/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (c) 2013 Ronald de Man
Copyright (C) 2016 Marco Costalba, Lucas Braesch
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include
#include
#include
#include // For std::memset
#include
#include
#include
#include
#include
#include
#include "../bitboard.h"
#include "../movegen.h"
#include "../position.h"
#include "../search.h"
#include "../thread_win32.h"
#include "../types.h"
#include "tbprobe.h"
#ifndef _WIN32
#include
#include
#include
#include
#else
#define WIN32_LEAN_AND_MEAN
#define NOMINMAX
#include
#endif
using namespace Tablebases;
size_t Tablebases::MaxCardinality;
namespace {
inline WDLScore operator-(WDLScore d) { return WDLScore(-int(d)); }
inline WDLScore operator+(WDLScore d1, WDLScore d2) { return WDLScore(int(d1) + int(d2)); }
inline Square operator^=(Square& s, int i) { return s = Square(int(s) ^ i); }
inline Square operator^(Square s, int i) { return Square(int(s) ^ i); }
// Each table has a set of flags: all of them refer to DTZ tables, the last one to WDL tables
enum TBFlag { STM = 1, Mapped = 2, WinPlies = 4, LossPlies = 8, SingleValue = 128 };
// Numbers in Little Endian format used by sparseIndex[] to point into blockLength[]
struct SparseEntry {
char block[4]; // Number of block
char offset[2]; // Offset within the block
};
static_assert(sizeof(SparseEntry) == 6, "SparseEntry must be 6 bytes");
typedef uint16_t Sym; // Huffman symbol
struct LR {
enum Side { Left, Right, Value };
uint8_t lr[3]; // The first 12 bits is the left-hand symbol, the second 12
// bits is the right-hand symbol. If symbol has length 1,
// then the first byte is the stored value.
template
Sym get() {
return S == Left ? ((lr[1] & 0xF) << 8) | lr[0] :
S == Right ? (lr[2] << 4) | (lr[1] >> 4) :
S == Value ? lr[0] : (assert(false), Sym(-1));
}
};
static_assert(sizeof(LR) == 3, "LR tree entry must be 3 bytes");
const int TBPIECES = 6;
struct PairsData {
int flags;
size_t sizeofBlock; // Block size in bytes
size_t span; // About every span values there is a SparseIndex[] entry
int blocksNum; // Number of blocks in the TB file
int maxSymLen; // Maximum length in bits of the Huffman symbols
int minSymLen; // Minimum length in bits of the Huffman symbols
Sym* lowestSym; // lowestSym[l] is the value of the lowest symbol of length l
LR* btree; // btree[sym] stores the left and right symbols that expand sym
uint16_t* blockLength; // Number of stored positions (minus one) for each block: 1..65536
int blockLengthSize; // Size of blockLength[] table: padded so it's bigger than blocksNum
SparseEntry* sparseIndex; // Partial indices into blockLength[]
size_t sparseIndexSize; // Size of SparseIndex[] table
uint8_t* data; // Start of Huffman compressed data
std::vector base64; // Smallest symbol of length l padded to 64 bits is at base64[l - min_sym_len]
std::vector symlen; // Number of values (-1) represented by a given Huffman symbol: 1..256
Piece pieces[TBPIECES]; // Sequence of the pieces: order is critical to ensure the best compression
uint64_t groupSize[TBPIECES]; // Size needed by a given subset of pieces: KRKN -> (KRK) + (N)
uint8_t groupLen[TBPIECES]; // Number of pieces in a given group: KRKN -> (3) + (1)
};
// Helper struct to avoid to manually define WDLEntry copy c'tor as we should
// because default one is not compatible with std::atomic_bool.
struct Atomic {
Atomic() = default;
Atomic(const Atomic& e) { ready = e.ready.load(); } // MSVC 2013 wants assignment within body
std::atomic_bool ready;
};
struct WDLEntry : public Atomic {
WDLEntry(const Position& pos, Key keys[]);
~WDLEntry();
void* baseAddress;
uint64_t mapping;
Key key;
Key key2;
int pieceCount;
bool hasPawns;
bool hasUniquePieces;
union {
struct {
PairsData* precomp;
} piece[2]; // One for each side to move
struct {
uint8_t pawnCount[2];
struct {
PairsData* precomp;
} file[2][4];
} pawn;
};
};
struct DTZEntry {
DTZEntry(const WDLEntry& wdl);
~DTZEntry();
void* baseAddress;
uint64_t mapping;
Key key;
Key key2;
int pieceCount;
bool hasPawns;
bool hasUniquePieces;
union {
struct {
PairsData* precomp;
uint16_t map_idx[4]; // WDLWin, WDLLoss, WDLCursedWin, WDLCursedLoss
uint8_t* map;
} piece;
struct {
uint8_t pawnCount[2];
struct {
PairsData* precomp;
uint16_t map_idx[4];
} file[4];
uint8_t* map;
} pawn;
};
};
typedef decltype(WDLEntry::piece) WDLPiece;
typedef decltype(DTZEntry::piece) DTZPiece;
typedef decltype(WDLEntry::pawn ) WDLPawn;
typedef decltype(DTZEntry::pawn ) DTZPawn;
auto item(WDLPiece& e, int stm, int ) -> decltype(e[stm])& { return e[stm]; }
auto item(DTZPiece& e, int , int ) -> decltype(e)& { return e; }
auto item(WDLPawn& e, int stm, int f) -> decltype(e.file[stm][f])& { return e.file[stm][f]; }
auto item(DTZPawn& e, int , int f) -> decltype(e.file[f])& { return e.file[f]; }
int MapPawns[SQUARE_NB];
int MapB1H1H7[SQUARE_NB];
int MapA1D1D4[SQUARE_NB];
int MapKK[10][SQUARE_NB]; // [MapA1D1D4][SQUARE_NB]
// Comparison function to sort leading pawns in ascending MapPawns[] order
bool pawns_comp(Square i, Square j) { return MapPawns[i] < MapPawns[j]; }
int off_A1H8(Square sq) { return int(rank_of(sq)) - file_of(sq); }
const uint8_t WDL_MAGIC[] = { 0x71, 0xE8, 0x23, 0x5D };
const uint8_t DTZ_MAGIC[] = { 0xD7, 0x66, 0x0C, 0xA5 };
const int wdl_to_dtz[] = { -1, -101, 0, 101, 1 };
const Value WDL_to_value[] = {
-VALUE_MATE + MAX_PLY + 1,
VALUE_DRAW - 2,
VALUE_DRAW,
VALUE_DRAW + 2,
VALUE_MATE - MAX_PLY - 1
};
const std::string PieceToChar = " PNBRQK pnbrqk";
Mutex TB_mutex;
std::string TBPaths;
std::deque WDLTable;
std::list DTZTable;
int Binomial[6][SQUARE_NB]; // [k][n] k elements from a set of n elements
int LeadPawnIdx[4][SQUARE_NB]; // [leadPawnsCnt - 1][SQUARE_NB]
int LeadPawnsGroupSize[4][4]; // [leadPawnsCnt - 1][FILE_A..FILE_D]
enum { BigEndian, LittleEndian };
template
inline void swap_byte(T& x)
{
char tmp, *c = (char*)&x;
if (Half) // Fix a MSVC 2015 warning
for (int i = 0; i < Half; ++i)
tmp = c[i], c[i] = c[End - i], c[End - i] = tmp;
}
template T number(void* addr)
{
const union { uint32_t i; char c[4]; } Le = { 0x01020304 };
const bool IsLittleEndian = (Le.c[0] == 4);
T v = *((T*)addr);
if (LE != IsLittleEndian)
swap_byte(v);
return v;
}
class HashTable {
typedef std::pair Entry;
static const int TBHASHBITS = 10;
static const int HSHMAX = 5;
Entry table[1 << TBHASHBITS][HSHMAX];
void insert(Key key, WDLEntry* ptr) {
Entry* entry = table[key >> (64 - TBHASHBITS)];
for (int i = 0; i < HSHMAX; ++i, ++entry)
if (!entry->second || entry->first == key) {
*entry = std::make_pair(key, ptr);
return;
}
std::cerr << "HSHMAX too low!" << std::endl;
exit(1);
}
public:
WDLEntry* operator[](Key key) {
Entry* entry = table[key >> (64 - TBHASHBITS)];
for (int i = 0; i < HSHMAX; ++i, ++entry)
if (entry->first == key)
return entry->second;
return nullptr;
}
void clear() { std::memset(table, 0, sizeof(table)); }
void insert(const std::vector& pieces);
};
HashTable WDLHash;
class TBFile : public std::ifstream {
std::string fname;
public:
// Open the file with the given name found among the TBPaths directories
// where the .rtbw and .rtbz files can be found. Multiple directories are
// separated by ";" on Windows and by ":" on Unix-based operating systems.
