/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "timeman.h" #include #include #include #include #include "search.h" #include "ucioption.h" namespace Stockfish { TimePoint TimeManagement::optimum() const { return optimumTime; } TimePoint TimeManagement::maximum() const { return maximumTime; } void TimeManagement::clear() { availableNodes = -1; // When in 'nodes as time' mode } void TimeManagement::advance_nodes_time(std::int64_t nodes) { assert(useNodesTime); availableNodes = std::max(int64_t(0), availableNodes - nodes); } // Called at the beginning of the search and calculates // the bounds of time allowed for the current game ply. We currently support: // 1) x basetime (+ z increment) // 2) x moves in y seconds (+ z increment) void TimeManagement::init(Search::LimitsType& limits, Color us, int ply, const OptionsMap& options, double& originalTimeAdjust) { TimePoint npmsec = TimePoint(options["nodestime"]); // If we have no time, we don't need to fully initialize TM. // startTime is used by movetime and useNodesTime is used in elapsed calls. startTime = limits.startTime; useNodesTime = npmsec != 0; if (limits.time[us] == 0) return; TimePoint moveOverhead = TimePoint(options["Move Overhead"]); // optScale is a percentage of available time to use for the current move. // maxScale is a multiplier applied to optimumTime. double optScale, maxScale; // If we have to play in 'nodes as time' mode, then convert from time // to nodes, and use resulting values in time management formulas. // WARNING: to avoid time losses, the given npmsec (nodes per millisecond) // must be much lower than the real engine speed. if (useNodesTime) { if (availableNodes == -1) // Only once at game start availableNodes = npmsec * limits.time[us]; // Time is in msec // Convert from milliseconds to nodes limits.time[us] = TimePoint(availableNodes); limits.inc[us] *= npmsec; limits.npmsec = npmsec; moveOverhead *= npmsec; } // These numbers are used where multiplications, divisions or comparisons // with constants are involved. const int64_t scaleFactor = useNodesTime ? npmsec : 1; const TimePoint scaledTime = limits.time[us] / scaleFactor; const TimePoint scaledInc = limits.inc[us] / scaleFactor; // Maximum move horizon of 50 moves int mtg = limits.movestogo ? std::min(limits.movestogo, 50) : 50; // If less than one second, gradually reduce mtg if (scaledTime < 1000 && double(mtg) / scaledInc > 0.05) { mtg = scaledTime * 0.05; } // Make sure timeLeft is > 0 since we may use it as a divisor TimePoint timeLeft = std::max(TimePoint(1), limits.time[us] + limits.inc[us] * (mtg - 1) - moveOverhead * (2 + mtg)); // x basetime (+ z increment) // If there is a healthy increment, timeLeft can exceed the actual available // game time for the current move, so also cap to a percentage of available game time. if (limits.movestogo == 0) { // Extra time according to timeLeft if (originalTimeAdjust < 0) originalTimeAdjust = 0.3285 * std::log10(timeLeft) - 0.4830; // Calculate time constants based on current time left. double logTimeInSec = std::log10(scaledTime / 1000.0); double optConstant = std::min(0.00308 + 0.000319 * logTimeInSec, 0.00506); double maxConstant = std::max(3.39 + 3.01 * logTimeInSec, 2.93); optScale = std::min(0.0122 + std::pow(ply + 2.95, 0.462) * optConstant, 0.213 * limits.time[us] / timeLeft) * originalTimeAdjust; maxScale = std::min(6.64, maxConstant + ply / 12.0); } // x moves in y seconds (+ z increment) else { optScale = std::min((0.88 + ply / 116.4) / mtg, 0.88 * limits.time[us] / timeLeft); maxScale = std::min(6.3, 1.5 + 0.11 * mtg); } // Limit the maximum possible time for this move optimumTime = TimePoint(optScale * timeLeft); maximumTime = TimePoint(std::min(0.825 * limits.time[us] - moveOverhead, maxScale * optimumTime)) - 10; if (options["Ponder"]) optimumTime += optimumTime / 4; } } // namespace Stockfish