/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef MISC_H_INCLUDED #define MISC_H_INCLUDED #include #include #include #include #include #include #include #include #include #define stringify2(x) #x #define stringify(x) stringify2(x) namespace Stockfish { std::string engine_info(bool to_uci = false); std::string compiler_info(); // Preloads the given address in L1/L2 cache. This is a non-blocking // function that doesn't stall the CPU waiting for data to be loaded from memory, // which can be quite slow. void prefetch(void* addr); void start_logger(const std::string& fname); void* std_aligned_alloc(size_t alignment, size_t size); void std_aligned_free(void* ptr); // memory aligned by page size, min alignment: 4096 bytes void* aligned_large_pages_alloc(size_t size); // nop if mem == nullptr void aligned_large_pages_free(void* mem); // Deleter for automating release of memory area template struct AlignedDeleter { void operator()(T* ptr) const { ptr->~T(); std_aligned_free(ptr); } }; template struct LargePageDeleter { void operator()(T* ptr) const { ptr->~T(); aligned_large_pages_free(ptr); } }; template using AlignedPtr = std::unique_ptr>; template using LargePagePtr = std::unique_ptr>; void dbg_hit_on(bool cond, int slot = 0); void dbg_mean_of(int64_t value, int slot = 0); void dbg_stdev_of(int64_t value, int slot = 0); void dbg_correl_of(int64_t value1, int64_t value2, int slot = 0); void dbg_print(); using TimePoint = std::chrono::milliseconds::rep; // A value in milliseconds static_assert(sizeof(TimePoint) == sizeof(int64_t), "TimePoint should be 64 bits"); inline TimePoint now() { return std::chrono::duration_cast( std::chrono::steady_clock::now().time_since_epoch()) .count(); } enum SyncCout { IO_LOCK, IO_UNLOCK }; std::ostream& operator<<(std::ostream&, SyncCout); #define sync_cout std::cout << IO_LOCK #define sync_endl std::endl << IO_UNLOCK // Get the first aligned element of an array. // ptr must point to an array of size at least `sizeof(T) * N + alignment` bytes, // where N is the number of elements in the array. template T* align_ptr_up(T* ptr) { static_assert(alignof(T) < Alignment); const uintptr_t ptrint = reinterpret_cast(reinterpret_cast(ptr)); return reinterpret_cast( reinterpret_cast((ptrint + (Alignment - 1)) / Alignment * Alignment)); } // True if and only if the binary is compiled on a little-endian machine static inline const union { uint32_t i; char c[4]; } Le = {0x01020304}; static inline const bool IsLittleEndian = (Le.c[0] == 4); template class ValueList { public: std::size_t size() const { return size_; } void push_back(const T& value) { values_[size_++] = value; } const T* begin() const { return values_; } const T* end() const { return values_ + size_; } const T& operator[](int index) const { return values_[index]; } private: T values_[MaxSize]; std::size_t size_ = 0; }; // xorshift64star Pseudo-Random Number Generator // This class is based on original code written and dedicated // to the public domain by Sebastiano Vigna (2014). // It has the following characteristics: // // - Outputs 64-bit numbers // - Passes Dieharder and SmallCrush test batteries // - Does not require warm-up, no zeroland to escape // - Internal state is a single 64-bit integer // - Period is 2^64 - 1 // - Speed: 1.60 ns/call (Core i7 @3.40GHz) // // For further analysis see // class PRNG { uint64_t s; uint64_t rand64() { s ^= s >> 12, s ^= s << 25, s ^= s >> 27; return s * 2685821657736338717LL; } public: PRNG(uint64_t seed) : s(seed) { assert(seed); } template T rand() { return T(rand64()); } // Special generator used to fast init magic numbers. // Output values only have 1/8th of their bits set on average. template T sparse_rand() { return T(rand64() & rand64() & rand64()); } }; inline uint64_t mul_hi64(uint64_t a, uint64_t b) { #if defined(__GNUC__) && defined(IS_64BIT) __extension__ using uint128 = unsigned __int128; return (uint128(a) * uint128(b)) >> 64; #else uint64_t aL = uint32_t(a), aH = a >> 32; uint64_t bL = uint32_t(b), bH = b >> 32; uint64_t c1 = (aL * bL) >> 32; uint64_t c2 = aH * bL + c1; uint64_t c3 = aL * bH + uint32_t(c2); return aH * bH + (c2 >> 32) + (c3 >> 32); #endif } // Under Windows it is not possible for a process to run on more than one // logical processor group. This usually means being limited to using max 64 // cores. To overcome this, some special platform-specific API should be // called to set group affinity for each thread. Original code from Texel by // Peter Ă–sterlund. namespace WinProcGroup { void bind_this_thread(size_t idx); } struct CommandLine { public: CommandLine(int, char**); int argc; char** argv; std::string binaryDirectory; // path of the executable directory std::string workingDirectory; // path of the working directory }; namespace Utility { template void move_to_front(std::vector& vec, Predicate pred) { auto it = std::find_if(vec.begin(), vec.end(), pred); if (it != vec.end()) { std::rotate(vec.begin(), it, it + 1); } } } } // namespace Stockfish #endif // #ifndef MISC_H_INCLUDED