//
// Example:
// C:\tb\wdl345;C:\tb\wdl6;D:\tb\dtz345;D:\tb\dtz6
TBFile(const std::string& f) {
#ifndef _WIN32
const char SepChar = ':';
#else
const char SepChar = ';';
#endif
std::stringstream ss(TBPaths);
std::string path;
while (std::getline(ss, path, SepChar)) {
fname = path + "/" + f;
std::ifstream::open(fname);
if (is_open())
return;
}
}
// Memory map the file and check it. File should be already open and
// will be closed after mapping.
uint8_t* map(void** baseAddress, uint64_t* mapping, const uint8_t TB_MAGIC[]) {
if (!is_open()) {
std::cerr << "Could not find " << fname << std::endl;
*baseAddress = nullptr;
return nullptr;
}
close();
#ifndef _WIN32
struct stat statbuf;
int fd = ::open(fname.c_str(), O_RDONLY);
fstat(fd, &statbuf);
*mapping = statbuf.st_size;
*baseAddress = mmap(nullptr, statbuf.st_size, PROT_READ, MAP_SHARED, fd, 0);
::close(fd);
if (*baseAddress == MAP_FAILED) {
std::cerr << "Could not mmap() " << fname << std::endl;
exit(1);
}
#else
HANDLE fd = CreateFile(fname.c_str(), GENERIC_READ, FILE_SHARE_READ, nullptr,
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr);
DWORD size_high;
DWORD size_low = GetFileSize(fd, &size_high);
HANDLE mmap = CreateFileMapping(fd, nullptr, PAGE_READONLY, size_high, size_low, nullptr);
CloseHandle(fd);
if (!mmap) {
std::cerr << "CreateFileMapping() failed" << std::endl;
exit(1);
}
*mapping = (uint64_t)mmap;
*baseAddress = MapViewOfFile(mmap, FILE_MAP_READ, 0, 0, 0);
if (!*baseAddress) {
std::cerr << "MapViewOfFile() failed, name = " << fname
<< ", error = " << GetLastError() << std::endl;
exit(1);
}
#endif
uint8_t* data = (uint8_t*)*baseAddress;
if ( *data++ != TB_MAGIC[0]
|| *data++ != TB_MAGIC[1]
|| *data++ != TB_MAGIC[2]
|| *data++ != TB_MAGIC[3]) {
std::cerr << "Corrupted table in file " << fname << std::endl;
unmap(*baseAddress, *mapping);
*baseAddress = nullptr;
return nullptr;
}
return data;
}
static void unmap(void* baseAddress, uint64_t mapping) {
#ifndef _WIN32
munmap(baseAddress, mapping);
#else
UnmapViewOfFile(baseAddress);
CloseHandle((HANDLE)mapping);
#endif
}
};
WDLEntry::WDLEntry(const Position& pos, Key keys[])
{
memset(this, 0, sizeof(WDLEntry));
key = keys[WHITE];
key2 = keys[BLACK];
pieceCount = popcount(pos.pieces());
hasPawns = pos.pieces(PAWN);
for (Color c = WHITE; c <= BLACK; ++c)
for (PieceType pt = PAWN; pt < KING; ++pt)
if (popcount(pos.pieces(c, pt)) == 1)
hasUniquePieces = true;
if (hasPawns) {
// Set the leading color. In case both sides have pawns the leading color
// is the side with less pawns because this leads to better compression.
bool c = !pos.count(BLACK)
|| ( pos.count(WHITE)
&& pos.count(BLACK) >= pos.count(WHITE));
pawn.pawnCount[0] = pos.count(c ? WHITE : BLACK);
pawn.pawnCount[1] = pos.count(c ? BLACK : WHITE);
}
}
WDLEntry::~WDLEntry()
{
if (baseAddress)
TBFile::unmap(baseAddress, mapping);
for (int i = 0; i < 2; ++i)
if (hasPawns)
for (File f = FILE_A; f <= FILE_D; ++f)
delete pawn.file[i][f].precomp;
else
delete piece[i].precomp;
}
DTZEntry::DTZEntry(const WDLEntry& wdl)
{
memset(this, 0, sizeof(DTZEntry));
key = wdl.key;
key2 = wdl.key2;
pieceCount = wdl.pieceCount;
hasPawns = wdl.hasPawns;
hasUniquePieces = wdl.hasUniquePieces;
if (hasPawns) {
pawn.pawnCount[0] = wdl.pawn.pawnCount[0];
pawn.pawnCount[1] = wdl.pawn.pawnCount[1];
}
}
DTZEntry::~DTZEntry()
{
if (baseAddress)
TBFile::unmap(baseAddress, mapping);
if (hasPawns)
for (File f = FILE_A; f <= FILE_D; ++f)
delete pawn.file[f].precomp;
else
delete piece.precomp;
}
// Given a position return a string of the form KQPvKRP, where KQP represents
// the white pieces if mirror == false and the black pieces if mirror == true.
std::string pos_code(const Position& pos, bool mirror = false)
{
std::string w, b;
for (PieceType pt = KING; pt >= PAWN; --pt) {
w += std::string(popcount(pos.pieces(WHITE, pt)), PieceToChar[pt]);
b += std::string(popcount(pos.pieces(BLACK, pt)), PieceToChar[pt]);
}
return mirror ? b + 'v' + w : w + 'v' + b;
}
void HashTable::insert(const std::vector& pieces)
{
StateInfo st;
Position pos;
std::string code;
for (PieceType pt : pieces)
code += PieceToChar[pt];
TBFile file(pos_code(pos.set(code, WHITE, &st)) + ".rtbw");
if (!file.is_open())
return;
file.close();
MaxCardinality = std::max(pieces.size(), MaxCardinality);
Key keys[] = { pos.set(code, WHITE, &st).material_key(),
pos.set(code, BLACK, &st).material_key() };
WDLTable.push_back(WDLEntry(pos.set(code, WHITE, &st), keys));
insert(keys[WHITE], &WDLTable.back());
insert(keys[BLACK], &WDLTable.back());
}
// TB are compressed with canonical Huffman code. The compressed data is divided into
// blocks of size d->sizeofBlock, and each block stores a variable number of symbols.
// Each symbol represents either a WDL or (remapped) DTZ value, or a pair of other symbols
// (recursively). If you keep expanding the symbols in a block, you end up with up to 65536
// WDL or DTZ values. Each symbol represents up to 256 values and will correspond after
// Huffman coding to at least 1 bit. So a block of 32 bytes corresponds to at most
// 32 x 8 x 256 = 65536 values. This maximum is only reached for tables that consist mostly
// of draws or mostly of wins, but such tables are actually quite common. In principle, the
// blocks in WDL tables are 64 bytes long (and will be aligned on cache lines). But for
// mostly-draw or mostly-win tables this can leave many 64-byte blocks only half-filled, so
// in such cases blocks are 32 bytes long. The blocks of DTZ tables are up to 1024 bytes long.
