/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ //// //// Includes //// #include #include #include #include "material.h" using namespace std; //// //// Local definitions //// namespace { // Values modified by Joona Kiiski const Value MidgameLimit = Value(15581); const Value EndgameLimit = Value(3998); // Polynomial material balance parameters const Value RedundantQueenPenalty = Value(320); const Value RedundantRookPenalty = Value(554); const int LinearCoefficients[6] = { 1617, -162, -1172, -190, 105, 26 }; const int QuadraticCoefficientsSameColor[][6] = { { 7, 7, 7, 7, 7, 7 }, { 39, 2, 7, 7, 7, 7 }, { 35, 271, -4, 7, 7, 7 }, { 7, 25, 4, 7, 7, 7 }, { -27, -2, 46, 100, 56, 7 }, { 58, 29, 83, 148, -3, -25 } }; const int QuadraticCoefficientsOppositeColor[][6] = { { 41, 41, 41, 41, 41, 41 }, { 37, 41, 41, 41, 41, 41 }, { 10, 62, 41, 41, 41, 41 }, { 57, 64, 39, 41, 41, 41 }, { 50, 40, 23, -22, 41, 41 }, { 106, 101, 3, 151, 171, 41 } }; typedef EndgameEvaluationFunctionBase EF; typedef EndgameScalingFunctionBase SF; typedef map EFMap; typedef map SFMap; // Endgame evaluation and scaling functions accessed direcly and not through // the function maps because correspond to more then one material hash key. EvaluationFunction EvaluateKmmKm[] = { EvaluationFunction(WHITE), EvaluationFunction(BLACK) }; EvaluationFunction EvaluateKXK[] = { EvaluationFunction(WHITE), EvaluationFunction(BLACK) }; ScalingFunction ScaleKBPsK[] = { ScalingFunction(WHITE), ScalingFunction(BLACK) }; ScalingFunction ScaleKQKRPs[] = { ScalingFunction(WHITE), ScalingFunction(BLACK) }; ScalingFunction ScaleKPsK[] = { ScalingFunction(WHITE), ScalingFunction(BLACK) }; ScalingFunction ScaleKPKP[] = { ScalingFunction(WHITE), ScalingFunction(BLACK) }; // Helper templates used to detect a given material distribution template bool is_KXK(const Position& pos) { const Color Them = (Us == WHITE ? BLACK : WHITE); return pos.non_pawn_material(Them) == VALUE_ZERO && pos.piece_count(Them, PAWN) == 0 && pos.non_pawn_material(Us) >= RookValueMidgame; } template bool is_KBPsK(const Position& pos) { return pos.non_pawn_material(Us) == BishopValueMidgame && pos.piece_count(Us, BISHOP) == 1 && pos.piece_count(Us, PAWN) >= 1; } template bool is_KQKRPs(const Position& pos) { const Color Them = (Us == WHITE ? BLACK : WHITE); return pos.piece_count(Us, PAWN) == 0 && pos.non_pawn_material(Us) == QueenValueMidgame && pos.piece_count(Us, QUEEN) == 1 && pos.piece_count(Them, ROOK) == 1 && pos.piece_count(Them, PAWN) >= 1; } } //// //// Classes //// /// EndgameFunctions class stores endgame evaluation and scaling functions /// in two std::map. Because STL library is not guaranteed to be thread /// safe even for read access, the maps, although with identical content, /// are replicated for each thread. This is faster then using locks. class EndgameFunctions { public: EndgameFunctions(); ~EndgameFunctions(); template T* get(Key key) const; private: template void add(const string& keyCode); static Key buildKey(const string& keyCode); static const string swapColors(const string& keyCode); // Here we store two maps, for evaluate and scaling functions... pair maps; // ...and here is the accessing template function template const map& get() const; }; // Explicit specializations of a member function shall be declared in // the namespace of which the class template is a member. template<> const EFMap& EndgameFunctions::get() const { return maps.first; } template<> const SFMap& EndgameFunctions::get() const { return maps.second; } //// //// Functions //// /// MaterialInfoTable c'tor and d'tor, called once by each thread MaterialInfoTable::MaterialInfoTable(unsigned int numOfEntries) { size = numOfEntries; entries = new MaterialInfo[size]; funcs = new EndgameFunctions(); if (!entries || !funcs) { cerr << "Failed to allocate " << numOfEntries * sizeof(MaterialInfo) << " bytes for material hash table." << endl; Application::exit_with_failure(); } } MaterialInfoTable::~MaterialInfoTable() { delete funcs; delete [] entries; } /// MaterialInfoTable::game_phase() calculates the phase given the current /// position. Because the phase is strictly a function of the material, it /// is stored in MaterialInfo. Phase MaterialInfoTable::game_phase(const Position& pos) { Value npm = pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK); if (npm >= MidgameLimit) return PHASE_MIDGAME; if (npm <= EndgameLimit) return PHASE_ENDGAME; return Phase(((npm - EndgameLimit) * 128) / (MidgameLimit - EndgameLimit)); } /// MaterialInfoTable::get_material_info() takes a position object as input, /// computes or looks up a MaterialInfo object, and returns a pointer to it. /// If the material configuration is not already present in the table, it /// is stored there, so we don't have to recompute everything when the /// same material configuration occurs again. MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) { Key key = pos.get_material_key(); unsigned index = unsigned(key & (size - 1)); MaterialInfo* mi = entries + index; // If mi->key matches the position's material hash key, it means that we // have analysed this material configuration before, and we can simply // return the information we found the last time instead of recomputing it. if (mi->key == key) return mi; // Clear the MaterialInfo object, and set its key mi->clear(); mi->key = key; // Store game phase mi->gamePhase = MaterialInfoTable::game_phase(pos); // Let's look if we have a specialized evaluation function for this // particular material configuration. First we look for a fixed // configuration one, then a generic one if previous search failed. if ((mi->evaluationFunction = funcs->get(key)) != NULL) return mi; if (is_KXK(pos) || is_KXK(pos)) { mi->evaluationFunction = is_KXK(pos) ? &EvaluateKXK[WHITE] : &EvaluateKXK[BLACK]; return mi; } if ( pos.pieces(PAWN) == EmptyBoardBB && pos.pieces(ROOK) == EmptyBoardBB && pos.pieces(QUEEN) == EmptyBoardBB) { // Minor piece endgame with at least one minor piece per side and // no pawns. Note that the case KmmK is already handled by KXK. assert((pos.pieces(KNIGHT, WHITE) | pos.pieces(BISHOP, WHITE))); assert((pos.pieces(KNIGHT, BLACK) | pos.pieces(BISHOP, BLACK))); if ( pos.piece_count(WHITE, BISHOP) + pos.piece_count(WHITE, KNIGHT) <= 2 && pos.piece_count(BLACK, BISHOP) + pos.piece_count(BLACK, KNIGHT) <= 2) { mi->evaluationFunction = &EvaluateKmmKm[WHITE]; return mi; } } // OK, we didn't find any special evaluation function for the current // material configuration. Is there a suitable scaling function? // // We face problems when there are several conflicting applicable // scaling functions and we need to decide which one to use. SF* sf; if ((sf = funcs->get(key)) != NULL) { mi->scalingFunction[sf->color()] = sf; return mi; } // Generic scaling functions that refer to more then one material // distribution. Should be probed after the specialized ones. // Note that these ones don't return after setting the function. if (is_KBPsK(pos)) mi->scalingFunction[WHITE] = &ScaleKBPsK[WHITE]; if (is_KBPsK(pos)) mi->scalingFunction[BLACK] = &ScaleKBPsK[BLACK]; if (is_KQKRPs(pos)) mi->scalingFunction[WHITE] = &ScaleKQKRPs[WHITE]; else if (is_KQKRPs(pos)) mi->scalingFunction[BLACK] = &ScaleKQKRPs[BLACK]; if (pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) == VALUE_ZERO) { if (pos.piece_count(BLACK, PAWN) == 0) { assert(pos.piece_count(WHITE, PAWN) >= 2); mi->scalingFunction[WHITE] = &ScaleKPsK[WHITE]; } else if (pos.piece_count(WHITE, PAWN) == 0) { assert(pos.piece_count(BLACK, PAWN) >= 2); mi->scalingFunction[BLACK] = &ScaleKPsK[BLACK]; } else if (pos.piece_count(WHITE, PAWN) == 1 && pos.piece_count(BLACK, PAWN) == 1) { // This is a special case because we set scaling functions // for both colors instead of only one. mi->scalingFunction[WHITE] = &ScaleKPKP[WHITE]; mi->scalingFunction[BLACK] = &ScaleKPKP[BLACK]; } } // Compute the space weight if (pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) >= 2*QueenValueMidgame + 4*RookValueMidgame + 