/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include "book.h" #include "evaluate.h" #include "history.h" #include "misc.h" #include "movegen.h" #include "movepick.h" #include "search.h" #include "timeman.h" #include "thread.h" #include "tt.h" #include "ucioption.h" using std::cout; using std::endl; using std::string; using Search::Signals; using Search::Limits; namespace Search { volatile SignalsType Signals; LimitsType Limits; std::vector RootMoves; Position RootPosition; } namespace { // Set to true to force running with one thread. Used for debugging const bool FakeSplit = false; // Different node types, used as template parameter enum NodeType { Root, PV, NonPV, SplitPointRoot, SplitPointPV, SplitPointNonPV }; // RootMove struct is used for moves at the root of the tree. For each root // move, we store a score, a node count, and a PV (really a refutation // in the case of moves which fail low). Score is normally set at // -VALUE_INFINITE for all non-pv moves. struct RootMove { // RootMove::operator<() is the comparison function used when // sorting the moves. A move m1 is considered to be better // than a move m2 if it has an higher score bool operator<(const RootMove& m) const { return score < m.score; } void extract_pv_from_tt(Position& pos); void insert_pv_in_tt(Position& pos); int64_t nodes; Value score; Value prevScore; std::vector pv; }; // RootMoveList struct is mainly a std::vector of RootMove objects struct RootMoveList : public std::vector { void init(Position& pos, Move rootMoves[]); RootMove* find(const Move& m, int startIndex = 0); int bestMoveChanges; }; /// Constants // Lookup table to check if a Piece is a slider and its access function const bool Slidings[18] = { 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1 }; inline bool piece_is_slider(Piece p) { return Slidings[p]; } // Step 6. Razoring // Maximum depth for razoring const Depth RazorDepth = 4 * ONE_PLY; // Dynamic razoring margin based on depth inline Value razor_margin(Depth d) { return Value(0x200 + 0x10 * int(d)); } // Maximum depth for use of dynamic threat detection when null move fails low const Depth ThreatDepth = 5 * ONE_PLY; // Step 9. Internal iterative deepening // Minimum depth for use of internal iterative deepening const Depth IIDDepth[] = { 8 * ONE_PLY, 5 * ONE_PLY }; // At Non-PV nodes we do an internal iterative deepening search // when the static evaluation is bigger then beta - IIDMargin. const Value IIDMargin = Value(0x100); // Step 11. Decide the new search depth // Extensions. Array index 0 is used for non-PV nodes, index 1 for PV nodes const Depth CheckExtension[] = { ONE_PLY / 2, ONE_PLY / 1 }; const Depth PawnEndgameExtension[] = { ONE_PLY / 1, ONE_PLY / 1 }; const Depth PawnPushTo7thExtension[] = { ONE_PLY / 2, ONE_PLY / 2 }; const Depth PassedPawnExtension[] = { DEPTH_ZERO, ONE_PLY / 2 }; // Minimum depth for use of singular extension const Depth SingularExtensionDepth[] = { 8 * ONE_PLY, 6 * ONE_PLY }; // Step 12. Futility pruning // Futility margin for quiescence search const Value FutilityMarginQS = Value(0x80); // Futility lookup tables (initialized at startup) and their access functions Value FutilityMargins[16][64]; // [depth][moveNumber] int FutilityMoveCounts[32]; // [depth] inline Value futility_margin(Depth d, int mn) { return d < 7 * ONE_PLY ? FutilityMargins[std::max(int(d), 1)][std::min(mn, 63)] : 2 * VALUE_INFINITE; } inline int futility_move_count(Depth d) { return d < 16 * ONE_PLY ? FutilityMoveCounts[d] : MAX_MOVES; } // Step 14. Reduced search // Reduction lookup tables (initialized at startup) and their access function int8_t Reductions[2][64][64]; // [pv][depth][moveNumber] template inline Depth reduction(Depth d, int mn) { return (Depth) Reductions[PvNode][std::min(int(d) / ONE_PLY, 63)][std::min(mn, 63)]; } // Easy move margin. An easy move candidate must be at least this much // better than the second best move. const Value EasyMoveMargin = Value(0x150); /// Namespace variables // Root move list RootMoveList Rml; // MultiPV mode int MultiPV, UCIMultiPV, MultiPVIdx; // Time management variables TimeManager TimeMgr; // Skill level adjustment int SkillLevel; bool SkillLevelEnabled; // History table History H; /// Local functions Move id_loop(Position& pos, Move rootMoves[], Move* ponderMove); template Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth); template Value qsearch(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth); bool check_is_dangerous(Position &pos, Move move, Value futilityBase, Value beta, Value *bValue); bool connected_moves(const Position& pos, Move m1, Move m2); Value value_to_tt(Value v, int ply); Value value_from_tt(Value v, int ply); bool can_return_tt(const TTEntry* tte, Depth depth, Value beta, int ply); bool connected_threat(const Position& pos, Move m, Move threat); Value refine_eval(const TTEntry* tte, Value defaultEval, int ply); void update_history(const Position& pos, Move move, Depth depth, Move movesSearched[], int moveCount); void do_skill_level(Move* best, Move* ponder); int elapsed_time(bool reset = false); string score_to_uci(Value v, Value alpha = -VALUE_INFINITE, Value beta = VALUE_INFINITE); string speed_to_uci(int64_t nodes); string pv_to_uci(const Move pv[], int pvNum, bool chess960); string pretty_pv(Position& pos, int depth, Value score, int time, Move pv[]); string depth_to_uci(Depth depth); // MovePickerExt template class extends MovePicker and allows to choose at compile // time the proper moves source according to the type of node. In the default case // we simply create and use a standard MovePicker object. template struct MovePickerExt : public MovePicker { MovePickerExt(const Position& p, Move ttm, Depth d, const History& h, SearchStack* ss, Value b) : MovePicker(p, ttm, d, h, ss, b) {} }; // In case of a SpNode we use split point's shared MovePicker object as moves source template<> struct MovePickerExt : public MovePicker { MovePickerExt(const Position& p, Move ttm, Depth d, const History& h, SearchStack* ss, Value b) : MovePicker(p, ttm, d, h, ss, b), mp(ss->sp->mp) {} Move get_next_move() { return mp->get_next_move(); } MovePicker* mp; }; // Overload operator<<() to make it easier to print moves in a coordinate // notation compatible with UCI protocol. std::ostream& operator<<(std::ostream& os, Move m) { bool chess960 = (os.iword(0) != 0); // See set960() return os << move_to_uci(m, chess960); } // When formatting a move for std::cout we must know if we are in Chess960 // or not. To keep using the handy operator<<() on the move the trick is to // embed this flag in the stream itself. Function-like named enum set960 is // used as a custom manipulator and the stream internal general-purpose array, // accessed through ios_base::iword(), is used to pass the flag to the move's // operator<<() that will read it to properly format castling moves. enum set960 {}; std::ostream& operator<< (std::ostream& os, const set960& f) { os.iword(0) = int(f); return os; } // extension() decides whether a move should be searched with normal depth, // or with extended depth. Certain classes of moves (checking moves, in // particular) are searched with bigger depth than ordinary moves and in // any case are marked as 'dangerous'. Note that also if a move is not // extended, as example because the corresponding UCI option is set to zero, // the move is marked as 'dangerous' so, at least, we avoid to prune it. template FORCE_INLINE Depth extension(const Position& pos, Move m, bool captureOrPromotion, bool moveIsCheck, bool* dangerous) { assert(m != MOVE_NONE); Depth result = DEPTH_ZERO; *dangerous = moveIsCheck; if (moveIsCheck && pos.see_sign(m) >= 0) result += CheckExtension[PvNode]; if (type_of(pos.piece_on(move_from(m))) == PAWN) { Color c = pos.side_to_move(); if (relative_rank(c, move_to(m)) == RANK_7) { result += PawnPushTo7thExtension[PvNode]; *dangerous = true; } if (pos.pawn_is_passed(c, move_to(m))) { result += PassedPawnExtension[PvNode]; *dangerous = true; } } if ( captureOrPromotion && type_of(pos.piece_on(move_to(m))) != PAWN && ( pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) - PieceValueMidgame[pos.piece_on(move_to(m))] == VALUE_ZERO) && !is_special(m)) { result += PawnEndgameExtension[PvNode]; *dangerous = true; } return std::min(result, ONE_PLY); } } // namespace /// init_search() is called during startup to initialize various lookup tables void Search::init() { int d; // depth (ONE_PLY == 2) int hd; // half depth (ONE_PLY == 1) int mc; // moveCount // Init reductions array for (hd = 1; hd < 64; hd++) for (mc = 1; mc < 64; mc++) { double pvRed = log(double(hd)) * log(double(mc)) / 3.0; double nonPVRed = 0.33 + log(double(hd)) * log(double(mc)) / 2.25; Reductions[1][hd][mc] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(ONE_PLY)) : 0); Reductions[0][hd][mc] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(ONE_PLY)) : 0); } // Init futility margins array for (d = 1; d < 16; d++) for (mc = 0; mc < 64; mc++) FutilityMargins[d][mc] = Value(112 * int(log(double(d * d) / 2) / log(2.0) + 1.001) - 8 * mc + 45); // Init futility move count array for (d = 0; d < 32; d++) FutilityMoveCounts[d] = int(3.001 + 0.25 * pow(d, 2.0)); } /// perft() is our utility to verify move generation. All the leaf nodes up to /// the given depth are generated and counted and the sum returned. int64_t Search::perft(Position& pos, Depth depth) { StateInfo st; int64_t sum = 0; // Generate all legal moves MoveList ml(pos); // If we are at the last ply we don't need to do and undo // the moves, just to count them. if (depth <= ONE_PLY) return ml.size(); // Loop through all legal moves CheckInfo ci(pos); for ( ; !ml.end(); ++ml) { pos.do_move(ml.move(), st, ci, pos.move_gives_check(ml.move(), ci)); sum += perft(pos, depth - ONE_PLY); pos.undo_move(ml.move()); } return sum; } /// think() is the external interface to Stockfish's search, and is called by the /// main thread when the program receives the UCI 'go' command. It searches from /// RootPosition and at the end prints the "bestmove" to output. void Search::think() { static Book book; // Defined static to initialize the PRNG only once Position& pos = RootPosition; // Reset elapsed search time elapsed_time(true); // Set output stream mode: normal or chess960. Castling notation is different cout << set960(pos.is_chess960()); // Look for a book move if (Options["OwnBook"].value()) { if (Options["Book File"].value() != book.name()) book.open(Options["Book File"].value()); Move bookMove = book.probe(pos, Options["Best Book Move"].value()); if (bookMove != MOVE_NONE) { if (!Signals.stop && (Limits.ponder || Limits.infinite)) Threads.wait_for_stop_or_ponderhit(); cout << "bestmove " << bookMove << endl; return; } } // Read UCI options: GUI could change UCI parameters during the game read_evaluation_uci_options(pos.side_to_move()); Threads.read_uci_options(); // Set a new TT size if changed TT.set_size(Options["Hash"].value()); if (Options["Clear Hash"].value()) { Options["Clear Hash"].set_value("false"); TT.clear(); } UCIMultiPV = Options["MultiPV"].value(); SkillLevel = Options["Skill Level"].value(); // Do we have to play with skill handicap? In this case enable MultiPV that // we will use behind the scenes to retrieve a set of possible moves. SkillLevelEnabled = (SkillLevel < 20); MultiPV = (SkillLevelEnabled ? std::max(UCIMultiPV, 4) : UCIMultiPV); // Write current search header to log file if (Options["Use Search Log"].value()) { Log log(Options["Search Log Filename"].value()); log << "\nSearching: " << pos.to_fen() << "\ninfinite: " << Limits.infinite << " ponder: " << Limits.ponder << " time: " << Limits.time << " increment: " << Limits.increment << " moves to go: " << Limits.movesToGo << endl; } // Wake up needed threads and reset maxPly counter for (int i = 0; i < Threads.size(); i++) { Threads[i].maxPly = 0; Threads[i].wake_up(); } // Set best timer interval to avoid lagging under time pressure. Timer is // used to check for remaining available thinking time. TimeMgr.init(Limits, pos.startpos_ply_counter()); if (TimeMgr.available_time()) Threads.set_timer(std::min(100, std::max(TimeMgr.available_time() / 8, 20))); else Threads.set_timer(100); // We're ready to start thinking. Call the iterative deepening loop function Move ponderMove = MOVE_NONE; Move bestMove = id_loop(pos, &RootMoves[0], &ponderMove); // Stop timer, no need to check for available time any more Threads.set_timer(0); // This makes all the slave threads to go to sleep, if not already sleeping Threads.set_size(1); // Write current search final statistics to log file if (Options["Use Search Log"].value()) { int e = elapsed_time(); Log log(Options["Search Log Filename"].value()); log << "Nodes: " << pos.nodes_searched() << "\nNodes/second: " << (e > 0 ? pos.nodes_searched() * 1000 / e : 0) << "\nBest move: " << move_to_san(pos, bestMove); StateInfo st; pos.do_move(bestMove, st); log << "\nPonder move: " << move_to_san(pos, ponderMove) << endl; pos.undo_move(bestMove); // Return from think() with unchanged position } // When we reach max depth we arrive here even without a StopRequest, but if // we are pondering or in infinite search, we shouldn't print the best move // before we are told to do so. if (!Signals.stop && (Limits.ponder || Limits.infinite)) Threads.wait_for_stop_or_ponderhit(); // Could be MOVE_NONE when searching on a stalemate position cout << "bestmove " << bestMove; // UCI protol is not clear on allowing sending an empty ponder move, instead // it is clear that ponder move is optional. So skip it if empty. if (ponderMove != MOVE_NONE) cout << " ponder " << ponderMove; cout << endl; } namespace { // id_loop() is the main iterative deepening loop. It calls search() repeatedly // with increasing depth until the allocated thinking time has been consumed, // user stops the search, or the maximum search depth is reached. Move id_loop(Position& pos, Move rootMoves[], Move* ponderMove) { SearchStack ss[PLY_MAX_PLUS_2]; Value bestValues[PLY_MAX_PLUS_2]; int bestMoveChanges[PLY_MAX_PLUS_2]; int depth, aspirationDelta; Value bestValue, alpha, beta; Move bestMove, skillBest, skillPonder; bool bestMoveNeverChanged = true; // Initialize stuff before a new search memset(ss, 0, 4 * sizeof(SearchStack)); TT.new_search(); H.clear(); *ponderMove = bestMove = skillBest = skillPonder = MOVE_NONE; depth = aspirationDelta = 0; bestValue = alpha = -VALUE_INFINITE, beta = VALUE_INFINITE; ss->currentMove = MOVE_NULL; // Hack to skip update gains // Moves to search are verified and copied Rml.init(pos, rootMoves); // Handle special case of searching on a mate/stalemate position if (!Rml.size()) { cout << "info" << depth_to_uci(DEPTH_ZERO) << score_to_uci(pos.in_check() ? -VALUE_MATE : VALUE_DRAW, alpha, beta) << endl; return MOVE_NONE; } // Iterative deepening loop until requested to stop or target depth reached while (!Signals.stop && ++depth <= PLY_MAX && (!Limits.maxDepth || depth <= Limits.maxDepth)) { // Save now last iteration's scores, before Rml moves are reordered for (size_t i = 0; i < Rml.size(); i++) Rml[i].prevScore = Rml[i].score; Rml.bestMoveChanges = 0; // MultiPV loop. We perform a full root search for each PV line for (MultiPVIdx = 0; MultiPVIdx < std::min(MultiPV, (int)Rml.size()); MultiPVIdx++) { // Calculate dynamic aspiration window based on previous iterations if (depth >= 5 && abs(Rml[MultiPVIdx].prevScore) < VALUE_KNOWN_WIN) { int prevDelta1 = bestValues[depth - 1] - bestValues[depth - 2]; int prevDelta2 = bestValues[depth - 2] - bestValues[depth - 3]; aspirationDelta = std::min(std::max(abs(prevDelta1) + abs(prevDelta2) / 2, 16), 24); aspirationDelta = (aspirationDelta + 7) / 8 * 8; // Round to match grainSize alpha = std::max(Rml[MultiPVIdx].prevScore - aspirationDelta, -VALUE_INFINITE); beta = std::min(Rml[MultiPVIdx].prevScore + aspirationDelta, VALUE_INFINITE); } else { alpha = -VALUE_INFINITE; beta = VALUE_INFINITE; } // Start with a small aspiration window and, in case of fail high/low, // research with bigger window until not failing high/low anymore. do { // Search starts from ss+1 to allow referencing (ss-1). This is // needed by update gains and ss copy when splitting at Root. bestValue = search(pos, ss+1, alpha, beta, depth * ONE_PLY); // Bring to front the best move. It is critical that sorting is // done with a stable algorithm because all the values but the first // and eventually the new best one are set to -VALUE_INFINITE and // we want to keep the same order for all the moves but the new // PV that goes to the front. Note that in case of MultiPV search // the already searched PV lines are preserved. sort(Rml.begin() + MultiPVIdx, Rml.end()); // In case we have found an exact score and we are going to leave // the fail high/low loop then reorder the PV moves, otherwise // leave the last PV move in its position so to be searched again. // Of course this is needed only in MultiPV search. if (MultiPVIdx && bestValue > alpha && bestValue < beta) sort(Rml.begin(), Rml.begin() + MultiPVIdx); // Write PV back to transposition table in case the relevant entries // have been overwritten during the search. for (int i = 0; i <= MultiPVIdx; i++) Rml[i].insert_pv_in_tt(pos); // If search has been stopped exit the aspiration window loop, // note that sorting and writing PV back to TT is safe becuase // Rml is still valid, although refers to the previous iteration. if (Signals.stop) break; // Send full PV info to GUI if we are going to leave the loop or // if we have a fail high/low and we are deep in the search. UCI // protocol requires to send all the PV lines also if are still // to be searched and so refer to the previous search's score. if ((bestValue > alpha && bestValue < beta) || elapsed_time() > 2000) for (int i = 0; i < std::min(UCIMultiPV, (int)Rml.size()); i++) { bool updated = (i <= MultiPVIdx); if (depth == 1 && !updated) continue; Depth d = (updated ? depth : depth - 1) * ONE_PLY; Value s = (updated ? Rml[i].score : Rml[i].prevScore); cout << "info" << depth_to_uci(d) << (i == MultiPVIdx ? score_to_uci(s, alpha, beta) : score_to_uci(s)) << speed_to_uci(pos.nodes_searched()) << pv_to_uci(&Rml[i].pv[0], i + 1, pos.is_chess960()) << endl; } // In case of failing high/low increase aspiration window and // research, otherwise exit the fail high/low loop. if (bestValue >= beta) { beta = std::min(beta + aspirationDelta, VALUE_INFINITE); aspirationDelta += aspirationDelta / 2; } else if (bestValue <= alpha) { Signals.failedLowAtRoot = true; Signals.stopOnPonderhit = false; alpha = std::max(alpha - aspirationDelta, -VALUE_INFINITE); aspirationDelta += aspirationDelta / 2; } else break; } while (abs(bestValue) < VALUE_KNOWN_WIN); } // Collect info about search result bestMove = Rml[0].pv[0]; *ponderMove = Rml[0].pv[1]; bestValues[depth] = bestValue; bestMoveChanges[depth] = Rml.bestMoveChanges; // Skills: Do we need to pick now the best and the ponder moves ? if (SkillLevelEnabled && depth == 1 + SkillLevel) do_skill_level(&skillBest, &skillPonder); if (Options["Use Search Log"].value()) { Log log(Options["Search Log Filename"].value()); log << pretty_pv(pos, depth, bestValue, elapsed_time(), &Rml[0].pv[0]) << endl; } // Filter out startup noise when monitoring best move stability if (depth > 2 && bestMoveChanges[depth]) bestMoveNeverChanged = false; // Do we have time for the next iteration? Can we stop searching now? if (!Signals.stop && !Signals.stopOnPonderhit && Limits.useTimeManagement()) { bool stop = false; // Local variable instead of the volatile Signals.stop // Take in account some extra time if the best move has changed if (depth > 4 && depth < 50) TimeMgr.pv_instability(bestMoveChanges[depth], bestMoveChanges[depth - 1]); // Stop search if most of available time is already consumed. We probably don't // have enough time to search the first move at the next iteration anyway. if (elapsed_time() > (TimeMgr.available_time() * 62) / 100) stop = true; // Stop search early if one move seems to be much better than others if ( depth >= 10 && !stop && ( bestMoveNeverChanged || elapsed_time() > (TimeMgr.available_time() * 40) / 100)) { Value rBeta = bestValue - EasyMoveMargin; (ss+1)->excludedMove = bestMove; (ss+1)->skipNullMove = true; Value v = search(pos, ss+1, rBeta - 1, rBeta, (depth * ONE_PLY) / 2); (ss+1)->skipNullMove = false; (ss+1)->excludedMove = MOVE_NONE; if (v < rBeta) stop = true; } if (stop) { // If we are allowed to ponder do not stop the search now but // keep pondering until GUI sends "ponderhit" or "stop". if (Limits.ponder) Signals.stopOnPonderhit = true; else Signals.stop = true; } } } // When using skills overwrite best and ponder moves with the sub-optimal ones if (SkillLevelEnabled) { if (skillBest == MOVE_NONE) // Still unassigned ? do_skill_level(&skillBest, &skillPonder); bestMove = skillBest; *ponderMove = skillPonder; } return bestMove; } // search<>() is the main search function for both PV and non-PV nodes and for // normal and SplitPoint nodes. When called just after a split point the search // is simpler because we have already probed the hash table, done a null move // search, and searched the first move before splitting, we don't have to repeat // all this work again. We also don't need to store anything to the hash table // here: This is taken care of after we return from the split point. template Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth) { const bool PvNode = (NT == PV || NT == Root || NT == SplitPointPV || NT == SplitPointRoot); const bool SpNode = (NT == SplitPointPV || NT == SplitPointNonPV || NT == SplitPointRoot); const bool RootNode = (NT == Root || NT == SplitPointRoot); assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE); assert(beta > alpha && beta <= VALUE_INFINITE); assert(PvNode || alpha == beta - 1); assert(pos.thread() >= 0 && pos.thread() < Threads.size()); Move movesSearched[MAX_MOVES]; int64_t nodes; StateInfo st; const TTEntry *tte; Key posKey; Move ttMove, move, excludedMove, threatMove; Depth ext, newDepth; ValueType vt; Value bestValue, value, oldAlpha; Value refinedValue, nullValue, futilityBase, futilityValue; bool isPvMove, inCheck, singularExtensionNode, givesCheck; bool captureOrPromotion, dangerous, doFullDepthSearch; int moveCount = 0, playedMoveCount = 0; Thread& thread = Threads[pos.thread()]; SplitPoint* sp = NULL; refinedValue = bestValue = value = -VALUE_INFINITE; oldAlpha = alpha; inCheck = pos.in_check(); ss->ply = (ss-1)->ply + 1; // Used to send selDepth info to GUI if (PvNode && thread.maxPly < ss->ply) thread.maxPly = ss->ply; // Step 1. Initialize node if (!SpNode) { ss->currentMove = ss->bestMove = threatMove = (ss+1)->excludedMove = MOVE_NONE; (ss+1)->skipNullMove = false; (ss+1)->reduction = DEPTH_ZERO; (ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE; } else { sp = ss->sp; tte = NULL; ttMove = excludedMove = MOVE_NONE; threatMove = sp->threatMove; goto split_point_start; } // Step 2. Check for aborted search and immediate draw if (( Signals.stop || pos.is_draw() || ss->ply > PLY_MAX) && !RootNode) return VALUE_DRAW; // Step 3. Mate distance pruning if (!RootNode) { alpha = std::max(value_mated_in(ss->ply), alpha); beta = std::min(value_mate_in(ss->ply+1), beta); if (alpha >= beta) return alpha; } // Step 4. Transposition table lookup // We don't want the score of a partial search to overwrite a previous full search // TT value, so we use a different position key in case of an excluded move. excludedMove = ss->excludedMove; posKey = excludedMove ? pos.get_exclusion_key() : pos.get_key(); tte = TT.probe(posKey); ttMove = RootNode ? Rml[MultiPVIdx].pv[0] : tte ? tte->move() : MOVE_NONE; // At PV nodes we check for exact scores, while at non-PV nodes we check for // a fail high/low. Biggest advantage at probing at PV nodes is to have a // smooth experience in analysis mode. We don't probe at Root nodes otherwise // we should also update RootMoveList to avoid bogus output. if (!RootNode && tte && (PvNode ? tte->depth() >= depth && tte->type() == VALUE_TYPE_EXACT : can_return_tt(tte, depth, beta, ss->ply))) { TT.refresh(tte); ss->bestMove = move = ttMove; // Can be MOVE_NONE value = value_from_tt(tte->value(), ss->ply); if ( value >= beta && move && !pos.is_capture_or_promotion(move) && move != ss->killers[0]) { ss->killers[1] = ss->killers[0]; ss->killers[0] = move; } return value; } // Step 5. Evaluate the position statically and update parent's gain statistics if (inCheck) ss->eval = ss->evalMargin = VALUE_NONE; else if (tte) { assert(tte->static_value() != VALUE_NONE); ss->eval = tte->static_value(); ss->evalMargin = tte->static_value_margin(); refinedValue = refine_eval(tte, ss->eval, ss->ply); } else { refinedValue = ss->eval = evaluate(pos, ss->evalMargin); TT.store(posKey, VALUE_NONE, VALUE_TYPE_NONE, DEPTH_NONE, MOVE_NONE, ss->eval, ss->evalMargin); } // Update gain for the parent non-capture move given the static position // evaluation before and after the move. if ( (move = (ss-1)->currentMove) != MOVE_NULL && (ss-1)->eval != VALUE_NONE && ss->eval != VALUE_NONE && pos.captured_piece_type() == PIECE_TYPE_NONE && !is_special(move)) { Square to = move_to(move); H.update_gain(pos.piece_on(to), to, -(ss-1)->eval - ss->eval); } // Step 6. Razoring (is omitted in PV nodes) if ( !PvNode && depth < RazorDepth && !inCheck && refinedValue + razor_margin(depth) < beta && ttMove == MOVE_NONE && abs(beta) < VALUE_MATE_IN_PLY_MAX && !pos.has_pawn_on_7th(pos.side_to_move())) { Value rbeta = beta - razor_margin(depth); Value v = qsearch(pos, ss, rbeta-1, rbeta, DEPTH_ZERO); if (v < rbeta) // Logically we should return (v + razor_margin(depth)), but // surprisingly this did slightly weaker in tests. return v; } // Step 7. Static null move pruning (is omitted in PV nodes) // We're betting that the opponent doesn't have a move that will reduce // the score by more than futility_margin(depth) if we do a null move. if ( !PvNode && !ss->skipNullMove && depth < RazorDepth && !inCheck && refinedValue - futility_margin(depth, 0) >= beta && abs(beta) < VALUE_MATE_IN_PLY_MAX && pos.non_pawn_material(pos.side_to_move())) return refinedValue - futility_margin(depth, 0); // Step 8. Null move search with verification search (is omitted in PV nodes) if ( !PvNode && !ss->skipNullMove && depth > ONE_PLY && !inCheck && refinedValue >= beta && abs(beta) < VALUE_MATE_IN_PLY_MAX && pos.non_pawn_material(pos.side_to_move())) { ss->currentMove = MOVE_NULL; // Null move dynamic reduction based on depth int R = 3 + (depth >= 5 * ONE_PLY ? depth / 8 : 0); // Null move dynamic reduction based on value if (refinedValue - PawnValueMidgame > beta) R++; pos.do_null_move(st); (ss+1)->skipNullMove = true; nullValue = depth-R*ONE_PLY < ONE_PLY ? -qsearch(pos, ss+1, -beta, -alpha, DEPTH_ZERO) : - search(pos, ss+1, -beta, -alpha, depth-R*ONE_PLY); (ss+1)->skipNullMove = false; pos.do_null_move(st); if (nullValue >= beta) { // Do not return unproven mate scores if (nullValue >= VALUE_MATE_IN_PLY_MAX) nullValue = beta; if (depth < 6 * ONE_PLY) return nullValue; // Do verification search at high depths ss->skipNullMove = true; Value v = search(pos, ss, alpha, beta, depth-R*ONE_PLY); ss->skipNullMove = false; if (v >= beta) return nullValue; } else { // The null move failed low, which means that we may be faced with // some kind of threat. If the previous move was reduced, check if // the move that refuted the null move was somehow connected to the // move which was reduced. If a connection is found, return a fail // low score (which will cause the reduced move to fail high in the // parent node, which will trigger a re-search with full depth). threatMove = (ss+1)->bestMove; if ( depth < ThreatDepth && (ss-1)->reduction && threatMove != MOVE_NONE && connected_moves(pos, (ss-1)->currentMove, threatMove)) return beta - 1; } } // Step 9. ProbCut (is omitted in PV nodes) // If we have a very good capture (i.e. SEE > seeValues[captured_piece_type]) // and a reduced search returns a value much above beta, we can (almost) safely // prune the previous move. if ( !PvNode && depth >= RazorDepth + ONE_PLY && !inCheck && !ss->skipNullMove && excludedMove == MOVE_NONE && abs(beta) < VALUE_MATE_IN_PLY_MAX) { Value rbeta = beta + 200; Depth rdepth = depth - ONE_PLY - 3 * ONE_PLY; assert(rdepth >= ONE_PLY); MovePicker mp(pos, ttMove, H, pos.captured_piece_type()); CheckInfo ci(pos); while ((move = mp.get_next_move()) != MOVE_NONE) if (pos.pl_move_is_legal(move, ci.pinned)) { pos.do_move(move, st, ci, pos.move_gives_check(move, ci)); value = -search(pos, ss+1, -rbeta, -rbeta+1, rdepth); pos.undo_move(move); if (value >= rbeta) return value; } } // Step 10. Internal iterative deepening if ( depth >= IIDDepth[PvNode] && ttMove == MOVE_NONE && (PvNode || (!inCheck && ss->eval + IIDMargin >= beta))) { Depth d = (PvNode ? depth - 2 * ONE_PLY : depth / 2); ss->skipNullMove = true; search(pos, ss, alpha, beta, d); ss->skipNullMove = false; tte = TT.probe(posKey); ttMove = tte ? tte->move() : MOVE_NONE; } split_point_start: // At split points actual search starts from here // Initialize a MovePicker object for the current position MovePickerExt mp(pos, ttMove, depth, H, ss, PvNode ? -VALUE_INFINITE : beta); CheckInfo ci(pos); ss->bestMove = MOVE_NONE; futilityBase = ss->eval + ss->evalMargin; singularExtensionNode = !RootNode && !SpNode && depth >= SingularExtensionDepth[PvNode] && ttMove != MOVE_NONE && !excludedMove // Do not allow recursive singular extension search && (tte->type() & VALUE_TYPE_LOWER) && tte->depth() >= depth - 3 * ONE_PLY; if (SpNode) { lock_grab(&(sp->lock)); bestValue = sp->bestValue; } // Step 11. Loop through moves // Loop through all pseudo-legal moves until no moves remain or a beta cutoff occurs while ( bestValue < beta && (move = mp.get_next_move()) != MOVE_NONE && !thread.cutoff_occurred()) { assert(is_ok(move)); if (move == excludedMove) continue; // At root obey the "searchmoves" option and skip moves not listed in Root // Move List, as a consequence any illegal move is also skipped. In MultiPV // mode we also skip PV moves which have been already searched. if (RootNode && !Rml.find(move, MultiPVIdx)) continue; // At PV and SpNode nodes we want all