// The generator picks the size that leads to the smallest table. The "book" of symbols and
// Huffman codes is the same for all blocks in the table (a non-symmetric pawnless TB file
// will have one table for wtm and one for btm, a TB file with pawns will have tables per
// file a,b,c,d).
int decompress_pairs(PairsData* d, uint64_t idx)
{
// Special case where all table positions store the same value
if (d->flags & TBFlag::SingleValue)
return d->minSymLen;
// First we need to locate the right block that stores the value at index "idx".
// Because each block n stores blockLength[n] + 1 values, the index i of the block
// that contains the value at position idx is:
//
// for (i = -1, sum = 0; sum <= idx; i++)
// sum += blockLength[i + 1] + 1;
//
// This can be slow, so we use SparseIndex[] populated with a set of SparseEntry that
// point to known indices into blockLength[]. Namely SparseIndex[k] is a SparseEntry
// that stores the blockLength[] index and the offset within that block of the value
// with index N(k), where:
//
// N(k) = k * d->span + d->span / 2 (1)
// First step is to get the 'k' of the N(k) nearest to our idx, using defintion (1)
uint32_t k = idx / d->span;
// Then we read the corresponding SparseIndex[] entry
uint32_t block = number(&d->sparseIndex[k].block);
int idxOffset = number(&d->sparseIndex[k].offset);
// Now compute the difference idx - N(k). From defintion of k we know that
//
// idx = k * d->span + idx % d->span (2)
//
// So from (1) and (2) we can compute idx - N(K):
int diff = idx % d->span - d->span / 2;
// Sum to idxOffset to find the offset corresponding to our idx
idxOffset += diff;
// Move to previous/next block, until we reach the correct block that contains idx,
// that is when 0 <= idxOffset <= d->blockLength[block]
while (idxOffset < 0)
idxOffset += d->blockLength[--block] + 1;
while (idxOffset > d->blockLength[block])
idxOffset -= d->blockLength[block++] + 1;
// Finally, we find the start address of our block of canonical Huffman coded symbols
uint32_t* ptr = (uint32_t*)(d->data + block * d->sizeofBlock);
// Read the first 64 bits in our block. We still don't know the symbol length but
// we know is at the beginning of this 64 bits sequence.
uint64_t buf64 = number(ptr); ptr += 2;
int buf64Size = 64;
Sym sym;
while (true) {
int len = 0; // This is the symbol length - d->min_sym_len
// Now get the symbol length. For any symbol s64 of length l right-padded
// to 64 bits holds d->base64[l-1] >= s64 >= d->base64[l] so we can find
// the symbol length iterating through base64[].
while (buf64 < d->base64[len])
++len;
// Symbols of same length are mapped to consecutive numbers, so we can compute
// the offset of our symbol of length len, stored at the beginning of buf64.
sym = (buf64 - d->base64[len]) >> (64 - len - d->minSymLen);
// Now add the value of the lowest symbol of length len to get our symbol
sym += number(&d->lowestSym[len]);
// If our offset is within the number of values represented by symbol sym
// we are done...
if (idxOffset < (int)d->symlen[sym] + 1)
break;
// ...otherwise update the offset and continue to iterate
idxOffset -= d->symlen[sym] + 1;
len += d->minSymLen; // Get the real length
buf64 <<= len; // Consume the just processed symbol
buf64Size -= len;
if (buf64Size <= 32) { // Refill the buffer
buf64Size += 32;
buf64 |= (uint64_t)number(ptr++) << (64 - buf64Size);
}
}
// Ok, now we have our symbol that stores d->symlen[sym] values, the score we are
// looking for is among those values. We binary-search for it expanding the symbol
// in a pair of left and right child symbols and continue recursively until we are
// at a symbol of length 1 (symlen[sym] + 1 == 1), which is the value we need.
while (d->symlen[sym]) {
// Each btree[] entry expands in a left-handed and right-handed pair of
// additional symbols. We keep expanding recursively picking the symbol
// that contains our idxOffset.
Sym sl = d->btree[sym].get();
if (idxOffset < (int)d->symlen[sl] + 1)
sym = sl;
else {
idxOffset -= d->symlen[sl] + 1;
sym = d->btree[sym].get();
}
}
return d->btree[sym].get();
}
template
bool check_dtz_stm(Entry*, File, int) { return true; }
template<>
bool check_dtz_stm(DTZEntry* entry, File f, int stm)
{
int flags = entry->hasPawns ? entry->pawn.file[f].precomp->flags
: entry->piece.precomp->flags;
return (flags & TBFlag::STM) == stm
|| ((entry->key == entry->key2) && !entry->hasPawns);
}
// DTZ scores are sorted by frequency of occurrence and then assigned the
// values 0, 1, 2, ... in order of decreasing frequency. This is done for each
// of the four WDLScore values. The mapping information necessary to reconstruct
// the original values is stored in the TB file and read during map[] init.
template
int map_score(Entry*, File, int value, WDLScore) { return value - 2; }
template<>
int map_score(DTZEntry* entry, File f, int value, WDLScore wdl)
{
const int WDLMap[] = { 1, 3, 0, 2, 0 };
int flags = entry->hasPawns ? entry->pawn.file[f].precomp->flags
: entry->piece.precomp->flags;
uint8_t* map = entry->hasPawns ? entry->pawn.map
: entry->piece.map;
uint16_t* idx = entry->hasPawns ? entry->pawn.file[f].map_idx
: entry->piece.map_idx;
if (flags & TBFlag::Mapped)
value = map[idx[WDLMap[wdl + 2]] + value];
// DTZ tables store distance to zero in number of moves but
// under some conditions we want to return plies, so we have
// to multiply score by 2.
if ( (wdl == WDLWin && !(flags & TBFlag::WinPlies))
|| (wdl == WDLLoss && !(flags & TBFlag::LossPlies))
|| wdl == WDLCursedWin
|| wdl == WDLCursedLoss)
value *= 2;
return value;
}
// Compute a unique index out of a position and use it to probe the TB file. To
// encode k pieces of same type and color, first sort the pieces by square in
// ascending order s1 <= s2 <= ... <= sk then compute the unique index as:
//
// idx = Binomial[1][s1] + Binomial[2][s2] + ... + Binomial[k][sk]
//
template
uint64_t probe_table(const Position& pos, Entry* entry, WDLScore wdl = WDLDraw, int* success = nullptr)
{
Square squares[TBPIECES];
Piece pieces[TBPIECES];
uint64_t idx;
int stm, next = 0, flipColor = 0, flipSquares = 0, size = 0, leadPawnsCnt = 0;
PairsData* precomp;
Bitboard b, leadPawns = 0;
File tbFile = FILE_A;
// A given TB entry like KRK has associated two material keys: KRvk and Kvkr.