2*KnightValueMidgame) { int minorPieceCount = pos.piece_count(WHITE, KNIGHT) + pos.piece_count(BLACK, KNIGHT) + pos.piece_count(WHITE, BISHOP) + pos.piece_count(BLACK, BISHOP); mi->spaceWeight = minorPieceCount * minorPieceCount; } // Evaluate the material balance const int pieceCount[2][6] = { { pos.piece_count(WHITE, BISHOP) > 1, pos.piece_count(WHITE, PAWN), pos.piece_count(WHITE, KNIGHT), pos.piece_count(WHITE, BISHOP), pos.piece_count(WHITE, ROOK), pos.piece_count(WHITE, QUEEN) }, { pos.piece_count(BLACK, BISHOP) > 1, pos.piece_count(BLACK, PAWN), pos.piece_count(BLACK, KNIGHT), pos.piece_count(BLACK, BISHOP), pos.piece_count(BLACK, ROOK), pos.piece_count(BLACK, QUEEN) } }; Color c, them; int sign, pt1, pt2, pc; int v, vv, matValue = 0; for (c = WHITE, sign = 1; c <= BLACK; c++, sign = -sign) { // No pawns makes it difficult to win, even with a material advantage if ( pos.piece_count(c, PAWN) == 0 && pos.non_pawn_material(c) - pos.non_pawn_material(opposite_color(c)) <= BishopValueMidgame) { if ( pos.non_pawn_material(c) == pos.non_pawn_material(opposite_color(c)) || pos.non_pawn_material(c) < RookValueMidgame) mi->factor[c] = 0; else { switch (pos.piece_count(c, BISHOP)) { case 2: mi->factor[c] = 32; break; case 1: mi->factor[c] = 12; break; case 0: mi->factor[c] = 6; break; } } } // Redundancy of major pieces, formula based on Kaufman's paper // "The Evaluation of Material Imbalances in Chess" // http://mywebpages.comcast.net/danheisman/Articles/evaluation_of_material_imbalance.htm if (pieceCount[c][ROOK] >= 1) matValue -= sign * ((pieceCount[c][ROOK] - 1) * RedundantRookPenalty + pieceCount[c][QUEEN] * RedundantQueenPenalty); them = opposite_color(c); v = 0; // Second-degree polynomial material imbalance by Tord Romstad // // We use NO_PIECE_TYPE as a place holder for the bishop pair "extended piece", // this allow us to be more flexible in defining bishop pair bonuses. for (pt1 = PIECE_TYPE_NONE; pt1 <= QUEEN; pt1++) { pc = pieceCount[c][pt1]; if (!pc) continue; vv = LinearCoefficients[pt1]; for (pt2 = PIECE_TYPE_NONE; pt2 <= pt1; pt2++) vv += pieceCount[c][pt2] * QuadraticCoefficientsSameColor[pt1][pt2] + pieceCount[them][pt2] * QuadraticCoefficientsOppositeColor[pt1][pt2]; v += pc * vv; } matValue += sign * v; } mi->value = int16_t(matValue / 16); return mi; } /// EndgameFunctions member definitions. EndgameFunctions::EndgameFunctions() { add >("KNNK"); add >("KPK"); add >("KBNK"); add >("KRKP"); add >("KRKB"); add >("KRKN"); add >("KQKR"); add >("KBBKN"); add >("KNPK"); add >("KRPKR"); add >("KBPKB"); add >("KBPPKB"); add >("KBPKN"); add >("KRPPKRP"); } EndgameFunctions::~EndgameFunctions() { for (EFMap::const_iterator it = maps.first.begin(); it != maps.first.end(); ++it) delete it->second; for (SFMap::const_iterator it = maps.second.begin(); it != maps.second.end(); ++it) delete it->second; } Key EndgameFunctions::buildKey(const string& keyCode) { assert(keyCode.length() > 0 && keyCode[0] == 'K'); assert(keyCode.length() < 8); stringstream s; bool upcase = false; // Build up a fen string with the given pieces, note that // the fen string could be of an illegal position. for (size_t i = 0; i < keyCode.length(); i++) { if (keyCode[i] == 'K') upcase = !upcase; s << char(upcase ? toupper(keyCode[i]) : tolower(keyCode[i])); } s << 8 - keyCode.length() << "/8/8/8/8/8/8/8 w - -"; return Position(s.str(), 0).get_material_key(); } const string EndgameFunctions::swapColors(const string& keyCode) { // Build corresponding key for the opposite color: "KBPKN" -> "KNKBP" size_t idx = keyCode.find("K", 1); return keyCode.substr(idx) + keyCode.substr(0, idx); } template void EndgameFunctions::add(const string& keyCode) { typedef typename T::Base F; typedef map M; const_cast(get()).insert(pair(buildKey(keyCode), new T(WHITE))); const_cast(get()).insert(pair(buildKey(swapColors(keyCode)), new T(BLACK))); } template T* EndgameFunctions::get(Key key) const { typename map::const_iterator it = get().find(key); return it != get().end() ? it->second : NULL; }