moves to be legal since the beginning if ((PvNode || SpNode) && !pos.pl_move_is_legal(move, ci.pinned)) continue; if (SpNode) { moveCount = ++sp->moveCount; lock_release(&(sp->lock)); } else moveCount++; if (RootNode) { // This is used by time management Signals.firstRootMove = (moveCount == 1); // Save the current node count before the move is searched nodes = pos.nodes_searched(); // For long searches send current move info to GUI if (pos.thread() == 0 && elapsed_time() > 2000) cout << "info" << depth_to_uci(depth) << " currmove " << move << " currmovenumber " << moveCount + MultiPVIdx << endl; } isPvMove = (PvNode && moveCount <= 1); givesCheck = pos.move_gives_check(move, ci); captureOrPromotion = pos.is_capture_or_promotion(move); // Step 12. Decide the new search depth ext = extension(pos, move, captureOrPromotion, givesCheck, &dangerous); // Singular extension search. If all moves but one fail low on a search of // (alpha-s, beta-s), and just one fails high on (alpha, beta), then that move // is singular and should be extended. To verify this we do a reduced search // on all the other moves but the ttMove, if result is lower than ttValue minus // a margin then we extend ttMove. if ( singularExtensionNode && move == ttMove && pos.pl_move_is_legal(move, ci.pinned) && ext < ONE_PLY) { Value ttValue = value_from_tt(tte->value(), ss->ply); if (abs(ttValue) < VALUE_KNOWN_WIN) { Value rBeta = ttValue - int(depth); ss->excludedMove = move; ss->skipNullMove = true; value = search(pos, ss, rBeta - 1, rBeta, depth / 2); ss->skipNullMove = false; ss->excludedMove = MOVE_NONE; ss->bestMove = MOVE_NONE; if (value < rBeta) ext = ONE_PLY; } } // Update current move (this must be done after singular extension search) newDepth = depth - ONE_PLY + ext; // Step 13. Futility pruning (is omitted in PV nodes) if ( !PvNode && !captureOrPromotion && !inCheck && !dangerous && move != ttMove && !is_castle(move)) { // Move count based pruning if ( moveCount >= futility_move_count(depth) && (!threatMove || !connected_threat(pos, move, threatMove)) && bestValue > VALUE_MATED_IN_PLY_MAX) // FIXME bestValue is racy { if (SpNode) lock_grab(&(sp->lock)); continue; } // Value based pruning // We illogically ignore reduction condition depth >= 3*ONE_PLY for predicted depth, // but fixing this made program slightly weaker. Depth predictedDepth = newDepth - reduction(depth, moveCount); futilityValue = futilityBase + futility_margin(predictedDepth, moveCount) + H.gain(pos.piece_on(move_from(move)), move_to(move)); if (futilityValue < beta) { if (SpNode) { lock_grab(&(sp->lock)); if (futilityValue > sp->bestValue) sp->bestValue = bestValue = futilityValue; } else if (futilityValue > bestValue) bestValue = futilityValue; continue; } // Prune moves with negative SEE at low depths if ( predictedDepth < 2 * ONE_PLY && bestValue > VALUE_MATED_IN_PLY_MAX && pos.see_sign(move) < 0) { if (SpNode) lock_grab(&(sp->lock)); continue; } } // Check for legality only before to do the move if (!pos.pl_move_is_legal(move, ci.pinned)) { moveCount--; continue; } ss->currentMove = move; if (!SpNode && !captureOrPromotion) movesSearched[playedMoveCount++] = move; // Step 14. Make the move pos.do_move(move, st, ci, givesCheck); // Step 15. Reduced depth search (LMR). If the move fails high will be // re-searched at full depth. if ( depth > 3 * ONE_PLY && !isPvMove && !captureOrPromotion && !dangerous && !is_castle(move) && ss->killers[0] != move && ss->killers[1] != move) { ss->reduction = reduction(depth, moveCount); Depth d = newDepth - ss->reduction; alpha = SpNode ? sp->alpha : alpha; value = d < ONE_PLY ? -qsearch(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO) : - search(pos, ss+1, -(alpha+1), -alpha, d); doFullDepthSearch = (value > alpha && ss->reduction != DEPTH_ZERO); ss->reduction = DEPTH_ZERO; } else doFullDepthSearch = !isPvMove; // Step 16. Full depth search, when LMR is skipped or fails high if (doFullDepthSearch) { alpha = SpNode ? sp->alpha : alpha; value = newDepth < ONE_PLY ? -qsearch(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO) : - search(pos, ss+1, -(alpha+1), -alpha, newDepth); } // Only for PV nodes do a full PV search on the first move or after a fail // high, in the latter case search only if value < beta, otherwise let the // parent node to fail low with value <= alpha and to try another move. if (PvNode && (isPvMove || (value > alpha && (RootNode || value < beta)))) value = newDepth < ONE_PLY ? -qsearch(pos, ss+1, -beta, -alpha, DEPTH_ZERO) : - search(pos, ss+1, -beta, -alpha, newDepth); // Step 17. Undo move pos.undo_move(move); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); // Step 18. Check for new best move if (SpNode) { lock_grab(&(sp->lock)); bestValue = sp->bestValue; alpha = sp->alpha; } // Finished searching the move. If StopRequest is true, the search // was aborted because the user interrupted the search or because we // ran out of time. In this case, the return value of the search cannot // be trusted, and we don't update the best move and/or PV. if (RootNode && !Signals.stop) { // Remember searched nodes counts for this move RootMove* rm = Rml.find(move); rm->nodes += pos.nodes_searched() - nodes; // PV move or new best move ? if (isPvMove || value > alpha) { // Update PV rm->score = value; rm->extract_pv_from_tt(pos); // We record how often the best move has been changed in each // iteration. This information is used for time management: When // the best move changes frequently, we allocate some more time. if (!isPvMove && MultiPV == 1) Rml.bestMoveChanges++; } else // All other moves but the PV are set to the lowest value, this // is not a problem when sorting becuase sort is stable and move // position in the list is preserved, just the PV is pushed up. rm->score = -VALUE_INFINITE; } // RootNode if (value > bestValue) { bestValue = value; ss->bestMove = move; if ( PvNode && value > alpha && value < beta) // We want always alpha < beta alpha = value; if (SpNode && !thread.cutoff_occurred()) { sp->bestValue = value; sp->ss->bestMove = move; sp->alpha = alpha; sp->is_betaCutoff = (value >= beta); } } // Step 19. Check for split if ( !SpNode && depth >= Threads.min_split_depth() && bestValue < beta && Threads.available_slave_exists(pos.thread()) && !Signals.stop && !thread.cutoff_occurred()) bestValue = Threads.split(pos, ss, alpha, beta, bestValue, depth, threatMove, moveCount, &mp, NT); } // Step 20. Check for mate and stalemate // All legal moves have been searched and if there are no legal moves, it // must be mate or stalemate. Note that we can have a false positive in // case of StopRequest or thread.cutoff_occurred() are set, but this is // harmless because return value is discarded anyhow in the parent nodes. // If we are in a singular extension search then return a fail low score. if (!SpNode && !moveCount) return excludedMove ? oldAlpha : inCheck ? value_mated_in(ss->ply) : VALUE_DRAW; // Step 21. Update tables // If the search is not aborted, update the transposition table, // history counters, and killer moves. if (!SpNode && !Signals.stop && !thread.cutoff_occurred()) { move = bestValue <= oldAlpha ? MOVE_NONE : ss->bestMove; vt = bestValue <= oldAlpha ? VALUE_TYPE_UPPER : bestValue >= beta ? VALUE_TYPE_LOWER : VALUE_TYPE_EXACT; TT.store(posKey, value_to_tt(bestValue, ss->ply), vt, depth, move, ss->eval, ss->evalMargin); // Update killers and history only for non capture moves that fails high if ( bestValue >= beta && !pos.is_capture_or_promotion(move)) { if (move != ss->killers[0]) { ss->killers[1] = ss->killers[0]; ss->killers[0] = move; } update_history(pos, move, depth, movesSearched, playedMoveCount); } } if (SpNode) { // Here we have the lock still grabbed sp->is_slave[pos.thread()] = false; sp->nodes += pos.nodes_searched(); lock_release(&(sp->lock)); } assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); return bestValue; } // qsearch() is the quiescence search function, which is called by the main // search function when the remaining depth is zero (or, to be more precise, // less than ONE_PLY). template Value qsearch(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth) { const bool PvNode = (NT == PV); assert(NT == PV || NT == NonPV); assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE); assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE); assert(PvNode || alpha == beta - 1); assert(depth <= 0); assert(pos.thread() >= 0 && pos.thread() < Threads.size()); StateInfo st; Move ttMove, move; Value bestValue, value, evalMargin, futilityValue, futilityBase; bool inCheck, enoughMaterial, givesCheck, evasionPrunable; const TTEntry* tte; Depth ttDepth; ValueType vt; Value oldAlpha = alpha; ss->bestMove = ss->currentMove = MOVE_NONE; ss->ply = (ss-1)->ply + 1; // Check for an instant draw or maximum ply reached if (pos.is_draw() || ss->ply > PLY_MAX) return VALUE_DRAW; // Decide whether or not to include checks, this fixes also the type of // TT entry depth that we are going to use. Note that in qsearch we use // only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS. inCheck = pos.in_check(); ttDepth = (inCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS : DEPTH_QS_NO_CHECKS); // Transposition table lookup. At PV nodes, we don't use the TT for // pruning, but only for move ordering. tte = TT.probe(pos.get_key()); ttMove = (tte ? tte->move() : MOVE_NONE); if (!PvNode && tte && can_return_tt(tte, ttDepth, beta, ss->ply)) { ss->bestMove = ttMove; // Can be MOVE_NONE return value_from_tt(tte->value(), ss->ply); } // Evaluate the position statically if (inCheck) { bestValue = futilityBase = -VALUE_INFINITE; ss->eval = evalMargin = VALUE_NONE; enoughMaterial = false; } else { if (tte) { assert(tte->static_value() != VALUE_NONE); evalMargin = tte->static_value_margin(); ss->eval = bestValue = tte->static_value(); } else ss->eval = bestValue = evaluate(pos, evalMargin); // Stand pat. Return immediately if static value is at least beta if (bestValue >= beta) { if (!tte) TT.store(pos.get_key(), value_to_tt(bestValue, ss->ply), VALUE_TYPE_LOWER, DEPTH_NONE, MOVE_NONE, ss->eval, evalMargin); return bestValue; } if (PvNode && bestValue > alpha) alpha = bestValue; // Futility pruning parameters, not needed when in check futilityBase = ss->eval + evalMargin + FutilityMarginQS; enoughMaterial = pos.non_pawn_material(pos.side_to_move()) > RookValueMidgame; } // Initialize a MovePicker object for the current position, and prepare // to search the moves. Because the depth is <= 0 here, only captures, // queen promotions and checks (only if depth >= DEPTH_QS_CHECKS) will // be generated. MovePicker mp(pos, ttMove, depth, H, move_to((ss-1)->currentMove)); CheckInfo ci(pos); // Loop through the moves until no moves remain or a beta cutoff occurs while ( bestValue < beta && (move = mp.get_next_move()) != MOVE_NONE) { assert(is_ok(move)); givesCheck = pos.move_gives_check(move, ci); // Futility pruning if ( !PvNode && !inCheck && !givesCheck && move != ttMove && enoughMaterial && !is_promotion(move) && !pos.is_passed_pawn_push(move)) { futilityValue = futilityBase + PieceValueEndgame[pos.piece_on(move_to(move))] + (is_enpassant(move) ? PawnValueEndgame : VALUE_ZERO); if (futilityValue < beta) { if (futilityValue > bestValue) bestValue = futilityValue; continue; } // Prune moves with negative or equal SEE if ( futilityBase < beta && depth < DEPTH_ZERO && pos.see(move) <= 0) continue; } // Detect non-capture evasions that are candidate to be pruned evasionPrunable = !PvNode && inCheck && bestValue > VALUE_MATED_IN_PLY_MAX && !pos.is_capture(move) && !pos.can_castle(pos.side_to_move()); // Don't search moves with negative SEE values if ( !PvNode && (!inCheck || evasionPrunable) && move != ttMove && !is_promotion(move) && pos.see_sign(move) < 0) continue; // Don't search useless checks if ( !PvNode && !inCheck && givesCheck && move != ttMove && !pos.is_capture_or_promotion(move) && ss->eval + PawnValueMidgame / 4 < beta && !check_is_dangerous(pos, move, futilityBase, beta, &bestValue)) { if (ss->eval + PawnValueMidgame / 4 > bestValue) bestValue = ss->eval + PawnValueMidgame / 4; continue; } // Check for legality only before to do the move if (!pos.pl_move_is_legal(move, ci.pinned)) continue; // Update current move ss->currentMove = move; // Make and search the move pos.do_move(move, st, ci, givesCheck); value = -qsearch(pos, ss+1, -beta, -alpha, depth-ONE_PLY); pos.undo_move(move); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); // New best move? if (value > bestValue) { bestValue = value; ss->bestMove = move; if ( PvNode && value > alpha && value < beta) // We want always alpha < beta alpha = value; } } // All legal moves have been searched. A special case: If we're in check // and no legal moves were found, it is checkmate. if (inCheck && bestValue == -VALUE_INFINITE) return value_mated_in(ss->ply); // Update transposition table move = bestValue <= oldAlpha ? MOVE_NONE : ss->bestMove; vt = bestValue <= oldAlpha ? VALUE_TYPE_UPPER : bestValue >= beta ? VALUE_TYPE_LOWER : VALUE_TYPE_EXACT; TT.store(pos.get_key(), value_to_tt(bestValue, ss->ply), vt, ttDepth, move, ss->eval, evalMargin); assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); return bestValue; } // check_is_dangerous() tests if a checking move can be pruned in qsearch(). // bestValue is updated only when returning false because in that case move // will be pruned. bool check_is_dangerous(Position &pos, Move move, Value futilityBase, Value beta, Value *bestValue) { Bitboard b, occ, oldAtt, newAtt, kingAtt; Square from, to, ksq, victimSq; Piece pc; Color them; Value futilityValue, bv = *bestValue; from = move_from(move); to = move_to(move); them = flip(pos.side_to_move()); ksq = pos.king_square(them); kingAtt = pos.attacks_from(ksq); pc = pos.piece_on(from); occ = pos.occupied_squares() & ~(1ULL << from) & ~(1ULL << ksq); oldAtt = pos.attacks_from(pc, from, occ); newAtt = pos.attacks_from(pc, to, occ); // Rule 1. Checks which give opponent's king at most one escape square are dangerous b = kingAtt & ~pos.pieces(them) & ~newAtt & ~(1ULL << to); if (!