// If both sides have the same pieces we have a symmetric material and the
// keys are equal. The stored TB entry is calculated always with WHITE side
// to move and if the position to lookup has instead BLACK to move, we need
// to switch color and flip the squares before the lookup:
if (entry->key == entry->key2) {
flipColor = pos.side_to_move() * 8; // Switch color
flipSquares = pos.side_to_move() * 070; // Vertical flip: SQ_A8 -> SQ_A1
stm = WHITE;
}
// In case of sides with different pieces, if the position to look up has a
// different key form the stored one (entry->key), then we have to switch
// color and flip the squares:
else {
flipColor = (pos.material_key() != entry->key) * 8;
flipSquares = (pos.material_key() != entry->key) * 070;
// TB entry is stored with WHITE as stronger side, so side to move has
// to be flipped accordingly, for example Kvkr (white to move) maps to
// KRvk (black to move).
stm = (pos.material_key() != entry->key) ^ pos.side_to_move();
}
// For pawns, TB files store separate tables according if leading pawn is on
// file a, b, c or d after reordering. To determine which of the 4 tables
// must be probed we pick the file of the pawn with maximum MapPawns[].
if (entry->hasPawns) {
Piece pc = Piece(item(entry->pawn, 0, 0).precomp->pieces[0] ^ flipColor);
assert(type_of(pc) == PAWN);
leadPawns = b = pos.pieces(color_of(pc), PAWN);
while (b)
squares[size++] = pop_lsb(&b) ^ flipSquares;
leadPawnsCnt = size;
std::swap(squares[0], *std::max_element(squares, squares + leadPawnsCnt, pawns_comp));
tbFile = file_of(squares[0]);
if (tbFile > FILE_D)
tbFile = file_of(squares[0] ^ 7); // Horizontal flip: SQ_H1 -> SQ_A1
precomp = item(entry->pawn, stm, tbFile).precomp;
} else
precomp = item(entry->piece, stm, 0).precomp;
// DTZ tables are one-sided, i.e. they store positions only for white to
// move or only for black to move, so check for side to move to be stm,
// early exit otherwise.
if ( std::is_same::value
&& !check_dtz_stm(entry, tbFile, stm)) {
*success = -1;
return 0;
}
// Now we are ready to get all the position pieces (but the lead pawns) and
// directly map them to the correct color and square.
b = pos.pieces() ^ leadPawns;
for ( ; b; ++size) {
Square sq = pop_lsb(&b);
squares[size] = sq ^ flipSquares;
pieces[size] = Piece(pos.piece_on(sq) ^ flipColor);
}
// Then we reorder the pieces to have the same sequence as the one stored
// in precomp->pieces[i]. The sequence ensures the best compression.
for (int i = leadPawnsCnt; i < size; ++i)
for (int j = i; j < size; ++j)
if (precomp->pieces[i] == pieces[j])
{
std::swap(pieces[i], pieces[j]);
std::swap(squares[i], squares[j]);
break;
}
// Now we map again the squares so that the square of the lead piece is in
// the triangle A1-D1-D4. We take care that the condition on the diagonal
// flip is checked after horizontal and vertical flips are already done.
if (file_of(squares[0]) > FILE_D)
for (int i = 0; i < size; ++i)
squares[i] ^= 7; // Horizontal flip: SQ_H1 -> SQ_A1
// Encode leading pawns starting with the one with minimum MapPawns[] and
// proceeding in ascending order.
if (entry->hasPawns) {
idx = LeadPawnIdx[leadPawnsCnt - 1][squares[0]];
std::sort(squares + 1, squares + leadPawnsCnt, pawns_comp);
for (int i = 1; i < leadPawnsCnt; ++i)
idx += Binomial[i][MapPawns[squares[i]]];
next = leadPawnsCnt;
goto encode_remaining; // With pawns we have finished special treatments
}
if (rank_of(squares[0]) > RANK_4)
for (int i = 0; i < size; ++i)
squares[i] ^= 070; // Vertical flip: SQ_A8 -> SQ_A1
// Look for the first piece not on the A1-D4 diagonal and ensure it is
// mapped below the diagonal.
for (int i = 0; i < size; ++i) {
if (!off_A1H8(squares[i]))
continue;
if (off_A1H8(squares[i]) > 0 && i < (entry->hasUniquePieces ? 3 : 2))
for (int j = i; j < size; ++j) // A1-H8 diagonal flip: SQ_A3 -> SQ_C3
squares[j] = Square(((squares[j] >> 3) | (squares[j] << 3)) & 63);
break;
}
// The encoding function maps a position to its index into the table.
// Suppose we have KRvK. Let's say the pieces are on square numbers wK, wR
// and bK (each 0...63). The simplest way to map this position to an index
// is like this:
//
// index = wK * 64*64 + wR * 64 + bK;
//
// But this way the TB is going to have 64*64*64 = 262144 positions, with
// lots of positions being equivalent (because they are mirrors of each
// other) and lots of positions being invalid (two pieces on one square,
// adjacent kings, etc.).
// Usually the first step is to take the wK and bK together. There are just
// 462 ways legal and not-mirrored ways to place the wK and bK on the board.
// Once we have placed the wK and bK, there are 62 squares left for the wR
// Mapping its square from 0..63 to 0..61 can be done like:
//
// wR -= (wR > wK) + (wR > bK);
//
// In words: if wR "comes later" than wK, we deduct 1, and the same if wR
// "comes later" than bK. In case of two same pieces like KRRvK we want to
// place the two Rs "together". If we have 62 squares left, we can place two
// Rs "together" in 62*61/2 ways.
// In case we have at least 3 unique pieces (inlcuded kings) we encode them
// together.
if (entry->hasUniquePieces) {
int adjust1 = squares[1] > squares[0];
int adjust2 = (squares[2] > squares[0]) + (squares[2] > squares[1]);
// MapA1D1D4[] maps the b1-d1-d3 triangle to 0...5. There are 63 squares
// for second piece and and 62 (mapped to 0...61) for the third.
if (off_A1H8(squares[0]))
idx = MapA1D1D4[squares[0]] * 63 * 62
+ (squares[1] - adjust1) * 62
+ squares[2] - adjust2;
// First piece is on diagonal: map to 6, rank_of() maps a1-d4 diagonal
// to 0...3 and MapB1H1H7[] maps the b1-h1-h7 triangle to 0..27
else if (off_A1H8(squares[1]))
idx = 6 * 63 * 62
+ rank_of(squares[0]) * 28 * 62
+ MapB1H1H7[squares[1]] * 62
+ squares[2] - adjust2;
// First 2 pieces are on the diagonal a1-h8
else if (off_A1H8(squares[2]))
idx = 6 * 63 * 62 + 4 * 28 * 62
+ rank_of(squares[0]) * 7 * 28
+ (rank_of(squares[1]) - adjust1) * 28
+ MapB1H1H7[squares[2]];
// All 3 pieces on the diagonal a1-h8
else
idx = 6 * 63 * 62 + 4 * 28 * 62 + 4 * 7 * 28
+ rank_of(squares[0]) * 7 * 6
+ (rank_of(squares[1]) - adjust1) * 6
+ (rank_of(squares[2]) - adjust2);
next = 3; // Continue encoding form piece[3]
} else {
// We don't have at least 3 unique pieces, like in KRRvKBB, just map
// the kings.
idx = MapKK[MapA1D1D4[squares[0]]][squares[1]];
next = 2;
}
encode_remaining:
idx *= precomp->groupSize[0];
// Reorder remainig pawns then pieces according to square, in ascending order
int remainingPawns = entry->hasPawns ? entry->pawn.pawnCount[1] : 0;
while (next < size) {
int end = next + (remainingPawns ? remainingPawns : precomp->groupLen[next]);
std::sort(squares + next, squares + end);
uint64_t s = 0;
// Map squares to lower index if "come later" than previous (as done earlier for pieces)
for (int i = next; i < end; ++i) {
int adjust = 0;
for (int j = 0; j < next; ++j)
adjust += squares[i] > squares[j];
s += Binomial[i - next + 1][squares[i] - adjust - (remainingPawns ? 8 : 0)];
}
remainingPawns = 0;
idx += s * precomp->groupSize[next];
next = end;
}
// Now that we have the index, decompress the pair and get the score
return map_score(entry, tbFile, decompress_pairs(precomp, idx), wdl);
}
// Group together pieces that will be encoded together. For instance in
// KRKN the encoder will default on '111', so the groups will be (3,1)
// and for easy of parsing the resulting groupLen[] will be (3, 0, 0, 1).
