/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2023 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include // For std::memset #include "material.h" #include "thread.h" using namespace std; namespace Stockfish { namespace { #define S(mg, eg) make_score(mg, eg) // Polynomial material imbalance parameters // One Score parameter for each pair (our piece, another of our pieces) constexpr Score QuadraticOurs[][PIECE_TYPE_NB] = { // OUR PIECE 2 // bishop pair pawn knight bishop rook queen {S(1419, 1455) }, // Bishop pair {S( 101, 28), S( 37, 39) }, // Pawn {S( 57, 64), S(249, 187), S(-49, -62) }, // Knight OUR PIECE 1 {S( 0, 0), S(118, 137), S( 10, 27), S( 0, 0) }, // Bishop {S( -63, -68), S( -5, 3), S(100, 81), S(132, 118), S(-246, -244) }, // Rook {S(-210, -211), S( 37, 14), S(147, 141), S(161, 105), S(-158, -174), S(-9,-31) } // Queen }; // One Score parameter for each pair (our piece, their piece) constexpr Score QuadraticTheirs[][PIECE_TYPE_NB] = { // THEIR PIECE // bishop pair pawn knight bishop rook queen { }, // Bishop pair {S( 33, 30) }, // Pawn {S( 46, 18), S(106, 84) }, // Knight OUR PIECE {S( 75, 35), S( 59, 44), S( 60, 15) }, // Bishop {S( 26, 35), S( 6, 22), S( 38, 39), S(-12, -2) }, // Rook {S( 97, 93), S(100, 163), S(-58, -91), S(112, 192), S(276, 225) } // Queen }; #undef S // Endgame evaluation and scaling functions are accessed directly and not through // the function maps because they correspond to more than one material hash key. Endgame EvaluateKXK[] = { Endgame(WHITE), Endgame(BLACK) }; Endgame ScaleKBPsK[] = { Endgame(WHITE), Endgame(BLACK) }; Endgame ScaleKQKRPs[] = { Endgame(WHITE), Endgame(BLACK) }; Endgame ScaleKPsK[] = { Endgame(WHITE), Endgame(BLACK) }; Endgame ScaleKPKP[] = { Endgame(WHITE), Endgame(BLACK) }; // Helper used to detect a given material distribution bool is_KXK(const Position& pos, Color us) { return !more_than_one(pos.pieces(~us)) && pos.non_pawn_material(us) >= RookValueMg; } bool is_KBPsK(const Position& pos, Color us) { return pos.non_pawn_material(us) == BishopValueMg && pos.count(us) >= 1; } bool is_KQKRPs(const Position& pos, Color us) { return !pos.count(us) && pos.non_pawn_material(us) == QueenValueMg && pos.count(~us) == 1 && pos.count(~us) >= 1; } /// imbalance() calculates the imbalance by comparing the piece count of each /// piece type for both colors. template Score imbalance(const int pieceCount[][PIECE_TYPE_NB]) { constexpr Color Them = ~Us; Score bonus = SCORE_ZERO; // Second-degree polynomial material imbalance, by Tord Romstad for (int pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; ++pt1) { if (!pieceCount[Us][pt1]) continue; int v = QuadraticOurs[pt1][pt1] * pieceCount[Us][pt1]; for (int pt2 = NO_PIECE_TYPE; pt2 < pt1; ++pt2) v += QuadraticOurs[pt1][pt2] * pieceCount[Us][pt2] + QuadraticTheirs[pt1][pt2] * pieceCount[Them][pt2]; bonus += pieceCount[Us][pt1] * v; } return bonus; } } // namespace namespace Material { /// Material::probe() looks up the current position's material configuration in /// the material hash table. It returns a pointer to the Entry if the position /// is found. Otherwise a new Entry is computed and stored there, so we don't /// have to recompute all when the same material configuration occurs again. Entry* probe(const Position& pos) { Key key = pos.material_key(); Entry* e = pos.this_thread()->materialTable[key]; if (e->key == key) return e; std::memset(e, 0, sizeof(Entry)); e->key = key; e->factor[WHITE] = e->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL; Value npm_w = pos.non_pawn_material(WHITE); Value npm_b = pos.non_pawn_material(BLACK); Value npm = std::clamp(npm_w + npm_b, EndgameLimit, MidgameLimit); // Map total non-pawn material into [PHASE_ENDGAME, PHASE_MIDGAME] e->gamePhase = Phase(((npm - EndgameLimit) * PHASE_MIDGAME) / (MidgameLimit - EndgameLimit)); // Let's look if we have a specialized evaluation function for this particular // material configuration. Firstly we look for a fixed configuration one, then // for a generic one if the previous search failed. if ((e->evaluationFunction = Endgames::probe(key)) != nullptr) return e; for (Color c : { WHITE, BLACK }) if (is_KXK(pos, c)) { e->evaluationFunction = &EvaluateKXK[c]; return e; } // OK, we didn't find any special evaluation function for the current material // configuration. Is there a suitable specialized scaling function? const auto* sf = Endgames::probe(key); if (sf) { e->scalingFunction[sf->strongSide] = sf; // Only strong color assigned return e; } // We didn't find any specialized scaling function, so fall back on generic // ones that refer to more than one material distribution. Note that in this // case we don't return after setting the function. for (Color c : { WHITE, BLACK }) { if (is_KBPsK(pos, c)) e->scalingFunction[c] = &ScaleKBPsK[c]; else if (is_KQKRPs(pos, c)) e->scalingFunction[c] = &ScaleKQKRPs[c]; } if (npm_w + npm_b == VALUE_ZERO && pos.pieces(PAWN)) // Only pawns on the board { if (!pos.count(BLACK)) { assert(pos.count(WHITE) >= 2); e->scalingFunction[WHITE] = &ScaleKPsK[WHITE]; } else if (!pos.count(WHITE)) { assert(pos.count(BLACK) >= 2); e->scalingFunction[BLACK] = &ScaleKPsK[BLACK]; } else if (pos.count(WHITE) == 1 && pos.count(BLACK) == 1) { // This is a special case because we set scaling functions // for both colors instead of only one. e->scalingFunction[WHITE] = &ScaleKPKP[WHITE]; e->scalingFunction[BLACK] = &ScaleKPKP[BLACK]; } } // Zero or just one pawn makes it difficult to win, even with a small material // advantage. This catches some trivial draws like KK, KBK and KNK and gives a // drawish scale factor for cases such as KRKBP and KmmKm (except for KBBKN). if (!pos.count(WHITE) && npm_w - npm_b <= BishopValueMg) e->factor[WHITE] = uint8_t(npm_w < RookValueMg ? SCALE_FACTOR_DRAW : npm_b <= BishopValueMg ? 4 : 14); if (!pos.count(BLACK) && npm_b - npm_w <= BishopValueMg) e->factor[BLACK] = uint8_t(npm_b < RookValueMg ? SCALE_FACTOR_DRAW : npm_w <= BishopValueMg ? 4 : 14); // Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder // for the bishop pair "extended piece", which allows us to be more flexible // in defining bishop pair bonuses. const int pieceCount[COLOR_NB][PIECE_TYPE_NB] = { { pos.count(WHITE) > 1, pos.count(WHITE), pos.count(WHITE), pos.count(WHITE) , pos.count(WHITE), pos.count(WHITE) }, { pos.count(BLACK) > 1, pos.count(BLACK), pos.count(BLACK), pos.count(BLACK) , pos.count(BLACK), pos.count(BLACK) } }; e->score = (imbalance(pieceCount) - imbalance(pieceCount)) / 16; return e; } } // namespace Material } // namespace Stockfish