/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008 Marco Costalba Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ //// //// Includes //// #include #include #include "material.h" //// //// Local definitions //// namespace { const Value BishopPairMidgameBonus = Value(100); const Value BishopPairEndgameBonus = Value(100); Key KNNKMaterialKey, KKNNMaterialKey; struct ScalingInfo { Color col; ScalingFunction* fun; }; } //// //// Classes //// class EndgameFunctions { public: EndgameFunctions(); EndgameEvaluationFunction* getEEF(Key key); ScalingInfo getESF(Key key); private: void add(Key k, EndgameEvaluationFunction* f); void add(Key k, Color c, ScalingFunction* f); std::map EEFmap; std::map ESFmap; }; //// //// Functions //// /// MaterialInfo::init() is called during program initialization. It /// precomputes material hash keys for a few basic endgames, in order /// to make it easy to recognize such endgames when they occur. void MaterialInfo::init() { typedef Key ZM[2][8][16]; const ZM& z = Position::zobMaterial; KNNKMaterialKey = z[WHITE][KNIGHT][1] ^ z[WHITE][KNIGHT][2]; KKNNMaterialKey = z[BLACK][KNIGHT][1] ^ z[BLACK][KNIGHT][2]; } /// Constructor for the MaterialInfoTable class MaterialInfoTable::MaterialInfoTable(unsigned int numOfEntries) { size = numOfEntries; entries = new MaterialInfo[size]; funcs = new EndgameFunctions(); if (!entries || !funcs) { std::cerr << "Failed to allocate " << (numOfEntries * sizeof(MaterialInfo)) << " bytes for material hash table." << std::endl; exit(EXIT_FAILURE); } clear(); } /// Destructor for the MaterialInfoTable class MaterialInfoTable::~MaterialInfoTable() { delete [] entries; delete funcs; } /// MaterialInfoTable::clear() clears a material hash table by setting /// all entries to 0. void MaterialInfoTable::clear() { memset(entries, 0, size * sizeof(MaterialInfo)); } /// MaterialInfoTable::get_material_info() takes a position object as input, /// computes or looks up a MaterialInfo object, and returns a pointer to it. /// If the material configuration is not already present in the table, it /// is stored there, so we don't have to recompute everything when the /// same material configuration occurs again. MaterialInfo *MaterialInfoTable::get_material_info(const Position& pos) { Key key = pos.get_material_key(); int index = key & (size - 1); MaterialInfo* mi = entries + index; // If mi->key matches the position's material hash key, it means that we // have analysed this material configuration before, and we can simply // return the information we found the last time instead of recomputing it. if (mi->key == key) return mi; // Clear the MaterialInfo object, and set its key mi->clear(); mi->key = key; // A special case before looking for a specialized evaluation function // KNN vs K is a draw. if (key == KNNKMaterialKey || key == KKNNMaterialKey) { mi->factor[WHITE] = mi->factor[BLACK] = 0; return mi; } // Let's look if we have a specialized evaluation function for this // particular material configuration. if ((mi->evaluationFunction = funcs->getEEF(key)) != NULL) return mi; else if ( pos.non_pawn_material(BLACK) == Value(0) && pos.piece_count(BLACK, PAWN) == 0 && pos.non_pawn_material(WHITE) >= RookValueEndgame) { mi->evaluationFunction = &EvaluateKXK; return mi; } else if ( pos.non_pawn_material(WHITE) == Value(0) && pos.piece_count(WHITE, PAWN) == 0 && pos.non_pawn_material(BLACK) >= RookValueEndgame) { mi->evaluationFunction = &EvaluateKKX; return mi; } // OK, we didn't find any special evaluation function for the current // material configuration. Is there a suitable scaling function? // // The code below is rather messy, and it could easily get worse later, // if we decide to add more special cases. We face problems when there // are several conflicting applicable scaling functions and we need to // decide which one to use. ScalingInfo si = funcs->getESF(key); if (si.fun != NULL) { mi->scalingFunction[si.col] = si.fun; return mi; } if ( pos.non_pawn_material(WHITE) == BishopValueMidgame && pos.piece_count(WHITE, BISHOP) == 1 && pos.piece_count(WHITE, PAWN) >= 1) mi->scalingFunction[WHITE] = &ScaleKBPK; if ( pos.non_pawn_material(BLACK) == BishopValueMidgame && pos.piece_count(BLACK, BISHOP) == 1 && pos.piece_count(BLACK, PAWN) >= 1) mi->scalingFunction[BLACK] = &ScaleKKBP; if ( pos.piece_count(WHITE, PAWN) == 0 && pos.non_pawn_material(WHITE) == QueenValueMidgame && pos.piece_count(WHITE, QUEEN) == 1 && pos.piece_count(BLACK, ROOK) == 1 && pos.piece_count(BLACK, PAWN) >= 1) mi->scalingFunction[WHITE] = &ScaleKQKRP; else if ( pos.piece_count(BLACK, PAWN) == 0 && pos.non_pawn_material(BLACK) == QueenValueMidgame && pos.piece_count(BLACK, QUEEN) == 1 && pos.piece_count(WHITE, ROOK) == 1 && pos.piece_count(WHITE, PAWN) >= 1) mi->scalingFunction[BLACK] = &ScaleKRPKQ; if (pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) == Value(0)) { if (pos.piece_count(BLACK, PAWN) == 0) { assert(pos.piece_count(WHITE, PAWN) >= 2); mi->scalingFunction[WHITE] = &ScaleKPsK; } else if (pos.piece_count(WHITE, PAWN) == 0) { assert(pos.piece_count(BLACK, PAWN) >= 2); mi->scalingFunction[BLACK] = &ScaleKKPs; } else if (pos.piece_count(WHITE, PAWN) == 1 && pos.piece_count(BLACK, PAWN) == 1) { mi->scalingFunction[WHITE] = &ScaleKPKPw; mi->scalingFunction[BLACK] = &ScaleKPKPb; } } // Evaluate the material balance Color c; int sign; Value egValue = Value(0); Value mgValue = Value(0); for (c = WHITE, sign = 1; c <= BLACK; c++, sign = -sign) { // No pawns makes it difficult to win, even with a material advantage if ( pos.piece_count(c, PAWN) == 0 && pos.non_pawn_material(c) - pos.non_pawn_material(opposite_color(c)) <= BishopValueMidgame) { if ( pos.non_pawn_material(c) == pos.non_pawn_material(opposite_color(c)) || pos.non_pawn_material(c) < RookValueMidgame) mi->factor[c] = 0; else { switch (pos.piece_count(c, BISHOP)) { case 2: mi->factor[c] = 32; break; case 1: mi->factor[c] = 12; break; case 0: mi->factor[c] = 6; break; } } } // Bishop pair if (pos.piece_count(c, BISHOP) >= 2) { mgValue += sign * BishopPairMidgameBonus; egValue += sign * BishopPairEndgameBonus; } // Knights are stronger when there are many pawns on the board. The // formula is taken from Larry Kaufman's paper "The Evaluation of Material // Imbalances in Chess": // http://mywebpages.comcast.net/danheisman/Articles/evaluation_of_material_imbalance.htm mgValue += sign * Value(pos.piece_count(c, KNIGHT)*(pos.piece_count(c, PAWN)-5)*16); egValue += sign * Value(pos.piece_count(c, KNIGHT)*(pos.piece_count(c, PAWN)-5)*16); // Redundancy of major pieces, again based on Kaufman's paper: if (pos.piece_count(c, ROOK) >= 1) { Value v = Value((pos.piece_count(c, ROOK) - 1) * 32 + pos.piece_count(c, QUEEN) * 16); mgValue -= sign * v; egValue -= sign * v; } } mi->mgValue = int16_t(mgValue); mi->egValue = int16_t(egValue); return mi; } /// EndgameFunctions members definition. This helper class is used to /// store the maps of end game and scaling functions that MaterialInfoTable /// will query for each key. The maps are constant, and are populated only /// at construction. Being per thread avoids to use locks to access them. EndgameFunctions::EndgameFunctions() { typedef Key ZM[2][8][16]; const ZM& z = Position::zobMaterial; static const Color W = WHITE; static const Color B = BLACK; KNNKMaterialKey = z[W][KNIGHT][1] ^ z[W][KNIGHT][2]; KKNNMaterialKey = z[B][KNIGHT][1] ^ z[B][KNIGHT][2]; add(z[W][PAWN][1], &EvaluateKPK); add(z[B][PAWN][1], &EvaluateKKP); add(z[W][BISHOP][1] ^ z[W][KNIGHT][1], &EvaluateKBNK); add(z[B][BISHOP][1] ^ z[B][KNIGHT][1], &EvaluateKKBN); add(z[W][ROOK][1] ^ z[B][PAWN][1], &EvaluateKRKP); add(z[W][PAWN][1] ^ z[B][ROOK][1], &EvaluateKPKR); add(z[W][ROOK][1] ^ z[B][BISHOP][1], &EvaluateKRKB); add(z[W][BISHOP][1] ^ z[B][ROOK][1], &EvaluateKBKR); add(z[W][ROOK][1] ^ z[B][KNIGHT][1], &EvaluateKRKN); add(z[W][KNIGHT][1] ^ z[B][ROOK][1], &EvaluateKNKR); add(z[W][QUEEN][1] ^ z[B][ROOK][1], &EvaluateKQKR); add(z[W][ROOK][1] ^ z[B][QUEEN][1], &EvaluateKRKQ); add(z[W][KNIGHT][1] ^ z[W][PAWN][1], W, &ScaleKNPK); add(z[B][KNIGHT][1] ^ z[B][PAWN][1], B, &ScaleKKNP); add(z[W][ROOK][1] ^ z[W][PAWN][1] ^ z[B][ROOK][1] , W, &ScaleKRPKR); add(z[W][ROOK][1] ^ z[B][ROOK][1] ^ z[B][PAWN][1] , B, &ScaleKRKRP); add(z[W][BISHOP][1] ^ z[W][PAWN][1] ^ z[B][BISHOP][1], W, &ScaleKBPKB); add(z[W][BISHOP][1] ^ z[B][BISHOP][1] ^ z[B][PAWN][1] , B, &ScaleKBKBP); add(z[W][BISHOP][1] ^ z[W][PAWN][1] ^ z[B][KNIGHT][1], W, &ScaleKBPKN); add(z[W][KNIGHT][1] ^ z[B][BISHOP][1] ^ z[B][PAWN][1] , B, &ScaleKNKBP); add(z[W][ROOK][1] ^ z[W][PAWN][1] ^ z[W][PAWN][2] ^ z[B][ROOK][1] ^ z[B][PAWN][1], W, &ScaleKRPPKRP); add(z[W][ROOK][1] ^ z[W][PAWN][1] ^ z[B][ROOK][1] ^ z[B][PAWN][1] ^ z[B][PAWN][2], B, &ScaleKRPKRPP); } void EndgameFunctions::add(Key k, EndgameEvaluationFunction* f) { EEFmap.insert(std::pair(k, f)); } void EndgameFunctions::add(Key k, Color c, ScalingFunction* f) { ScalingInfo s = {c, f}; ESFmap.insert(std::pair(k, s)); } EndgameEvaluationFunction* EndgameFunctions::getEEF(Key key) { EndgameEvaluationFunction* f = NULL; std::map::iterator it(EEFmap.find(key)); if (it != EEFmap.end()) f = it->second; return f; } ScalingInfo EndgameFunctions::getESF(Key key) { ScalingInfo si = {WHITE, NULL}; std::map::iterator it(ESFmap.find(key)); if (it != ESFmap.end()) si = it->second; return si; }