// In case of pawns, they will be encoded as first, starting with the
// leading ones, then the remaining pieces. Then calculate the size, in
// number of possible combinations, needed to store them in the TB file.
template
uint64_t set_groups(T& e, PairsData* d, int order[], File f)
{
for (int i = 0; i < e.pieceCount; ++i) // Broken MSVC zero-init
d->groupLen[i] = 0;
// Set leading pawns or pieces
int len = d->groupLen[0] = e.hasPawns ? e.pawn.pawnCount[0]
: e.hasUniquePieces ? 3 : 2;
// Set remaining pawns, if any
if (e.hasPawns)
len += d->groupLen[len] = e.pawn.pawnCount[1];
// Set remaining pieces. If 2 pieces are equal, they are grouped together.
// They are ensured to be consecutive in pieces[].
for (int k = len ; k < e.pieceCount; k += d->groupLen[k])
for (int j = k; j < e.pieceCount && d->pieces[j] == d->pieces[k]; ++j)
++d->groupLen[k];
// Now calculate the size needed for each group, according to the order
// given by order[]. In general the order is a per-table value and could
// not follow the canonical leading pawns -> remainig pawns -> pieces.
int freeSquares = 64 - len;
uint64_t size = 1;
for (int k = 0; len < e.pieceCount || k == order[0] || k == order[1]; ++k)
if (k == order[0]) // Leading pawns or pieces
{
d->groupSize[0] = size;
size *= e.hasPawns ? LeadPawnsGroupSize[d->groupLen[0] - 1][f]
: e.hasUniquePieces ? 31332 : 462;
}
else if (k == order[1]) // Remaining pawns
{
d->groupSize[d->groupLen[0]] = size;
size *= Binomial[d->groupLen[d->groupLen[0]]][48 - d->groupLen[0]];
}
else // Remainig pieces
{
d->groupSize[len] = size;
size *= Binomial[d->groupLen[len]][freeSquares];
freeSquares -= d->groupLen[len];
len += d->groupLen[len];
}
return size;
}
uint8_t set_symlen(PairsData* d, Sym s, std::vector& visited)
{
visited[s] = true; // We can set it now because tree is acyclic
Sym sr = d->btree[s].get();
if (sr == 0xFFF)
return 0;
Sym sl = d->btree[s].get();
if (!visited[sl])
d->symlen[sl] = set_symlen(d, sl, visited);
if (!visited[sr])
d->symlen[sr] = set_symlen(d, sr, visited);
return d->symlen[sl] + d->symlen[sr] + 1;
}
uint8_t* set_sizes(PairsData* d, uint8_t* data, uint64_t tb_size)
{
d->flags = *data++;
if (d->flags & TBFlag::SingleValue) {
d->blocksNum = d->span =
d->blockLengthSize = d->sparseIndexSize = 0; // Broken MSVC zero-init
d->minSymLen = *data++; // Here we store the single value
return data;
}
d->sizeofBlock = 1ULL << *data++;
d->span = 1ULL << *data++;
d->sparseIndexSize = (tb_size + d->span - 1) / d->span; // Round up
int padding = number(data++);
d->blocksNum = number(data); data += sizeof(uint32_t);
d->blockLengthSize = d->blocksNum + padding; // Padded to ensure SparseIndex[]
// does not point out of range.
d->maxSymLen = *data++;
d->minSymLen = *data++;
d->lowestSym = (Sym*)data;
d->base64.resize(d->maxSymLen - d->minSymLen + 1);
// The canonical code is ordered such that longer symbols (in terms of
// the number of bits of their Huffman code) have lower numeric value,
// so that d->lowestSym[i] >= d->lowestSym[i+1] (when read as LittleEndian).
// Starting from this we compute a base64[] table indexed by symbol length
// and containing 64 bit values so that d->base64[i] >= d->base64[i+1]
for (int i = d->base64.size() - 2; i >= 0; --i) {
d->base64[i] = (d->base64[i + 1] + number(&d->lowestSym[i])
- number(&d->lowestSym[i + 1])) / 2;
assert(d->base64[i] * 2 >= d->base64[i+1]);
}
// Now left-shift by an amount so that d->base64[i] gets shifted 1 bit more
// than d->base64[i+1] and given the above assert condition, we ensure that
// d->base64[i] >= d->base64[i+1]. Moreover for any symbol s64 of length i
// and right-padded to 64 bits holds d->base64[i-1] >= s64 >= d->base64[i].
for (size_t i = 0; i < d->base64.size(); ++i)
d->base64[i] <<= 64 - i - d->minSymLen; // Right-padding to 64 bits
data += d->base64.size() * sizeof(Sym);
d->symlen.resize(number(data)); data += sizeof(uint16_t);
d->btree = (LR*)data;
std::vector visited(d->symlen.size());
for (Sym sym = 0; sym < d->symlen.size(); ++sym)
if (!visited[sym])
d->symlen[sym] = set_symlen(d, sym, visited);
return data + d->symlen.size() * sizeof(LR) + (d->symlen.size() & 1);
}
template
uint8_t* set_dtz_map(WDLEntry&, T&, uint8_t*, File) { return nullptr; }
template
uint8_t* set_dtz_map(DTZEntry&, T& p, uint8_t* data, File maxFile)
{
p.map = data;
for (File f = FILE_A; f <= maxFile; ++f) {
if (item(p, 0, f).precomp->flags & TBFlag::Mapped)
for (int i = 0; i < 4; ++i) { // Sequence like 3,x,x,x,1,x,0,2,x,x
item(p, 0, f).map_idx[i] = (uint16_t)(data - p.map + 1);
data += *data + 1;
}
}
return data += (uintptr_t)data & 1; // Word alignment
}
template
void do_init(Entry& e, T& p, uint8_t* data)
{
const bool IsWDL = std::is_same::value;
PairsData* d;
uint64_t tb_size[8];
enum { Split = 1, HasPawns = 2 };
uint8_t flags = *data++;
assert(e.hasPawns == !!(flags & HasPawns));
assert((e.key != e.key2) == !!(flags & Split));
const int Sides = IsWDL && (e.key != e.key2) ? 2 : 1;
const File MaxFile = e.hasPawns ? FILE_D : FILE_A;
bool pp = e.hasPawns && e.pawn.pawnCount[1]; // Pawns on both sides
assert(!pp || e.pawn.pawnCount[0]);
for (File f = FILE_A; f <= MaxFile; ++f) {
for (int i = 0; i < Sides; i++)
item(p, i, f).precomp = new PairsData();
int order[][2] = { { *data & 0xF, pp ? *(data + 1) & 0xF : 0xF },
{ *data >> 4, pp ? *(data + 1) >> 4 : 0xF } };
data += 1 + pp;
for (int k = 0; k < e.pieceCount; ++k, ++data)
for (int i = 0; i < Sides; i++)
item(p, i, f).precomp->pieces[k] = Piece(i ? *data >> 4 : *data & 0xF);
for (int i = 0; i < Sides; ++i)
tb_size[Sides * f + i] = set_groups(e, item(p, i, f).precomp, order[i], f);
}
data += (uintptr_t)data & 1; // Word alignment
for (File f = FILE_A; f <= MaxFile; ++f)
for (int i = 0; i < Sides; i++)
data = set_sizes(item(p, i, f).precomp, data, tb_size[Sides * f + i]);
if (!IsWDL)
data = set_dtz_map(e, p, data, MaxFile);
for (File f = FILE_A; f <= MaxFile; ++f)
for (int i = 0; i < Sides; i++) {
(d = item(p, i, f).precomp)->sparseIndex = (SparseEntry*)data;
data += d->sparseIndexSize * sizeof(SparseEntry) ;
}
for (File f = FILE_A; f <= MaxFile; ++f)
for (int i = 0; i < Sides; i++) {
(d = item(p, i, f).precomp)->blockLength = (uint16_t*)data;
data += d->blockLengthSize * sizeof(uint16_t);
}
for (File f = FILE_A; f <= MaxFile; ++f)
for (int i = 0; i < Sides; i++) {
data = (uint8_t*)(((uintptr_t)data + 0x3F) & ~0x3F); // 64 byte alignment
(d = item(p, i, f).precomp)->data = data;
data += d->blocksNum * d->sizeofBlock;
}
}
template
bool init(Entry& e, const std::string& fname)
{
const uint8_t* MAGIC = std::is_same::value ? DTZ_MAGIC : WDL_MAGIC;
uint8_t* data = TBFile(fname).map(&e.baseAddress, &e.mapping, MAGIC);
if (!data)
return false;
e.hasPawns ? do_init(e, e.pawn, data) : do_init(e, e.piece, data);
return true;
}
WDLScore probe_wdl_table(Position& pos, int* success)
{
Key key = pos.material_key();
if (!(pos.pieces() ^ pos.pieces(KING)))
return WDLDraw; // KvK
WDLEntry* entry = WDLHash[key];
if (!entry) {
*success = 0;
return WDLDraw;
}
// Init table at first access attempt. Special care to avoid
// one thread reads ready == 1 while the other is still in
// init(), this could happen due to compiler reordering.
