/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include "bitboard.h" #include "bitcount.h" #include "rkiss.h" CACHE_LINE_ALIGNMENT Bitboard RMasks[64]; Bitboard RMagics[64]; Bitboard* RAttacks[64]; unsigned RShifts[64]; Bitboard BMasks[64]; Bitboard BMagics[64]; Bitboard* BAttacks[64]; unsigned BShifts[64]; Bitboard SquareBB[64]; Bitboard FileBB[8]; Bitboard RankBB[8]; Bitboard AdjacentFilesBB[8]; Bitboard ThisAndAdjacentFilesBB[8]; Bitboard InFrontBB[2][8]; Bitboard StepAttacksBB[16][64]; Bitboard BetweenBB[64][64]; Bitboard SquaresInFrontMask[2][64]; Bitboard PassedPawnMask[2][64]; Bitboard AttackSpanMask[2][64]; Bitboard PseudoAttacks[6][64]; uint8_t BitCount8Bit[256]; int SquareDistance[64][64]; namespace { CACHE_LINE_ALIGNMENT int BSFTable[64]; int MS1BTable[256]; Bitboard RTable[0x19000]; // Storage space for rook attacks Bitboard BTable[0x1480]; // Storage space for bishop attacks typedef unsigned (Fn)(Square, Bitboard); void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[], Bitboard masks[], unsigned shifts[], Square deltas[], Fn index); } /// print_bitboard() prints a bitboard in an easily readable format to the /// standard output. This is sometimes useful for debugging. void print_bitboard(Bitboard b) { for (Rank r = RANK_8; r >= RANK_1; r--) { std::cout << "+---+---+---+---+---+---+---+---+" << '\n'; for (File f = FILE_A; f <= FILE_H; f++) std::cout << "| " << ((b & make_square(f, r)) ? "X " : " "); std::cout << "|\n"; } std::cout << "+---+---+---+---+---+---+---+---+" << std::endl; } /// first_1() finds the least significant nonzero bit in a nonzero bitboard. /// pop_1st_bit() finds and clears the least significant nonzero bit in a /// nonzero bitboard. #if defined(IS_64BIT) && !defined(USE_BSFQ) Square first_1(Bitboard b) { return Square(BSFTable[((b & -b) * 0x218A392CD3D5DBFULL) >> 58]); } Square pop_1st_bit(Bitboard* b) { Bitboard bb = *b; *b &= (*b - 1); return Square(BSFTable[((bb & -bb) * 0x218A392CD3D5DBFULL) >> 58]); } #elif !defined(USE_BSFQ) Square first_1(Bitboard b) { b ^= (b - 1); uint32_t fold = unsigned(b) ^ unsigned(b >> 32); return Square(BSFTable[(fold * 0x783A9B23) >> 26]); } // Use type-punning union b_union { Bitboard dummy; struct { #if defined (BIGENDIAN) uint32_t h; uint32_t l; #else uint32_t l; uint32_t h; #endif } b; }; Square pop_1st_bit(Bitboard* b) { const b_union u = *((b_union*)b); if (u.b.l) { ((b_union*)b)->b.l = u.b.l & (u.b.l - 1); return Square(BSFTable[((u.b.l ^ (u.b.l - 1)) * 0x783A9B23) >> 26]); } ((b_union*)b)->b.h = u.b.h & (u.b.h - 1); return Square(BSFTable[((~(u.b.h ^ (u.b.h - 1))) * 0x783A9B23) >> 26]); } #endif // !defined(USE_BSFQ) #if !defined(USE_BSFQ) Square last_1(Bitboard b) { int result = 0; if (b > 0xFFFFFFFF) { b >>= 32; result = 32; } if (b > 0xFFFF) { b >>= 16; result += 16; } if (b > 0xFF) { b >>= 8; result += 8; } return Square(result + MS1BTable[b]); } #endif // !defined(USE_BSFQ) /// bitboards_init() initializes various bitboard arrays. It is called during /// program initialization. void bitboards_init() { for (Bitboard b = 0; b < 256; b++) BitCount8Bit[b] = (uint8_t)popcount(b); for (Square s = SQ_A1; s <= SQ_H8; s++) SquareBB[s] = 1ULL << s; FileBB[FILE_A] = FileABB; RankBB[RANK_1] = Rank1BB; for (int f = FILE_B; f <= FILE_H; f++) { FileBB[f] = FileBB[f - 1] << 1; RankBB[f] = RankBB[f - 1] << 8; } for (int f = FILE_A; f <= FILE_H; f++) { AdjacentFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0); ThisAndAdjacentFilesBB[f] = FileBB[f] | AdjacentFilesBB[f]; } for (int rw = RANK_7, rb = RANK_2; rw >= RANK_1; rw--, rb++) { InFrontBB[WHITE][rw] = InFrontBB[WHITE][rw + 1] | RankBB[rw + 1]; InFrontBB[BLACK][rb] = InFrontBB[BLACK][rb - 1] | RankBB[rb - 1]; } for (Color c = WHITE; c <= BLACK; c++) for (Square s = SQ_A1; s <= SQ_H8; s++) { SquaresInFrontMask[c][s] = in_front_bb(c, s) & file_bb(s); PassedPawnMask[c][s] = in_front_bb(c, s) & this_and_adjacent_files_bb(file_of(s)); AttackSpanMask[c][s] = in_front_bb(c, s) & adjacent_files_bb(file_of(s)); } for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++) for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++) SquareDistance[s1][s2] = std::max(file_distance(s1, s2), rank_distance(s1, s2)); for (int i = 0; i < 64; i++) if (!Is64Bit) // Matt Taylor's folding trick for 32 bit systems { Bitboard b = 1ULL << i; b ^= b - 1; b ^= b >> 32; BSFTable[(uint32_t)(b * 0x783A9B23) >> 26] = i; } else BSFTable[((1ULL << i) * 0x218A392CD3D5DBFULL) >> 58] = i; MS1BTable[0] = 0; for (int i = 0, k = 1; i < 