#ifndef TYPES_H_INCLUDED #define TYPES_H_INCLUDED #include #include #include #include #include const bool HasPopCnt = true; #define unlikely(x) (x) // For code annotation purposes #define CACHE_LINE_SIZE 64 const bool Is64Bit = true; typedef uint64_t Key; typedef uint64_t Bitboard; /// A move needs 16 bits to be stored /// /// bit 0- 5: destination square (from 0 to 63) /// bit 6-11: origin square (from 0 to 63) /// bit 12-13: promotion piece type - 2 (from KNIGHT-2 to QUEEN-2) /// bit 14-15: special move flag: promotion (1), en passant (2), castling (3) /// NOTE: EN-PASSANT bit is set only when a pawn can be captured /// /// Special cases are MOVE_NONE and MOVE_NULL. We can sneak these in because in /// any normal move destination square is always different from origin square /// while MOVE_NONE and MOVE_NULL have the same origin and destination square. enum Move { MOVE_NONE, MOVE_NULL = 65 }; enum MoveType { NORMAL, PROMOTION = 1 << 14, ENPASSANT = 2 << 14, CASTLING = 3 << 14 }; enum Color { WHITE, BLACK, NO_COLOR, COLOR_NB = 2 }; enum CastlingSide { KING_SIDE, QUEEN_SIDE, CASTLING_SIDE_NB = 2 }; enum CastlingRight { NO_CASTLING, WHITE_OO, WHITE_OOO = WHITE_OO << 1, BLACK_OO = WHITE_OO << 2, BLACK_OOO = WHITE_OO << 3, ANY_CASTLING = WHITE_OO | WHITE_OOO | BLACK_OO | BLACK_OOO, CASTLING_RIGHT_NB = 16 }; template struct MakeCastling { static const CastlingRight right = C == WHITE ? S == QUEEN_SIDE ? WHITE_OOO : WHITE_OO : S == QUEEN_SIDE ? BLACK_OOO : BLACK_OO; }; enum PieceType { NO_PIECE_TYPE, PAWN, KNIGHT, BISHOP, ROOK, QUEEN, KING, ALL_PIECES = 0, PIECE_TYPE_NB = 8 }; enum Piece { NO_PIECE, W_PAWN = 1, W_KNIGHT, W_BISHOP, W_ROOK, W_QUEEN, W_KING, B_PAWN = 9, B_KNIGHT, B_BISHOP, B_ROOK, B_QUEEN, B_KING, PIECE_NB = 16 }; enum Square { SQ_A1, SQ_B1, SQ_C1, SQ_D1, SQ_E1, SQ_F1, SQ_G1, SQ_H1, SQ_A2, SQ_B2, SQ_C2, SQ_D2, SQ_E2, SQ_F2, SQ_G2, SQ_H2, SQ_A3, SQ_B3, SQ_C3, SQ_D3, SQ_E3, SQ_F3, SQ_G3, SQ_H3, SQ_A4, SQ_B4, SQ_C4, SQ_D4, SQ_E4, SQ_F4, SQ_G4, SQ_H4, SQ_A5, SQ_B5, SQ_C5, SQ_D5, SQ_E5, SQ_F5, SQ_G5, SQ_H5, SQ_A6, SQ_B6, SQ_C6, SQ_D6, SQ_E6, SQ_F6, SQ_G6, SQ_H6, SQ_A7, SQ_B7, SQ_C7, SQ_D7, SQ_E7, SQ_F7, SQ_G7, SQ_H7, SQ_A8, SQ_B8, SQ_C8, SQ_D8, SQ_E8, SQ_F8, SQ_G8, SQ_H8, SQ_NONE, SQUARE_NB = 64, DELTA_N = 8, DELTA_E = 1, DELTA_S = -8, DELTA_W = -1, DELTA_NN = DELTA_N + DELTA_N, DELTA_NE = DELTA_N + DELTA_E, DELTA_SE = DELTA_S + DELTA_E, DELTA_SS = DELTA_S + DELTA_S, DELTA_SW = DELTA_S + DELTA_W, DELTA_NW = DELTA_N + DELTA_W }; enum File { FILE_A, FILE_B, FILE_C, FILE_D, FILE_E, FILE_F, FILE_G, FILE_H, FILE_NB }; enum Rank { RANK_1, RANK_2, RANK_3, RANK_4, RANK_5, RANK_6, RANK_7, RANK_8, RANK_NB }; #define ENABLE_BASE_OPERATORS_ON(T) \ inline T operator+(T d1, T d2) { return T(int(d1) + int(d2)); } \ inline T operator-(T d1, T d2) { return T(int(d1) - int(d2)); } \ inline T operator*(int i, T d) { return T(i * int(d)); } \ inline T operator*(T d, int i) { return T(int(d) * i); } \ inline T operator-(T d) { return T(-int(d)); } \ inline T& operator+=(T& d1, T d2) { return d1 = d1 + d2; } \ inline T& operator-=(T& d1, T d2) { return d1 = d1 - d2; } \ inline T& operator*=(T& d, int i) { return d = T(int(d) * i); } #define ENABLE_FULL_OPERATORS_ON(T) \ ENABLE_BASE_OPERATORS_ON(T) \ inline T& operator++(T& d) { return d = T(int(d) + 1); } \ inline T& operator--(T& d) { return d = T(int(d) - 1); } \ inline T operator/(T d, int i) { return T(int(d) / i); } \ inline int operator/(T d1, T d2) { return int(d1) / int(d2); } \ inline T& operator/=(T& d, int i) { return d = T(int(d) / i); } ENABLE_FULL_OPERATORS_ON(PieceType) ENABLE_FULL_OPERATORS_ON(Piece) ENABLE_FULL_OPERATORS_ON(Color) ENABLE_FULL_OPERATORS_ON(Square) ENABLE_FULL_OPERATORS_ON(File) ENABLE_FULL_OPERATORS_ON(Rank) #undef ENABLE_FULL_OPERATORS_ON #undef ENABLE_BASE_OPERATORS_ON struct ExtMove { Move move; int value; }; inline bool operator<(const ExtMove& f, const ExtMove& s) { return f.value < s.value; } inline Color operator~(Color c) { return Color(c ^ BLACK); } inline Square operator~(Square s) { return Square(s ^ SQ_A8); // Vertical flip SQ_A1 -> SQ_A8 } inline CastlingRight operator|(Color c, CastlingSide s) { return CastlingRight(WHITE_OO << ((s == QUEEN_SIDE) + 2 * c)); } inline Square make_square(File f, Rank r) { return Square((r << 3) | f); } inline Piece make_piece(Color c, PieceType pt) { return Piece((c << 3) | pt); } inline PieceType type_of(Piece pc) { return PieceType(pc & 7); } inline Color color_of(Piece pc) { assert(pc != NO_PIECE); return Color(pc >> 3); } inline bool is_ok(Square s) { return s >= SQ_A1 && s <= SQ_H8; } inline File file_of(Square s) { return File(s & 7); } inline Rank rank_of(Square s) { return Rank(s >> 3); } inline Square relative_square(Color c, Square s) { return Square(s ^ (c * 56)); } inline Rank relative_rank(Color c, Rank r) { return Rank(r ^ (c * 7)); } inline Rank relative_rank(Color c, Square s) { return relative_rank(c, rank_of(s)); } #endif // #ifndef TYPES_H_INCLUDED