/* Copyright (c) 2013 Ronald de Man This file may be redistributed and/or modified without restrictions. tbprobe.cpp contains the Stockfish-specific routines of the tablebase probing code. It should be relatively easy to adapt this code to other chess engines. */ #include #include #include // For std::memset #include #include #include #include "../bitboard.h" #include "../movegen.h" #include "../position.h" #include "../search.h" #include "../thread_win32.h" #include "../types.h" #include "tbprobe.h" #ifndef _WIN32 #include #include #include #include #else #define WIN32_LEAN_AND_MEAN #define NOMINMAX #include #endif #define TBPIECES 6 using namespace Tablebases; int Tablebases::MaxCardinality = 0; namespace Zobrist { extern Key psq[COLOR_NB][PIECE_TYPE_NB][SQUARE_NB]; } namespace { typedef uint64_t base_t; inline WDLScore operator-(WDLScore d) { return WDLScore(-int(d)); } inline WDLScore operator+(WDLScore d1, WDLScore d2) { return WDLScore(int(d1) + int(d2)); } inline Square operator^=(Square& s, int i) { return s = Square(int(s) ^ i); } inline Square operator^(Square s, int i) { return Square(int(s) ^ i); } struct PairsData { char *indextable; uint16_t *sizetable; uint8_t *data; uint16_t *offset; uint8_t *symlen; uint8_t *sympat; int blocksize; int idxbits; int min_len; base_t base[1]; // C++ complains about base[]... }; struct TBEntry { char *data; uint64_t key; uint64_t mapping; uint8_t ready; uint8_t num; uint8_t symmetric; uint8_t has_pawns; }; struct TBEntry_piece { char *data; uint64_t key; uint64_t mapping; uint8_t ready; uint8_t num; uint8_t symmetric; uint8_t has_pawns; uint8_t hasUniquePieces; PairsData *precomp[2]; int factor[2][TBPIECES]; uint8_t pieces[2][TBPIECES]; uint8_t norm[2][TBPIECES]; }; struct TBEntry_pawn { char *data; uint64_t key; uint64_t mapping; uint8_t ready; uint8_t num; uint8_t symmetric; uint8_t has_pawns; uint8_t pawns[2]; struct { PairsData *precomp[2]; int factor[2][TBPIECES]; uint8_t pieces[2][TBPIECES]; uint8_t norm[2][TBPIECES]; } file[4]; }; struct DTZEntry_piece { char *data; uint64_t key; uint64_t mapping; uint8_t ready; uint8_t num; uint8_t symmetric; uint8_t has_pawns; uint8_t hasUniquePieces; PairsData *precomp; int factor[TBPIECES]; uint8_t pieces[TBPIECES]; uint8_t norm[TBPIECES]; uint8_t flags; // accurate, mapped, side uint16_t map_idx[4]; uint8_t *map; }; struct DTZEntry_pawn { char *data; uint64_t key; uint64_t mapping; uint8_t ready; uint8_t num; uint8_t symmetric; uint8_t has_pawns; uint8_t pawns[2]; struct { PairsData *precomp; int factor[TBPIECES]; uint8_t pieces[TBPIECES]; uint8_t norm[TBPIECES]; } file[4]; uint8_t flags[4]; uint16_t map_idx[4][4]; uint8_t *map; }; struct DTZTableEntry { uint64_t key1; uint64_t key2; TBEntry *entry; }; const signed char Offdiag[] = { 0,-1,-1,-1,-1,-1,-1,-1, 1, 0,-1,-1,-1,-1,-1,-1, 1, 1, 0,-1,-1,-1,-1,-1, 1, 1, 1, 0,-1,-1,-1,-1, 1, 1, 1, 1, 0,-1,-1,-1, 1, 1, 1, 1, 1, 0,-1,-1, 1, 1, 1, 1, 1, 1, 0,-1, 1, 1, 1, 1, 1, 1, 1, 0 }; const uint8_t Triangle[] = { 6, 0, 1, 2, 2, 1, 0, 6, 0, 7, 3, 4, 4, 3, 7, 0, 1, 3, 8, 5, 5, 8, 3, 1, 2, 4, 5, 9, 9, 5, 4, 2, 2, 4, 5, 9, 9, 5, 4, 2, 1, 3, 8, 5, 5, 8, 3, 1, 0, 7, 3, 4, 4, 3, 7, 0, 6, 0, 1, 2, 2, 1, 0, 6 }; const int Flipdiag[] = { 0, 8, 16, 24, 32, 40, 48, 56, 1, 9, 17, 25, 33, 41, 49, 57, 2, 10, 18, 26, 34, 42, 50, 58, 3, 11, 19, 27, 35, 43, 51, 59, 4, 12, 20, 28, 36, 44, 52, 60, 5, 13, 21, 29, 37, 