/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2023 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // Constants used in NNUE evaluation function #ifndef NNUE_COMMON_H_INCLUDED #define NNUE_COMMON_H_INCLUDED #include #include #include #include #include #include #include "../misc.h" #if defined(USE_AVX2) #include #elif defined(USE_SSE41) #include #elif defined(USE_SSSE3) #include #elif defined(USE_SSE2) #include #elif defined(USE_NEON) #include #endif namespace Stockfish::Eval::NNUE { // Version of the evaluation file constexpr std::uint32_t Version = 0x7AF32F20u; // Constant used in evaluation value calculation constexpr int OutputScale = 16; constexpr int WeightScaleBits = 6; // Size of cache line (in bytes) constexpr std::size_t CacheLineSize = 64; constexpr const char Leb128MagicString[] = "COMPRESSED_LEB128"; constexpr const std::size_t Leb128MagicStringSize = sizeof(Leb128MagicString) - 1; // SIMD width (in bytes) #if defined(USE_AVX2) constexpr std::size_t SimdWidth = 32; #elif defined(USE_SSE2) constexpr std::size_t SimdWidth = 16; #elif defined(USE_NEON) constexpr std::size_t SimdWidth = 16; #endif constexpr std::size_t MaxSimdWidth = 32; // Type of input feature after conversion using TransformedFeatureType = std::uint8_t; using IndexType = std::uint32_t; // Round n up to be a multiple of base template constexpr IntType ceil_to_multiple(IntType n, IntType base) { return (n + base - 1) / base * base; } // Utility to read an integer (signed or unsigned, any size) // from a stream in little-endian order. We swap the byte order after the read if // necessary to return a result with the byte ordering of the compiling machine. template inline IntType read_little_endian(std::istream& stream) { IntType result; if (IsLittleEndian) stream.read(reinterpret_cast(&result), sizeof(IntType)); else { std::uint8_t u[sizeof(IntType)]; std::make_unsigned_t v = 0; stream.read(reinterpret_cast(u), sizeof(IntType)); for (std::size_t i = 0; i < sizeof(IntType); ++i) v = (v << 8) | u[sizeof(IntType) - i - 1]; std::memcpy(&result, &v, sizeof(IntType)); } return result; } // Utility to write an integer (signed or unsigned, any size) // to a stream in little-endian order. We swap the byte order before the write if // necessary to always write in little-endian order, independently of the byte // ordering of the compiling machine. template inline void write_little_endian(std::ostream& stream, IntType value) { if (IsLittleEndian) stream.write(reinterpret_cast(&value), sizeof(IntType)); else { std::uint8_t u[sizeof(IntType)]; std::make_unsigned_t v = value; std::size_t i = 0; // if constexpr to silence the warning about shift by 8 if constexpr (sizeof(IntType) > 1) { for (; i + 1 < sizeof(IntType); ++i) { u[i] = std::uint8_t(v); v >>= 8; } } u[i] = std::uint8_t(v); stream.write(reinterpret_cast(u), sizeof(IntType)); } } // Read integers in bulk from a little-endian stream. // This reads N integers from stream s and puts them in array out. template inline void read_little_endian(std::istream& stream, IntType* out, std::size_t count) { if (IsLittleEndian) stream.read(reinterpret_cast(out), sizeof(IntType) * count); else for (std::size_t i = 0; i < count; ++i) out[i] = read_little_endian(stream); } // Write integers in bulk to a little-endian stream. // This takes N integers from array values and writes them on stream s. template inline void write_little_endian(std::ostream& stream, const IntType* values, std::size_t count) { if (IsLittleEndian) stream.write(reinterpret_cast(values), sizeof(IntType) * count); else for (std::size_t i = 0; i < count; ++i) write_little_endian(stream, values[i]); } // Read N signed integers from the stream s, putting them in the array out. // The stream is assumed to be compressed using the signed LEB128 format. // See https://en.wikipedia.org/wiki/LEB128 for a description of the compression scheme. template inline void read_leb_128(std::istream& stream, IntType* out, std::size_t count) { // Check the presence of our LEB128 magic string char leb128MagicString[Leb128MagicStringSize]; stream.read(leb128MagicString, Leb128MagicStringSize); assert(strncmp(Leb128MagicString, leb128MagicString, Leb128MagicStringSize) == 0); static_assert(std::is_signed_v, "Not implemented for unsigned types"); const std::uint32_t BUF_SIZE = 4096; std::uint8_t buf[BUF_SIZE]; auto bytes_left = read_little_endian(stream); std::uint32_t buf_pos = BUF_SIZE; for (std::size_t i = 0; i < count; ++i) { IntType result = 0; size_t shift = 0; do { if (buf_pos == BUF_SIZE) { stream.read(reinterpret_cast(buf), std::min(bytes_left, BUF_SIZE)); buf_pos = 0; } std::uint8_t byte = buf[buf_pos++]; --bytes_left; result |= (byte & 0x7f) << shift; shift += 7; if ((byte & 0x80) == 0) { out[i] = (sizeof(IntType) * 8 <= shift || (byte & 0x40) == 0) ? result : result | ~((1 << shift) - 1); break; } } while (shift < sizeof(IntType) * 8); } assert(bytes_left == 0); } // Write signed integers to a stream with LEB128 compression. // This takes N integers from array values, compresses them with // the LEB128 algorithm and writes the result on the stream s. // See https://en.wikipedia.org/wiki/LEB128 for a description of the compression scheme. template inline void write_leb_128(std::ostream& stream, const IntType* values, std::size_t count) { // Write our LEB128 magic string stream.write(Leb128MagicString, Leb128MagicStringSize); static_assert(std::is_signed_v, "Not implemented for unsigned types"); std::uint32_t byte_count = 0; for (std::size_t i = 0; i < count; ++i) { IntType value = values[i]; std::uint8_t byte; do { byte = value & 0x7f; value >>= 7; ++byte_count; } while ((byte & 0x40) == 0 ? value != 0 : value != -1); } write_little_endian(stream, byte_count); const std::uint32_t BUF_SIZE = 4096; std::uint8_t buf[BUF_SIZE]; std::uint32_t buf_pos = 0; auto flush = [&]() { if (buf_pos > 0) { stream.write(reinterpret_cast(buf), buf_pos); buf_pos = 0; } }; auto write = [&](std::uint8_t byte) { buf[buf_pos++] = byte; if (buf_pos == BUF_SIZE) flush(); }; for (std::size_t i = 0; i < count; ++i) { IntType value = values[i]; while (true) { std::uint8_t byte = value & 0x7f; value >>= 7; if ((byte & 0x40) == 0 ? value == 0 : value == -1) { write(byte); break; } write(byte | 0x80); } } flush(); } } // namespace Stockfish::Eval::NNUE #endif // #ifndef NNUE_COMMON_H_INCLUDED