if (!entry->ready.load(std::memory_order_acquire)) {
std::unique_lock lk(TB_mutex);
if (!entry->ready.load(std::memory_order_relaxed)) {
std::string fname = pos_code(pos, entry->key != key) + ".rtbw";
if (!init(*entry, fname)) {
// Was ptr2->key = 0ULL; Just leave !ptr->ready condition
*success = 0;
return WDLDraw;
}
entry->ready.store(1, std::memory_order_release);
}
}
return (WDLScore)probe_table(pos, entry);
}
int probe_dtz_table(const Position& pos, WDLScore wdl, int* success)
{
Key key = pos.material_key();
if (DTZTable.front().key != key && DTZTable.front().key2 != key) {
// Enforce "Most Recently Used" (MRU) order for DTZ list
for (auto it = DTZTable.begin(); it != DTZTable.end(); ++it)
if (it->key == key || it->key2 == key) {
// Move to front without deleting the element
DTZTable.splice(DTZTable.begin(), DTZTable, it);
break;
}
// If still not found, add a new one
if (DTZTable.front().key != key && DTZTable.front().key2 != key) {
WDLEntry* wdlEntry = WDLHash[key];
if (!wdlEntry) {
*success = 0;
return 0;
}
DTZTable.push_front(DTZEntry(*wdlEntry));
std::string fname = pos_code(pos, wdlEntry->key != key) + ".rtbz";
if (!init(DTZTable.front(), fname)) {
// In case file is not found init() fails, but we leave
// the entry so to avoid rechecking at every probe (same
// functionality as WDL case).
// FIXME: This is different form original functionality!
/* DTZTable.pop_front(); */
*success = 0;
return 0;
}
// Keep list size within 64 entries
// FIXME remove it when we will know what we are doing
if (DTZTable.size() > 64)
DTZTable.pop_back();
}
}
if (!DTZTable.front().baseAddress) {
*success = 0;
return 0;
}
return probe_table(pos, &DTZTable.front(), wdl, success);
}
// Add underpromotion captures to list of captures.
ExtMove *add_underprom_caps(Position& pos, ExtMove *stack, ExtMove *end)
{
ExtMove *moves, *extra = end;
for (moves = stack; moves < end; ++moves) {
Move move = moves->move;
if (type_of(move) == PROMOTION && !pos.empty(to_sq(move))) {
(*extra++).move = (Move)(move - (1 << 12));
(*extra++).move = (Move)(move - (2 << 12));
(*extra++).move = (Move)(move - (3 << 12));
}
}
return extra;
}
WDLScore probe_ab(Position& pos, WDLScore alpha, WDLScore beta, int *success)
{
WDLScore value;
ExtMove stack[64];
ExtMove *moves, *end;
StateInfo st;
// Generate (at least) all legal non-ep captures including (under)promotions.
// It is OK to generate more, as long as they are filtered out below.
if (!pos.checkers()) {
end = generate(pos, stack);
// Since underpromotion captures are not included, we need to add them.
end = add_underprom_caps(pos, stack, end);
} else
end = generate(pos, stack);
CheckInfo ci(pos);
for (moves = stack; moves < end; ++moves) {
Move capture = moves->move;
if ( !pos.capture(capture)
|| type_of(capture) == ENPASSANT
|| !pos.legal(capture, ci.pinned))
continue;
pos.do_move(capture, st, pos.gives_check(capture, ci));
value = -probe_ab(pos, -beta, -alpha, success);
pos.undo_move(capture);
if (*success == 0)
return WDLDraw;
if (value > alpha) {
if (value >= beta) {
*success = 2;
return value;
}
alpha = value;
}
}
value = probe_wdl_table(pos, success); // FIXME why this is not at the beginning?
if (*success == 0)
return WDLDraw;
if (alpha >= value) {
*success = 1 + (alpha > 0);
return alpha;
} else {
*success = 1;
return value;
}
}
int probe_dtz(Position& pos, int *success);
// This routine treats a position with en passant captures as one without.
int probe_dtz_no_ep(Position& pos, int *success)
{
int dtz;
WDLScore wdl = probe_ab(pos, WDLLoss, WDLWin, success);
if (!*success)
return 0;
if (wdl == WDLDraw)
return 0;
if (*success == 2)
return wdl == WDLWin ? 1 : 101;
ExtMove stack[MAX_MOVES];
ExtMove *moves, *end = nullptr;
StateInfo st;
CheckInfo ci(pos);
if (wdl > 0) {
// Generate at least all legal non-capturing pawn moves
// including non-capturing promotions.
if (!pos.checkers())
end = generate(pos, stack);
else
end = generate(pos, stack);
for (moves = stack; moves < end; ++moves) {
Move move = moves->move;
if ( type_of(pos.moved_piece(move)) != PAWN
|| pos.capture(move)
|| !pos.legal(move, ci.pinned))
continue;
pos.do_move(move, st, pos.gives_check(move, ci));
WDLScore v = -probe_ab(pos, WDLLoss, -wdl + WDLCursedWin, success);
pos.undo_move(move);
if (*success == 0) return 0;
if (v == wdl)
return v == WDLWin ? 1 : 101;
}
}
dtz = 1 + probe_dtz_table(pos, wdl, success);
if (*success >= 0) {
if (wdl & 1) dtz += 100;
return wdl >= 0 ? dtz : -dtz;
}
if (wdl > 0) {
int best = 0xffff;
for (moves = stack; moves < end; ++moves) {
Move move = moves->move;
if (pos.capture(move) || type_of(pos.moved_piece(move)) == PAWN
|| !pos.legal(move, ci.pinned))
continue;
pos.do_move(move, st, pos.gives_check(move, ci));
int v = -probe_dtz(pos, success);
pos.undo_move(move);
if (*success == 0)
return 0;
if (v > 0 && v + 1 < best)
best = v + 1;
}
return best;
} else {
int best = -1;
if (!pos.checkers())
end = generate(pos, stack);
else
end = generate(pos, stack);
for (moves = stack; moves < end; ++moves) {
int v;
Move move = moves->move;
if (!pos.legal(move, ci.pinned))
continue;
pos.do_move(move, st, pos.gives_check(move, ci));
if (st.rule50 == 0) {
if (wdl == -2) v = -1;
else {
v = probe_ab(pos, WDLCursedWin, WDLWin, success);
v = (v == 2) ? 0 : -101;
}
} else {
v = -probe_dtz(pos, success) - 1;
}
pos.undo_move(move);
if (*success == 0)
return 0;
if (v < best)
best = v;
}
return best;
}
}
// Probe the DTZ table for a particular position.
// If *success != 0, the probe was successful.
