/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2022 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
// Definition of layer ClippedReLU of NNUE evaluation function
#ifndef NNUE_LAYERS_SQR_CLIPPED_RELU_H_INCLUDED
#define NNUE_LAYERS_SQR_CLIPPED_RELU_H_INCLUDED
#include "../nnue_common.h"
namespace Stockfish::Eval::NNUE::Layers {
// Clipped ReLU
template
class SqrClippedReLU {
public:
// Input/output type
using InputType = std::int32_t;
using OutputType = std::uint8_t;
// Number of input/output dimensions
static constexpr IndexType InputDimensions = InDims;
static constexpr IndexType OutputDimensions = InputDimensions;
static constexpr IndexType PaddedOutputDimensions =
ceil_to_multiple(OutputDimensions, 32);
using OutputBuffer = OutputType[PaddedOutputDimensions];
// Hash value embedded in the evaluation file
static constexpr std::uint32_t get_hash_value(std::uint32_t prevHash) {
std::uint32_t hashValue = 0x538D24C7u;
hashValue += prevHash;
return hashValue;
}
// Read network parameters
bool read_parameters(std::istream&) {
return true;
}
// Write network parameters
bool write_parameters(std::ostream&) const {
return true;
}
// Forward propagation
const OutputType* propagate(
const InputType* input, OutputType* output) const {
#if defined(USE_SSE2)
constexpr IndexType NumChunks = InputDimensions / 16;
#ifdef USE_SSE41
const __m128i Zero = _mm_setzero_si128();
#else
const __m128i k0x80s = _mm_set1_epi8(-128);
#endif
static_assert(WeightScaleBits == 6);
const auto in = reinterpret_cast(input);
const auto out = reinterpret_cast<__m128i*>(output);
for (IndexType i = 0; i < NumChunks; ++i) {
__m128i words0 = _mm_packs_epi32(
_mm_load_si128(&in[i * 4 + 0]),
_mm_load_si128(&in[i * 4 + 1]));
__m128i words1 = _mm_packs_epi32(
_mm_load_si128(&in[i * 4 + 2]),
_mm_load_si128(&in[i * 4 + 3]));
// Not sure if
words0 = _mm_srli_epi16(_mm_mulhi_epi16(words0, words0), 3);
words1 = _mm_srli_epi16(_mm_mulhi_epi16(words1, words1), 3);
const __m128i packedbytes = _mm_packs_epi16(words0, words1);
_mm_store_si128(&out[i],
#ifdef USE_SSE41
_mm_max_epi8(packedbytes, Zero)
#else
_mm_subs_epi8(_mm_adds_epi8(packedbytes, k0x80s), k0x80s)
#endif
);
}
constexpr IndexType Start = NumChunks * 16;
#else
constexpr IndexType Start = 0;
#endif
for (IndexType i = Start; i < InputDimensions; ++i) {
output[i] = static_cast(
// realy should be /127 but we need to make it fast
// needs to be accounted for in the trainer
std::max(0ll, std::min(127ll, (((long long)input[i] * input[i]) >> (2 * WeightScaleBits)) / 128)));
}
return output;
}
};
} // namespace Stockfish::Eval::NNUE::Layers
#endif // NNUE_LAYERS_SQR_CLIPPED_RELU_H_INCLUDED