } } // evaluate_trapped_bishop_a1h1() determines whether a bishop on a1/h1 // (a8/h8 for black) is trapped by a friendly pawn on b2/g2 (b7/g7 for // black), and assigns a penalty if it is. This pattern can obviously // only occur in Chess960 games. void evaluate_trapped_bishop_a1h1(const Position& pos, Square s, Color us, EvalInfo& ei) { Piece pawn = piece_of_color_and_type(us, PAWN); Square b2, b3, c3; assert(Chess960); assert(square_is_ok(s)); assert(pos.piece_on(s) == piece_of_color_and_type(us, BISHOP)); if (square_file(s) == FILE_A) { b2 = relative_square(us, SQ_B2); b3 = relative_square(us, SQ_B3); c3 = relative_square(us, SQ_C3); } else { b2 = relative_square(us, SQ_G2); b3 = relative_square(us, SQ_G3); c3 = relative_square(us, SQ_F3); } if (pos.piece_on(b2) == pawn) { Score penalty; if (!pos.square_is_empty(b3)) penalty = 2 * TrappedBishopA1H1Penalty; else if (pos.piece_on(c3) == pawn) penalty = TrappedBishopA1H1Penalty; else penalty = TrappedBishopA1H1Penalty / 2; ei.value -= Sign[us] * penalty; } } // evaluate_space() computes the space evaluation for a given side. The // space evaluation is a simple bonus based on the number of safe squares // available for minor pieces on the central four files on ranks 2--4. Safe // squares one, two or three squares behind a friendly pawn are counted // twice. Finally, the space bonus is scaled by a weight taken from the // material hash table. template void evaluate_space(const Position& pos, EvalInfo& ei) { const Color Them = (Us == WHITE ? BLACK : WHITE); // Find the safe squares for our pieces inside the area defined by // SpaceMask[us]. A square is unsafe if it is attacked by an enemy // pawn, or if it is undefended and attacked by an enemy piece. Bitboard safeSquares = SpaceMask[Us] & ~pos.pieces(PAWN, Us) & ~ei.attacked_by(Them, PAWN) & (ei.attacked_by(Us) | ~ei.attacked_by(Them)); // Find all squares which are at most three squares behind some friendly pawn Bitboard behindFriendlyPawns = pos.pieces(PAWN, Us); behindFriendlyPawns |= (Us == WHITE ? behindFriendlyPawns >> 8 : behindFriendlyPawns << 8); behindFriendlyPawns |= (Us == WHITE ? behindFriendlyPawns >> 16 : behindFriendlyPawns << 16); int space = count_1s_max_15(safeSquares) + count_1s_max_15(behindFriendlyPawns & safeSquares); ei.value += Sign[Us] * apply_weight(make_score(space * ei.mi->space_weight(), 0), Weights[Space]); } // apply_weight() applies an evaluation weight to a value trying to prevent overflow inline Score apply_weight(Score v, Score w) { return make_score((int(mg_value(v)) * mg_value(w)) / 0x100, (int(eg_value(v)) * eg_value(w)) / 0x100); } // scale_by_game_phase() interpolates between a middle game and an endgame // score, based on game phase. It also scales the return value by a // ScaleFactor array. Value scale_by_game_phase(const Score& v, Phase ph, const ScaleFactor sf[]) { assert(mg_value(v) > -VALUE_INFINITE && mg_value(v) < VALUE_INFINITE); assert(eg_value(v) > -VALUE_INFINITE && eg_value(v) < VALUE_INFINITE); assert(ph >= PHASE_ENDGAME && ph <= PHASE_MIDGAME); Value ev = apply_scale_factor(eg_value(v), sf[(eg_value(v) > Value(0) ? WHITE : BLACK)]); int result = (mg_value(v) * ph + ev * (128 - ph)) / 128; return Value(result & ~(GrainSize - 1)); } // weight_option() computes the value of an evaluation weight, by combining // two UCI-configurable weights (midgame and endgame) with an internal weight. Score weight_option(const std::string& mgOpt, const std::string& egOpt, Score internalWeight) { // Scale option value from 100 to 256 int mg = get_option_value_int(mgOpt) * 256 / 100; int eg = get_option_value_int(egOpt) * 256 / 100; return apply_weight(make_score(mg, eg), internalWeight); } // init_safety() initizes the king safety evaluation, based on UCI // parameters. It is called from read_weights(). void init_safety() { int maxSlope = 30; int peak = 0x500; double a = 0.4; double b = 0.0; Value t[100]; // First setup the base table for (int i = 0; i < 100; i++) { if (i < b) t[i] = Value(0); else t[i] = Value((int)(a * (i - b) * (i - b))); } for (int i = 1; i < 100; i++) { if (t[i] - t[i - 1] > maxSlope) t[i] = t[i - 1] + Value(maxSlope); if (t[i] > Value(peak)) t[i] = Value(peak); } // Then apply the weights and get the final KingDangerTable[] array for (Color c = WHITE; c <= BLACK; c++) for (int i = 0; i < 100; i++) KingDangerTable[c][i] = apply_weight(make_score(t[i], 0), Weights[KingDangerUs + c]); } }