// The return value is from the point of view of the side to move:
// n < -100 : loss, but draw under 50-move rule
// -100 <= n < -1 : loss in n ply (assuming 50-move counter == 0)
// 0 : draw
// 1 < n <= 100 : win in n ply (assuming 50-move counter == 0)
// 100 < n : win, but draw under 50-move rule
//
// The return value n can be off by 1: a return value -n can mean a loss
// in n+1 ply and a return value +n can mean a win in n+1 ply. This
// cannot happen for tables with positions exactly on the "edge" of
// the 50-move rule.
//
// This implies that if dtz > 0 is returned, the position is certainly
// a win if dtz + 50-move-counter <= 99. Care must be taken that the engine
// picks moves that preserve dtz + 50-move-counter <= 99.
//
// If n = 100 immediately after a capture or pawn move, then the position
// is also certainly a win, and during the whole phase until the next
// capture or pawn move, the inequality to be preserved is
// dtz + 50-movecounter <= 100.
//
// In short, if a move is available resulting in dtz + 50-move-counter <= 99,
// then do not accept moves leading to dtz + 50-move-counter == 100.
//
int probe_dtz(Position& pos, int *success)
{
*success = 1;
int v = probe_dtz_no_ep(pos, success);
if (pos.ep_square() == SQ_NONE)
return v;
if (*success == 0)
return 0;
// Now handle en passant.
int v1 = -3;
ExtMove stack[MAX_MOVES];
ExtMove *moves, *end;
StateInfo st;
if (!pos.checkers())
end = generate(pos, stack);
else
end = generate(pos, stack);
CheckInfo ci(pos);
for (moves = stack; moves < end; ++moves) {
Move capture = moves->move;
if (type_of(capture) != ENPASSANT
|| !pos.legal(capture, ci.pinned))
continue;
pos.do_move(capture, st, pos.gives_check(capture, ci));
WDLScore v0 = -probe_ab(pos, WDLLoss, WDLWin, success);
pos.undo_move(capture);
if (*success == 0)
return 0;
if (v0 > v1) v1 = v0;
}
if (v1 > -3) {
v1 = wdl_to_dtz[v1 + 2];
if (v < -100) {
if (v1 >= 0)
v = v1;
} else if (v < 0) {
if (v1 >= 0 || v1 < -100)
v = v1;
} else if (v > 100) {
if (v1 > 0)
v = v1;
} else if (v > 0) {
if (v1 == 1)
v = v1;
} else if (v1 >= 0) {
v = v1;
} else {
for (moves = stack; moves < end; ++moves) {
Move move = moves->move;
if (type_of(move) == ENPASSANT) continue;
if (pos.legal(move, ci.pinned))
break;
}
if (moves == end && !pos.checkers()) {
end = generate(pos, end);
for (; moves < end; ++moves) {
Move move = moves->move;
if (pos.legal(move, ci.pinned))
break;
}
}
if (moves == end)
v = v1;
}
}
return v;
}
} // namespace
void Tablebases::init(const std::string& paths)
{
DTZTable.clear();
WDLTable.clear();
WDLHash.clear();
MaxCardinality = 0;
TBPaths = paths;
if (TBPaths.empty() || TBPaths == "")
return;
// Init MapB1H1H7[] that encodes a square below a1-h8 diagonal to 0..27
int code = 0;
for (Square s = SQ_A1; s <= SQ_H8; ++s)
if (off_A1H8(s) < 0)
MapB1H1H7[s] = code++;
// Init MapA1D1D4[] that encodes a square in the a1-d1-d4 triangle to 0..9
std::vector diagonal;
code = 0;
for (Square s = SQ_A1; s <= SQ_D4; ++s)
if (off_A1H8(s) < 0 && file_of(s) <= FILE_D)
MapA1D1D4[s] = code++;
else if (!off_A1H8(s) && file_of(s) <= FILE_D)
diagonal.push_back(s);
// Diagonal squares are encoded as last ones
for (auto s : diagonal)
MapA1D1D4[s] = code++;
// Init MapKK[] that encodes all the 461 possible legal positions of two
// kings where the first is in the a1-d1-d4 triangle. If the first king is
// on the a1-d4 diagonal, the other shall not to be above the a1-h8 diagonal.
std::vector> bothOnDiagonal;
code = 0;
for (int idx = 0; idx < 10; idx++)
for (Square s1 = SQ_A1; s1 <= SQ_D4; ++s1)
if (MapA1D1D4[s1] == idx && (idx || s1 == SQ_B1)) // SQ_B1 is mapped to 0
for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
if ((StepAttacksBB[KING][s1] | s1) & s2)
continue; // Illegal position
else if (!off_A1H8(s1) && off_A1H8(s2) > 0)
continue; // First on diagonal, second above
else if (!off_A1H8(s1) && !off_A1H8(s2))
bothOnDiagonal.push_back(std::make_pair(idx, s2));
else
MapKK[idx][s2] = code++;
// Legal positions with both kings on diagonal are encoded as last ones
for (auto p : bothOnDiagonal)
MapKK[p.first][p.second] = code++;
// Init Binomial[] with the Binomial Coefficents using Pascal rule. There
// are Binomial[k][n] ways to choose k elements from a set of n elements.
Binomial[0][0] = 1;
for (int n = 1; n < 64; n++) // Squares
for (int k = 0; k < 6 && k <= n; ++k) // Pieces
Binomial[k][n] = (k > 0 ? Binomial[k - 1][n - 1] : 0)
+ (k < n ? Binomial[k ][n - 1] : 0);
// MapPawns[s] encodes squares a2-h7 to 0..47. It is the number of possible
// available squares when the leading one is in 's'. Moreover the pawn with
// highest MapPawns[] is the leading pawn, the one nearest the edge and,
// among pawns with same file, the one with lowest rank.
int availableSquares = 47; // Available squares when lead pawn is in a2
// Init the tables for the encoding of leading pawns group: with 6-men TB we
// can have up to 4 leading pawns (KPPPPK).
for (int leadPawnsCnt = 1; leadPawnsCnt <= 4; ++leadPawnsCnt)
for (File f = FILE_A; f <= FILE_D; ++f)
{
// Restart the index at every file because TB table is splitted
// by file, so we can reuse the same index for different files.
int idx = 0;
// Sum all possible combinations for a given file, starting with
// the leading pawn on rank 2 and increasing the rank.
for (Rank r = RANK_2; r <= RANK_7; ++r)
{
Square sq = make_square(f, r);
// Compute MapPawns[] at first pass.
// If sq is the leading pawn square, any other pawn cannot be
// below or more toward the edge of sq. There are 47 available
// squares when sq = a2 and reduced by 2 for any rank increase
// due to mirroring: sq == a3 -> no a2, h2, so MapPawns[a3] = 45
if (leadPawnsCnt == 1)
{
MapPawns[sq] = availableSquares--;
MapPawns[sq ^ 7] = availableSquares--; // Horizontal flip
}
LeadPawnIdx[leadPawnsCnt - 1][sq] = idx;
idx += Binomial[leadPawnsCnt - 1][MapPawns[sq]];
}
// After a file is traversed, store the cumulated per-file index
LeadPawnsGroupSize[leadPawnsCnt - 1][f] = idx;
}
for (PieceType p1 = PAWN; p1 < KING; ++p1) {
WDLHash.insert({KING, p1, KING});
for (PieceType p2 = PAWN; p2 <= p1; ++p2) {
WDLHash.insert({KING, p1, p2, KING});
WDLHash.insert({KING, p1, KING, p2});
for (PieceType p3 = PAWN; p3 < KING; ++p3)
WDLHash.insert({KING, p1, p2, KING, p3});
for (PieceType p3 = PAWN; p3 <= p2; ++p3) {
WDLHash.insert({KING, p1, p2, p3, KING});
for (PieceType p4 = PAWN; p4 <= p3; ++p4)
WDLHash.insert({KING, p1, p2, p3, p4, KING});
for (PieceType p4 = PAWN; p4 < KING; ++p4)
WDLHash.insert({KING, p1, p2, p3, KING, p4});
}
for (PieceType p3 = PAWN; p3 <= p1; ++p3)
for (PieceType p4 = PAWN; p4 <= (p1 == p3 ? p2 : p3); ++p4)
WDLHash.insert({KING, p1, p2, KING, p3, p4});
}
}
std::cerr << "info string Found " << WDLTable.size() << " tablebases" << std::endl;
}
// Probe the WDL table for a particular position.