(b && (b & (b - 1)))) return true; // Rule 2. Queen contact check is very dangerous if ( type_of(pc) == QUEEN && bit_is_set(kingAtt, to)) return true; // Rule 3. Creating new double threats with checks b = pos.pieces(them) & newAtt & ~oldAtt & ~(1ULL << ksq); while (b) { victimSq = pop_1st_bit(&b); futilityValue = futilityBase + PieceValueEndgame[pos.piece_on(victimSq)]; // Note that here we generate illegal "double move"! if ( futilityValue >= beta && pos.see_sign(make_move(from, victimSq)) >= 0) return true; if (futilityValue > bv) bv = futilityValue; } // Update bestValue only if check is not dangerous (because we will prune the move) *bestValue = bv; return false; } // connected_moves() tests whether two moves are 'connected' in the sense // that the first move somehow made the second move possible (for instance // if the moving piece is the same in both moves). The first move is assumed // to be the move that was made to reach the current position, while the // second move is assumed to be a move from the current position. bool connected_moves(const Position& pos, Move m1, Move m2) { Square f1, t1, f2, t2; Piece p1, p2; Square ksq; assert(is_ok(m1)); assert(is_ok(m2)); // Case 1: The moving piece is the same in both moves f2 = move_from(m2); t1 = move_to(m1); if (f2 == t1) return true; // Case 2: The destination square for m2 was vacated by m1 t2 = move_to(m2); f1 = move_from(m1); if (t2 == f1) return true; // Case 3: Moving through the vacated square p2 = pos.piece_on(f2); if ( piece_is_slider(p2) && bit_is_set(squares_between(f2, t2), f1)) return true; // Case 4: The destination square for m2 is defended by the moving piece in m1 p1 = pos.piece_on(t1); if (bit_is_set(pos.attacks_from(p1, t1), t2)) return true; // Case 5: Discovered check, checking piece is the piece moved in m1 ksq = pos.king_square(pos.side_to_move()); if ( piece_is_slider(p1) && bit_is_set(squares_between(t1, ksq), f2)) { Bitboard occ = pos.occupied_squares(); clear_bit(&occ, f2); if (bit_is_set(pos.attacks_from(p1, t1, occ), ksq)) return true; } return false; } // value_to_tt() adjusts a mate score from "plies to mate from the root" to // "plies to mate from the current ply". Non-mate scores are unchanged. // The function is called before storing a value to the transposition table. Value value_to_tt(Value v, int ply) { if (v >= VALUE_MATE_IN_PLY_MAX) return v + ply; if (v <= VALUE_MATED_IN_PLY_MAX) return v - ply; return v; } // value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score from // the transposition table to a mate score corrected for the current ply. Value value_from_tt(Value v, int ply) { if (v >= VALUE_MATE_IN_PLY_MAX) return v - ply; if (v <= VALUE_MATED_IN_PLY_MAX) return v + ply; return v; } // connected_threat() tests whether it is safe to forward prune a move or if // is somehow connected to the threat move returned by null search. bool connected_threat(const Position& pos, Move m, Move threat) { assert(is_ok(m)); assert(is_ok(threat)); assert(!pos.is_capture_or_promotion(m)); assert(!pos.is_passed_pawn_push(m)); Square mfrom, mto, tfrom, tto; mfrom = move_from(m); mto = move_to(m); tfrom = move_from(threat); tto = move_to(threat); // Case 1: Don't prune moves which move the threatened piece if (mfrom == tto) return true; // Case 2: If the threatened piece has value less than or equal to the // value of the threatening piece, don't prune moves which defend it. if ( pos.is_capture(threat) && ( PieceValueMidgame[pos.piece_on(tfrom)] >= PieceValueMidgame[pos.piece_on(tto)] || type_of(pos.piece_on(tfrom)) == KING) && pos.move_attacks_square(m, tto)) return true; // Case 3: If the moving piece in the threatened move is a slider, don't // prune safe moves which block its ray. if ( piece_is_slider(pos.piece_on(tfrom)) && bit_is_set(squares_between(tfrom, tto), mto) && pos.see_sign(m) >= 0) return true; return false; } // can_return_tt() returns true if a transposition table score // can be used to cut-off at a given point in search. bool can_return_tt(const TTEntry* tte, Depth depth, Value beta, int ply) { Value v = value_from_tt(tte->value(), ply); return ( tte->depth() >= depth || v >= std::max(VALUE_MATE_IN_PLY_MAX, beta) || v < std::min(VALUE_MATED_IN_PLY_MAX, beta)) && ( ((tte->type() & VALUE_TYPE_LOWER) && v >= beta) || ((tte->type() & VALUE_TYPE_UPPER) && v < beta)); } // refine_eval() returns the transposition table score if // possible otherwise falls back on static position evaluation. Value refine_eval(const TTEntry* tte, Value defaultEval, int ply) { assert(tte); Value v = value_from_tt(tte->value(), ply); if ( ((tte->type() & VALUE_TYPE_LOWER) && v >= defaultEval) || ((tte->type() & VALUE_TYPE_UPPER) && v < defaultEval)) return v; return defaultEval; } // update_history() registers a good move that produced a beta-cutoff // in history and marks as failures all the other moves of that ply. void update_history(const Position& pos, Move move, Depth depth, Move movesSearched[], int moveCount) { Move m; Value bonus = Value(int(depth) * int(depth)); H.update(pos.piece_on(move_from(move)), move_to(move), bonus); for (int i = 0; i < moveCount - 1; i++) { m = movesSearched[i]; assert(m != move); H.update(pos.piece_on(move_from(m)), move_to(m), -bonus); } } // current_search_time() returns the number of milliseconds which have passed // since the beginning of the current search. int elapsed_time(bool reset) { static int searchStartTime; if (reset) searchStartTime = get_system_time(); return get_system_time() - searchStartTime; } // score_to_uci() converts a value to a string suitable for use with the UCI // protocol specifications: // // cp The score from the engine's point of view in centipawns. // mate Mate in y moves, not plies. If the engine is getting mated // use negative values for y. string score_to_uci(Value v, Value alpha, Value beta) { std::stringstream s; if (abs(v) < VALUE_MATE - PLY_MAX * ONE_PLY) s << " score cp " << int(v) * 100 / int(PawnValueMidgame); // Scale to centipawns else s << " score mate " << (v > 0 ? VALUE_MATE - v + 1 : -VALUE_MATE - v) / 2; s << (v >= beta ? " lowerbound" : v <= alpha ? " upperbound" : ""); return s.str(); } // speed_to_uci() returns a string with time stats of current search suitable // to be sent to UCI gui. string speed_to_uci(int64_t nodes) { std::stringstream s; int t = elapsed_time(); s << " nodes " << nodes << " nps " << (t > 0 ? int(nodes * 1000 / t) : 0) << " time " << t; return s.str(); } // pv_to_uci() returns a string with information on the current PV line // formatted according to UCI specification. string pv_to_uci(const Move pv[], int pvNum, bool chess960) { std::stringstream s; s << " multipv " << pvNum << " pv " << set960(chess960); for ( ; *pv != MOVE_NONE; pv++) s << *pv << " "; return s.str(); } // depth_to_uci() returns a string with information on the current depth and // seldepth formatted according to UCI specification. string depth_to_uci(Depth depth) { std::stringstream s; // Retrieve max searched depth among threads int selDepth = 0; for (int i = 0; i < Threads.size(); i++) if (Threads[i].maxPly > selDepth) selDepth = Threads[i].maxPly; s << " depth " << depth / ONE_PLY << " seldepth " << selDepth; return s.str(); } string time_to_string(int millisecs) { const int MSecMinute = 1000 * 60; const int MSecHour = 1000 * 60 * 60; int hours = millisecs / MSecHour; int minutes = (millisecs % MSecHour) / MSecMinute; int seconds = ((millisecs % MSecHour) % MSecMinute) / 1000; std::stringstream s; if (hours) s << hours << ':'; s << std::setfill('0') << std::setw(2) << minutes << ':' << std::setw(2) << seconds; return s.str(); } string score_to_string(Value v) { std::stringstream s; if (v >= VALUE_MATE_IN_PLY_MAX) s << "#" << (VALUE_MATE - v + 1) / 2; else if (v <= VALUE_MATED_IN_PLY_MAX) s << "-#" << (VALUE_MATE + v) / 2; else s << std::setprecision(2) << std::fixed << std::showpos << float(v) / PawnValueMidgame; return s.str(); } // pretty_pv() creates a human-readable string from a position and a PV. // It is used to write search information to the log file (which is created // when the UCI parameter "Use Search Log" is "true"). string pretty_pv(Position& pos, int depth, Value value, int time, Move pv[]) { const int64_t K = 1000; const int64_t M = 1000000; const int startColumn = 28; const size_t maxLength = 80 - startColumn; StateInfo state[PLY_MAX_PLUS_2], *st = state; Move* m = pv; string san; std::stringstream s; size_t length = 0; // First print depth, score, time and searched nodes... s << set960(pos.is_chess960()) << std::setw(2) << depth << std::setw(8) << score_to_string(value) << std::setw(8) << time_to_string(time); if (pos.nodes_searched() < M) s << std::setw(8) << pos.nodes_searched() / 1 << " "; else if (pos.nodes_searched() < K * M) s << std::setw(7) << pos.nodes_searched() / K << "K "; else s << std::setw(7) << pos.nodes_searched() / M << "M "; // ...then print the full PV line in short algebraic notation while (*m != MOVE_NONE) { san = move_to_san(pos, *m); length += san.length() + 1; if (length > maxLength) { length = san.length() + 1; s << "\n" + string(startColumn, ' '); } s << san << ' '; pos.do_move(*m++, *st++); } // Restore original position before to leave while (m != pv) pos.undo_move(*--m); return s.str(); } // When playing with strength handicap choose best move among the MultiPV set // using a statistical rule dependent on SkillLevel. Idea by Heinz van Saanen. void do_skill_level(Move* best, Move* ponder) { assert(MultiPV > 1); static RKISS rk; // Rml list is already sorted by score in descending order int s; int max_s = -VALUE_INFINITE; int size = std::min(MultiPV, (int)Rml.size()); int max = Rml[0].score; int var = std::min(max - Rml[size - 1].score, int(PawnValueMidgame)); int wk = 120 - 2 * SkillLevel; // PRNG sequence should be non deterministic for (int i = abs(get_system_time() % 50); i > 0; i--) rk.rand(); // Choose best move. For each move's score we add two terms both dependent // on wk, one deterministic and bigger for weaker moves, and one random, // then we choose the move with the resulting highest score. for (int i = 0; i < size; i++) { s = Rml[i].score; // Don't allow crazy blunders even at very low skills if (i > 0 && Rml[i-1].score > s + EasyMoveMargin) break; // This is our magical formula s += ((max - s) * wk + var * (rk.rand() % wk)) / 128; if (s > max_s) { max_s = s; *best = Rml[i].pv[0]; *ponder = Rml[i].pv[1]; } } } /// RootMove and RootMoveList method's definitions void RootMoveList::init(Position& pos, Move rootMoves[]) { Move* sm; bestMoveChanges = 0; clear(); // Generate all legal moves and add them to RootMoveList for (MoveList ml(pos); !ml.end(); ++ml) { // If we have a rootMoves[] list then verify the move // is in the list before to add it. for (sm = rootMoves; *sm && *sm != ml.move(); sm++) {} if (sm != rootMoves && *sm != ml.move()) continue; RootMove rm; rm.pv.push_back(ml.move()); rm.pv.push_back(MOVE_NONE); rm.score = rm.prevScore = -VALUE_INFINITE; rm.nodes = 0; push_back(rm); } } RootMove* RootMoveList::find(const Move& m, int startIndex) { for (size_t i = startIndex; i < size(); i++) if ((*this)[i].pv[0] == m) return &(*this)[i]; return NULL; } // extract_pv_from_tt() builds a PV by adding moves from the transposition table. // We consider also failing high nodes and not only VALUE_TYPE_EXACT nodes. This // allow to always have a ponder move even when we fail high at root and also a // long PV to print that is important for position analysis. void RootMove::extract_pv_from_tt(Position& pos) { StateInfo state[PLY_MAX_PLUS_2], *st = state; TTEntry* tte; int ply = 1; Move m = pv[0]; assert(m != MOVE_NONE && pos.is_pseudo_legal(m)); pv.clear(); pv.push_back(m); pos.do_move(m, *st++); while ( (tte = TT.probe(pos.get_key())) != NULL && tte->move() != MOVE_NONE && pos.is_pseudo_legal(tte->move()) && pos.pl_move_is_legal(tte->move(), pos.pinned_pieces()) && ply < PLY_MAX && (!pos.is_draw() || ply < 2)) { pv.push_back(tte->move()); pos.do_move(tte->move(), *st++); ply++; } pv.push_back(MOVE_NONE); do pos.undo_move(pv[--ply]); while (ply); } // insert_pv_in_tt() is called at the end of a search iteration, and inserts // the PV back into the TT. This makes sure the old PV moves are searched // first, even if the old TT entries have been overwritten. void RootMove::insert_pv_in_tt(Position& pos) { StateInfo state[PLY_MAX_PLUS_2], *st = state; TTEntry* tte; Key k; Value v, m = VALUE_NONE; int ply = 0; assert(pv[0] != MOVE_NONE && pos.is_pseudo_legal(pv[0])); do { k = pos.get_key(); tte = TT.probe(k); // Don't overwrite existing correct entries if (!tte || tte->move() != pv[ply]) { v = (pos.in_check() ? VALUE_NONE : evaluate(pos, m)); TT.store(k, VALUE_NONE, VALUE_TYPE_NONE, DEPTH_NONE, pv[ply], v, m); } pos.do_move(pv[ply], *st++); } while (pv[++ply] != MOVE_NONE); do pos.undo_move(pv[--ply]); while (ply); } } // namespace // Thread::idle_loop() is where the thread is parked when it has no work to do. // The parameter 'sp', if non-NULL, is a pointer to an active SplitPoint object // for which the thread is the master. void Thread::idle_loop(SplitPoint* sp) { while (true) { // If we are not searching, wait for a condition to be signaled // instead of wasting CPU time polling for work. while ( do_sleep || do_terminate || (Threads.use_sleeping_threads() && !is_searching)) { assert((!sp && threadID) || Threads.use_sleeping_threads()); // Slave thread should exit as soon as do_terminate flag raises if (do_terminate) { assert(!sp); return; } // Grab the lock to avoid races with Thread::wake_up() lock_grab(&sleepLock); // If we are master and all slaves have finished don't go to sleep if (sp && Threads.split_point_finished(sp)) { lock_release(&sleepLock); break; } // Do sleep after retesting sleep conditions under lock protection, in // particular we need to avoid a deadlock in case a master thread has, // in the meanwhile, allocated us and sent the wake_up() call before we // had the chance to grab the lock. if (do_sleep || !is_searching) cond_wait(&sleepCond, &sleepLock); lock_release(&sleepLock); } // If this thread has been assigned work, launch a search if (is_searching) { assert(!do_terminate); // Copy split point position and search stack and call search() SearchStack ss[PLY_MAX_PLUS_2]; SplitPoint* tsp = splitPoint; Position pos(*tsp->pos, threadID); memcpy(ss, tsp->ss - 1, 4 * sizeof(SearchStack)); (ss+1)->sp = tsp; if (tsp->nodeType == Root) search(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth); else if (tsp->nodeType == PV) search(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth); else if (tsp->nodeType == NonPV) search(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth); else assert(false); assert(is_searching); is_searching = false; // Wake up master thread so to allow it to return from the idle loop in // case we are the last slave of the split point. if ( Threads.use_sleeping_threads() && threadID != tsp->master && !Threads[tsp->master].is_searching) Threads[tsp->master].wake_up(); } // If this thread is the master of a split point and all slaves have // finished their work at this split point, return from the idle loop. if (sp && Threads.split_point_finished(sp)) { // Because sp->is_slave[] is reset under lock protection, // be sure sp->lock has been released before to return. lock_grab(&(sp->lock)); lock_release(&(sp->lock)); return; } } } // do_timer_event() is called by the timer thread when the timer triggers void do_timer_event() { static int lastInfoTime; int e = elapsed_time(); // Print debug information every one second if (!lastInfoTime || get_system_time() - lastInfoTime >= 1000) { lastInfoTime = get_system_time(); dbg_print_mean(); dbg_print_hit_rate(); } // Should we stop the search? if (Limits.ponder) return; bool stillAtFirstMove = Signals.firstRootMove && !Signals.failedLowAtRoot && e > TimeMgr.available_time(); bool noMoreTime = e > TimeMgr.maximum_time() || stillAtFirstMove; if ( (Limits.useTimeManagement() && noMoreTime) || (Limits.maxTime && e >= Limits.maxTime) /* missing nodes limit */ ) // FIXME Signals.stop = true; }