8; i++) for (int j = 0; j < (1 << i); j++) MS1BTable[k++] = i; int steps[][9] = { {}, { 7, 9 }, { 17, 15, 10, 6, -6, -10, -15, -17 }, {}, {}, {}, { 9, 7, -7, -9, 8, 1, -1, -8 } }; for (Color c = WHITE; c <= BLACK; c++) for (PieceType pt = PAWN; pt <= KING; pt++) for (Square s = SQ_A1; s <= SQ_H8; s++) for (int k = 0; steps[pt][k]; k++) { Square to = s + Square(c == WHITE ? steps[pt][k] : -steps[pt][k]); if (square_is_ok(to) && square_distance(s, to) < 3) StepAttacksBB[make_piece(c, pt)][s] |= to; } Square RDeltas[] = { DELTA_N, DELTA_E, DELTA_S, DELTA_W }; Square BDeltas[] = { DELTA_NE, DELTA_SE, DELTA_SW, DELTA_NW }; init_magics(RTable, RAttacks, RMagics, RMasks, RShifts, RDeltas, magic_index); init_magics(BTable, BAttacks, BMagics, BMasks, BShifts, BDeltas, magic_index); for (Square s = SQ_A1; s <= SQ_H8; s++) { PseudoAttacks[BISHOP][s] = attacks_bb(s, 0); PseudoAttacks[ROOK][s] = attacks_bb(s, 0); PseudoAttacks[QUEEN][s] = PseudoAttacks[BISHOP][s] | PseudoAttacks[ROOK][s]; } for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++) for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++) if (PseudoAttacks[QUEEN][s1] & s2) { Square delta = (s2 - s1) / square_distance(s1, s2); for (Square s = s1 + delta; s != s2; s += delta) BetweenBB[s1][s2] |= s; } } namespace { Bitboard sliding_attack(Square deltas[], Square sq, Bitboard occupied) { Bitboard attack = 0; for (int i = 0; i < 4; i++) for (Square s = sq + deltas[i]; square_is_ok(s) && square_distance(s, s - deltas[i]) == 1; s += deltas[i]) { attack |= s; if (occupied & s) break; } return attack; } Bitboard pick_random(Bitboard mask, RKISS& rk, int booster) { Bitboard magic; // Values s1 and s2 are used to rotate the candidate magic of a // quantity known to be the optimal to quickly find the magics. int s1 = booster & 63, s2 = (booster >> 6) & 63; while (true) { magic = rk.rand(); magic = (magic >> s1) | (magic << (64 - s1)); magic &= rk.rand(); magic = (magic >> s2) | (magic << (64 - s2)); magic &= rk.rand(); if (BitCount8Bit[(mask * magic) >> 56] >= 6) return magic; } } // init_magics() computes all rook and bishop attacks at startup. Magic // bitboards are used to look up attacks of sliding pieces. As a reference see // chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we // use the so called "fancy" approach. void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[], Bitboard masks[], unsigned shifts[], Square deltas[], Fn index) { int MagicBoosters[][8] = { { 3191, 2184, 1310, 3618, 2091, 1308, 2452, 3996 }, { 1059, 3608, 605, 3234, 3326, 38, 2029, 3043 } }; RKISS rk; Bitboard occupancy[4096], reference[4096], edges, b; int i, size, booster; // attacks[s] is a pointer to the beginning of the attacks table for square 's' attacks[SQ_A1] = table; for (Square s = SQ_A1; s <= SQ_H8; s++) { // Board edges are not considered in the relevant occupancies edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s)); // Given a square 's', the mask is the bitboard of sliding attacks from // 's' computed on an empty board. The index must be big enough to contain // all the attacks for each possible subset of the mask and so is 2 power // the number of 1s of the mask. Hence we deduce the size of the shift to // apply to the 64 or 32 bits word to get the index. masks[s] = sliding_attack(deltas, s, 0) & ~edges; shifts[s] = (Is64Bit ? 64 : 32) - popcount(masks[s]); // Use Carry-Rippler trick to enumerate all subsets of masks[s] and // store the corresponding sliding attack bitboard in reference[]. b = size = 0; do { occupancy[size] = b; reference[size++] = sliding_attack(deltas, s, b); b = (b - masks[s]) & masks[s]; } while (b); // Set the offset for the table of the next square. We have individual // table sizes for each square with "Fancy Magic Bitboards". if (s < SQ_H8) attacks[s + 1] = attacks[s] + size; booster = MagicBoosters[Is64Bit][rank_of(s)]; // Find a magic for square 's' picking up an (almost) random number // until we find the one that passes the verification test. do { magics[s] = pick_random(masks[s], rk, booster); memset(attacks[s], 0, size * sizeof(Bitboard)); // A good magic must map every possible occupancy to an index that // looks up the correct sliding attack in the attacks[s] database. // Note that we build up the database for square 's' as a side // effect of verifying the magic. for (i = 0; i < size; i++) { Bitboard& attack = attacks[s][index(s, occupancy[i])]; if (attack && attack != reference[i]) break; attack = reference[i]; } } while (i != size); } } }