/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include "bitboard.h" #include "bitcount.h" #include "rkiss.h" // Global bitboards definitions with static storage duration are // automatically set to zero before enter main(). Bitboard RMask[64]; Bitboard RMult[64]; Bitboard* RAttacks[64]; int RShift[64]; Bitboard BMask[64]; Bitboard BMult[64]; Bitboard* BAttacks[64]; int BShift[64]; Bitboard SetMaskBB[65]; Bitboard ClearMaskBB[65]; Bitboard SquaresByColorBB[2]; Bitboard FileBB[8]; Bitboard RankBB[8]; Bitboard NeighboringFilesBB[8]; Bitboard ThisAndNeighboringFilesBB[8]; Bitboard InFrontBB[2][8]; Bitboard StepAttacksBB[16][64]; Bitboard BetweenBB[64][64]; Bitboard SquaresInFrontMask[2][64]; Bitboard PassedPawnMask[2][64]; Bitboard AttackSpanMask[2][64]; Bitboard BishopPseudoAttacks[64]; Bitboard RookPseudoAttacks[64]; Bitboard QueenPseudoAttacks[64]; uint8_t BitCount8Bit[256]; namespace { CACHE_LINE_ALIGNMENT int BSFTable[64]; Bitboard RAttacksTable[0x19000]; Bitboard BAttacksTable[0x1480]; void init_sliding_attacks(Bitboard magic[], Bitboard* attack[], Bitboard attTable[], Bitboard mask[], int shift[], Square delta[]); } /// print_bitboard() prints a bitboard in an easily readable format to the /// standard output. This is sometimes useful for debugging. void print_bitboard(Bitboard b) { for (Rank r = RANK_8; r >= RANK_1; r--) { std::cout << "+---+---+---+---+---+---+---+---+" << '\n'; for (File f = FILE_A; f <= FILE_H; f++) std::cout << "| " << (bit_is_set(b, make_square(f, r)) ? "X " : " "); std::cout << "|\n"; } std::cout << "+---+---+---+---+---+---+---+---+" << std::endl; } /// first_1() finds the least significant nonzero bit in a nonzero bitboard. /// pop_1st_bit() finds and clears the least significant nonzero bit in a /// nonzero bitboard. #if defined(IS_64BIT) && !defined(USE_BSFQ) Square first_1(Bitboard b) { return Square(BSFTable[((b & -b) * 0x218A392CD3D5DBFULL) >> 58]); } Square pop_1st_bit(Bitboard* b) { Bitboard bb = *b; *b &= (*b - 1); return Square(BSFTable[((bb & -bb) * 0x218A392CD3D5DBFULL) >> 58]); } #elif !defined(USE_BSFQ) Square first_1(Bitboard b) { b ^= (b - 1); uint32_t fold = unsigned(b) ^ unsigned(b >> 32); return Square(BSFTable[(fold * 0x783A9B23) >> 26]); } // Use type-punning union b_union { Bitboard b; struct { #if defined (BIGENDIAN) uint32_t h; uint32_t l; #else uint32_t l; uint32_t h; #endif } dw; }; Square pop_1st_bit(Bitboard* bb) { b_union u; Square ret; u.b = *bb; if (u.dw.l) { ret = Square(BSFTable[((u.dw.l ^ (u.dw.l - 1)) * 0x783A9B23) >> 26]); u.dw.l &= (u.dw.l - 1); *bb = u.b; return ret; } ret = Square(BSFTable[((~(u.dw.h ^ (u.dw.h - 1))) * 0x783A9B23) >> 26]); u.dw.h &= (u.dw.h - 1); *bb = u.b; return ret; } #endif // !defined(USE_BSFQ) /// init_bitboards() initializes various bitboard arrays. It is called during /// program initialization. void init_bitboards() { SquaresByColorBB[DARK] = 0xAA55AA55AA55AA55ULL; SquaresByColorBB[LIGHT] = ~SquaresByColorBB[DARK]; for (Square s = SQ_A1; s <= SQ_H8; s++) { SetMaskBB[s] = 1ULL << s; ClearMaskBB[s] = ~SetMaskBB[s]; } ClearMaskBB[SQ_NONE] = ~EmptyBoardBB; FileBB[FILE_A] = FileABB; RankBB[RANK_1] = Rank1BB; for (int f = FILE_B; f <= FILE_H; f++) { FileBB[f] = FileBB[f - 1] << 1; RankBB[f] = RankBB[f - 1] << 8; } for (int f = FILE_A; f <= FILE_H; f++) { NeighboringFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0); ThisAndNeighboringFilesBB[f] = FileBB[f] | NeighboringFilesBB[f]; } for (int rw = RANK_7, rb = RANK_2; rw >= RANK_1; rw--, rb++) { InFrontBB[WHITE][rw] = InFrontBB[WHITE][rw + 1] | RankBB[rw + 1]; InFrontBB[BLACK][rb] = InFrontBB[BLACK][rb - 1] | RankBB[rb - 1]; } for (Color c = WHITE; c <= BLACK; c++) for (Square s = SQ_A1; s <= SQ_H8; s++) { SquaresInFrontMask[c][s] = in_front_bb(c, s) & file_bb(s); PassedPawnMask[c][s] = in_front_bb(c, s) & this_and_neighboring_files_bb(s); AttackSpanMask[c][s] = in_front_bb(c, s) & neighboring_files_bb(s); } for (Bitboard b = 0; b < 256; b++) BitCount8Bit[b] = (uint8_t)count_1s(b); for (int i = 0; i < 64; i++) if (!CpuIs64Bit) // Matt Taylor's folding trick for 32 bit systems { Bitboard b = 1ULL << i; b ^= b - 1; b ^= b >> 32; BSFTable[uint32_t(b * 0x783A9B23) >> 26] = i; } else BSFTable[((1ULL << i) * 0x218A392CD3D5DBFULL) >> 58] = i; int steps[][9] = { {}, { 7, 9 }, { 17, 15, 10, 6, -6, -10, -15, -17 }, {}, {}, {}, { 9, 7, -7, -9, 8, 1, -1, -8 } }; for (Color c = WHITE; c <= BLACK; c++) for (PieceType pt = PAWN; pt <= KING; pt++) for (Square s = SQ_A1; s <= SQ_H8; s++) for (int k = 0; steps[pt][k]; k++) { Square to = s + Square(c == WHITE ? steps[pt][k] : -steps[pt][k]); if (square_is_ok(to) && square_distance(s, to) < 3) set_bit(&StepAttacksBB[make_piece(c, pt)][s], to); } Square RDelta[] = { DELTA_N, DELTA_E, DELTA_S, DELTA_W }; Square BDelta[] = { DELTA_NE, DELTA_SE, DELTA_SW, DELTA_NW }; init_sliding_attacks(BMult, BAttacks, BAttacksTable, BMask, BShift, BDelta); init_sliding_attacks(RMult, RAttacks, RAttacksTable, RMask, RShift, RDelta); for (Square s = SQ_A1; s <= SQ_H8; s++) { BishopPseudoAttacks[s] = bishop_attacks_bb(s, EmptyBoardBB); RookPseudoAttacks[s] = rook_attacks_bb(s, EmptyBoardBB); QueenPseudoAttacks[s] = queen_attacks_bb(s, EmptyBoardBB); } for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++) for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++) if (bit_is_set(QueenPseudoAttacks[s1], s2)) { int f = file_distance(s1, s2); int r = rank_distance(s1, s2); Square d = (s2 - s1) / Max(f, r); for (Square s3 = s1 + d; s3 != s2; s3 += d) set_bit(&BetweenBB[s1][s2], s3); } } namespace { Bitboard sliding_attacks(Square sq, Bitboard occupied, Square delta[]) { Bitboard attacks = 0; for (int i = 0; i < 4; i++) { Square s = sq + delta[i]; while (square_is_ok(s) && square_distance(s, s - delta[i]) == 1) { set_bit(&attacks, s); if (bit_is_set(occupied, s)) break; s += delta[i]; } } return attacks; } Bitboard pick_magic(Bitboard mask, RKISS& rk, int booster) { Bitboard magic; // Values s1 and s2 are used to rotate the candidate magic of a // quantity known to be the optimal to quickly find the magics. int s1 = booster & 63, s2 = (booster >> 6) & 63; while (true) { magic = rk.rand(); magic = (magic >> s1) | (magic << (64 - s1)); magic &= rk.rand(); magic = (magic >> s2) | (magic << (64 - s2)); magic &= rk.rand(); if (BitCount8Bit[(mask * magic) >> 56] >= 6) return magic; } } void init_sliding_attacks(Bitboard magic[], Bitboard* attack[], Bitboard attTable[], Bitboard mask[], int shift[], Square delta[]) { const int MagicBoosters[][8] = { { 3191, 2184, 1310, 3618, 2091, 1308, 2452, 3996 }, { 1059, 3608, 605, 3234, 3326, 38, 2029, 3043 } }; RKISS rk; Bitboard occupancy[4096], reference[4096], edges, b; int key, maxKey, index, booster, offset = 0; for (Square s = SQ_A1; s <= SQ_H8; s++) { edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s)); attack[s] = &attTable[offset]; mask[s] = sliding_attacks(s, EmptyBoardBB, delta) & ~edges; shift[s] = (CpuIs64Bit ? 64 : 32) - count_1s(mask[s]); // Use Carry-Rippler trick to enumerate all subsets of mask[s] b = maxKey = 0; do { occupancy[maxKey] = b; reference[maxKey++] = sliding_attacks(s, b, delta); b = (b - mask[s]) & mask[s]; } while (b); offset += maxKey; booster = MagicBoosters[CpuIs64Bit][square_rank(s)]; // Then find a possible magic and the corresponding attacks do { magic[s] = pick_magic(mask[s], rk, booster); memset(attack[s], 0, maxKey * sizeof(Bitboard)); for (key = 0; key < maxKey; key++) { index = CpuIs64Bit ? unsigned((occupancy[key] * magic[s]) >> shift[s]) : unsigned(occupancy[key] * magic[s] ^ (occupancy[key] >> 32) * (magic[s] >> 32)) >> shift[s]; if (!attack[s][index]) attack[s][index] = reference[key]; else if (attack[s][index] != reference[key]) break; } } while (key != maxKey); } } }