// If *success != 0, the probe was successful.
// The return value is from the point of view of the side to move:
// -2 : loss
// -1 : loss, but draw under 50-move rule
// 0 : draw
// 1 : win, but draw under 50-move rule
// 2 : win
WDLScore Tablebases::probe_wdl(Position& pos, int *success)
{
*success = 1;
WDLScore v = probe_ab(pos, WDLLoss, WDLWin, success);
// If en passant is not possible, we are done.
if (pos.ep_square() == SQ_NONE)
return v;
if (*success == 0)
return WDLDraw;
// Now handle en passant.
WDLScore v1 = WDLScore(-3); // FIXME use a proper enum value here
// Generate (at least) all legal en passant captures.
ExtMove stack[MAX_MOVES];
ExtMove *moves, *end;
StateInfo st;
if (!pos.checkers())
end = generate(pos, stack);
else
end = generate(pos, stack);
CheckInfo ci(pos);
for (moves = stack; moves < end; ++moves) {
Move capture = moves->move;
if (type_of(capture) != ENPASSANT
|| !pos.legal(capture, ci.pinned))
continue;
pos.do_move(capture, st, pos.gives_check(capture, ci));
WDLScore v0 = -probe_ab(pos, WDLLoss, WDLWin, success);
pos.undo_move(capture);
if (*success == 0)
return WDLDraw;
if (v0 > v1) v1 = v0;
}
if (v1 > -3) {
if (v1 >= v) v = v1;
else if (v == 0) {
// Check whether there is at least one legal non-ep move.
for (moves = stack; moves < end; ++moves) {
Move capture = moves->move;
if (type_of(capture) == ENPASSANT) continue;
if (pos.legal(capture, ci.pinned))
break;
}
if (moves == end && !pos.checkers()) {
end = generate(pos, end);
for (; moves < end; ++moves) {
Move move = moves->move;
if (pos.legal(move, ci.pinned))
break;
}
}
// If not, then we are forced to play the losing ep capture.
if (moves == end)
v = v1;
}
}
return v;
}
// Check whether there has been at least one repetition of positions
// since the last capture or pawn move.
static int has_repeated(StateInfo *st)
{
while (1) {
int i = 4, e = std::min(st->rule50, st->pliesFromNull);
if (e < i)
return 0;
StateInfo *stp = st->previous->previous;
do {
stp = stp->previous->previous;
if (stp->key == st->key)
return 1;
i += 2;
} while (i <= e);
st = st->previous;
}
}
// Use the DTZ tables to filter out moves that don't preserve the win or draw.
// If the position is lost, but DTZ is fairly high, only keep moves that
// maximise DTZ.
//
// A return value false indicates that not all probes were successful and that
// no moves were filtered out.
bool Tablebases::root_probe(Position& pos, Search::RootMoves& rootMoves, Value& score)
{
int success;
int dtz = probe_dtz(pos, &success);
if (!success)
return false;
StateInfo st;
CheckInfo ci(pos);
// Probe each move
for (size_t i = 0; i < rootMoves.size(); ++i) {
Move move = rootMoves[i].pv[0];
pos.do_move(move, st, pos.gives_check(move, ci));
int v = 0;
if (pos.checkers() && dtz > 0) {
ExtMove s[MAX_MOVES];
if (generate(pos, s) == s)
v = 1;
}
if (!v) {
if (st.rule50 != 0) {
v = -probe_dtz(pos, &success);
if (v > 0)
++v;
else if (v < 0)
--v;
} else {
v = -probe_wdl(pos, &success);
v = wdl_to_dtz[v + 2];
}
}
pos.undo_move(move);
if (!success)
return false;
rootMoves[i].score = (Value)v;
}
// Obtain 50-move counter for the root position.
// In Stockfish there seems to be no clean way, so we do it like this:
int cnt50 = st.previous->rule50;
// Use 50-move counter to determine whether the root position is
// won, lost or drawn.
int wdl = 0;
if (dtz > 0)
wdl = (dtz + cnt50 <= 100) ? 2 : 1;
else if (dtz < 0)
wdl = (-dtz + cnt50 <= 100) ? -2 : -1;
// Determine the score to report to the user.
score = WDL_to_value[wdl + 2];
// If the position is winning or losing, but too few moves left, adjust the
// score to show how close it is to winning or losing.
// NOTE: int(PawnValueEg) is used as scaling factor in score_to_uci().
if (wdl == 1 && dtz <= 100)
score = (Value)(((200 - dtz - cnt50) * int(PawnValueEg)) / 200);
else if (wdl == -1 && dtz >= -100)
score = -(Value)(((200 + dtz - cnt50) * int(PawnValueEg)) / 200);
// Now be a bit smart about filtering out moves.
size_t j = 0;
if (dtz > 0) { // winning (or 50-move rule draw)
int best = 0xffff;
for (size_t i = 0; i < rootMoves.size(); ++i) {
int v = rootMoves[i].score;
if (v > 0 && v < best)
best = v;
}
int max = best;
// If the current phase has not seen repetitions, then try all moves
// that stay safely within the 50-move budget, if there are any.
if (!has_repeated(st.previous) && best + cnt50 <= 99)
max = 99 - cnt50;
for (size_t i = 0; i < rootMoves.size(); ++i) {
int v = rootMoves[i].score;
if (v > 0 && v <= max)
rootMoves[j++] = rootMoves[i];
}
} else if (dtz < 0) { // losing (or 50-move rule draw)
int best = 0;
for (size_t i = 0; i < rootMoves.size(); ++i) {
int v = rootMoves[i].score;
if (v < best)
best = v;
}
// Try all moves, unless we approach or have a 50-move rule draw.
if (-best * 2 + cnt50 < 100)
return true;
for (size_t i = 0; i < rootMoves.size(); ++i) {
if (rootMoves[i].score == best)
rootMoves[j++] = rootMoves[i];
}
} else { // drawing
// Try all moves that preserve the draw.
for (size_t i = 0; i < rootMoves.size(); ++i) {
if (rootMoves[i].score == 0)
rootMoves[j++] = rootMoves[i];
}
}
rootMoves.resize(j, Search::RootMove(MOVE_NONE));
return true;
}
// Use the WDL tables to filter out moves that don't preserve the win or draw.
// This is a fallback for the case that some or all DTZ tables are missing.
//
// A return value false indicates that not all probes were successful and that
// no moves were filtered out.
bool Tablebases::root_probe_wdl(Position& pos, Search::RootMoves& rootMoves, Value& score)
{
int success;
WDLScore wdl = Tablebases::probe_wdl(pos, &success);
if (!success)
return false;
score = WDL_to_value[wdl + 2];
StateInfo st;
CheckInfo ci(pos);
int best = WDLLoss;
// Probe each move
for (size_t i = 0; i < rootMoves.size(); ++i) {
Move move = rootMoves[i].pv[0];
pos.do_move(move, st, pos.gives_check(move, ci));
WDLScore v = -Tablebases::probe_wdl(pos, &success);
pos.undo_move(move);
if (!success)
return false;
rootMoves[i].score = (Value)v;
if (v > best)
best = v;
}
size_t j = 0;
for (size_t i = 0; i < rootMoves.size(); ++i) {
if (rootMoves[i].score == best)
rootMoves[j++] = rootMoves[i];
}
rootMoves.resize(j, Search::RootMove(MOVE_NONE));
return true;
}