45, 53, 61, 6, 14, 22, 30, 38, 46, 54, 62, 7, 15, 23, 31, 39, 47, 55, 63 }; const uint8_t Lower[] = { 28, 0, 1, 2, 3, 4, 5, 6, 0, 29, 7, 8, 9, 10, 11, 12, 1, 7, 30, 13, 14, 15, 16, 17, 2, 8, 13, 31, 18, 19, 20, 21, 3, 9, 14, 18, 32, 22, 23, 24, 4, 10, 15, 19, 22, 33, 25, 26, 5, 11, 16, 20, 23, 25, 34, 27, 6, 12, 17, 21, 24, 26, 27, 35 }; const uint8_t Diag[] = { 0, 0, 0, 0, 0, 0, 0, 8, 0, 1, 0, 0, 0, 0, 9, 0, 0, 0, 2, 0, 0, 10, 0, 0, 0, 0, 0, 3, 11, 0, 0, 0, 0, 0, 0, 12, 4, 0, 0, 0, 0, 0, 13, 0, 0, 5, 0, 0, 0, 14, 0, 0, 0, 0, 6, 0, 15, 0, 0, 0, 0, 0, 0, 7 }; const uint8_t Flap[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 12, 18, 18, 12, 6, 0, 1, 7, 13, 19, 19, 13, 7, 1, 2, 8, 14, 20, 20, 14, 8, 2, 3, 9, 15, 21, 21, 15, 9, 3, 4, 10, 16, 22, 22, 16, 10, 4, 5, 11, 17, 23, 23, 17, 11, 5, 0, 0, 0, 0, 0, 0, 0, 0 }; const uint8_t Ptwist[] = { 0, 0, 0, 0, 0, 0, 0, 0, 47, 35, 23, 11, 10, 22, 34, 46, 45, 33, 21, 9, 8, 20, 32, 44, 43, 31, 19, 7, 6, 18, 30, 42, 41, 29, 17, 5, 4, 16, 28, 40, 39, 27, 15, 3, 2, 14, 26, 38, 37, 25, 13, 1, 0, 12, 24, 36, 0, 0, 0, 0, 0, 0, 0, 0 }; const uint8_t Invflap[] = { 8, 16, 24, 32, 40, 48, 9, 17, 25, 33, 41, 49, 10, 18, 26, 34, 42, 50, 11, 19, 27, 35, 43, 51 }; const short KK_idx[10][64] = { { -1, -1, -1, 0, 1, 2, 3, 4, -1, -1, -1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57 }, { 58, -1, -1, -1, 59, 60, 61, 62, 63, -1, -1, -1, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,101,102,103,104,105,106,107, 108,109,110,111,112,113,114,115 }, { 116,117, -1, -1, -1,118,119,120, 121,122, -1, -1, -1,123,124,125, 126,127,128,129,130,131,132,133, 134,135,136,137,138,139,140,141, 142,143,144,145,146,147,148,149, 150,151,152,153,154,155,156,157, 158,159,160,161,162,163,164,165, 166,167,168,169,170,171,172,173 }, { 174, -1, -1, -1,175,176,177,178, 179, -1, -1, -1,180,181,182,183, 184, -1, -1, -1,185,186,187,188, 189,190,191,192,193,194,195,196, 197,198,199,200,201,202,203,204, 205,206,207,208,209,210,211,212, 213,214,215,216,217,218,219,220, 221,222,223,224,225,226,227,228 }, { 229,230, -1, -1, -1,231,232,233, 234,235, -1, -1, -1,236,237,238, 239,240, -1, -1, -1,241,242,243, 244,245,246,247,248,249,250,251, 252,253,254,255,256,257,258,259, 260,261,262,263,264,265,266,267, 268,269,270,271,272,273,274,275, 276,277,278,279,280,281,282,283 }, { 284,285,286,287,288,289,290,291, 292,293, -1, -1, -1,294,295,296, 297,298, -1, -1, -1,299,300,301, 302,303, -1, -1, -1,304,305,306, 307,308,309,310,311,312,313,314, 315,316,317,318,319,320,321,322, 323,324,325,326,327,328,329,330, 331,332,333,334,335,336,337,338 }, { -1, -1,339,340,341,342,343,344, -1, -1,345,346,347,348,349,350, -1, -1,441,351,352,353,354,355, -1, -1, -1,442,356,357,358,359, -1, -1, -1, -1,443,360,361,362, -1, -1, -1, -1, -1,444,363,364, -1, -1, -1, -1, -1, -1,445,365, -1, -1, -1, -1, -1, -1, -1,446 }, { -1, -1, -1,366,367,368,369,370, -1, -1, -1,371,372,373,374,375, -1, -1, -1,376,377,378,379,380, -1, -1, -1,447,381,382,383,384, -1, -1, -1, -1,448,385,386,387, -1, -1, -1, -1, -1,449,388,389, -1, -1, -1, -1, -1, -1,450,390, -1, -1, -1, -1, -1, -1, -1,451 }, { 452,391,392,393,394,395,396,397, -1, -1, -1, -1,398,399,400,401, -1, -1, -1, -1,402,403,404,405, -1, -1, -1, -1,406,407,408,409, -1, -1, -1, -1,453,410,411,412, -1, -1, -1, -1, -1,454,413,414, -1, -1, -1, -1, -1, -1,455,415, -1, -1, -1, -1, -1, -1, -1,456 }, { 457,416,417,418,419,420,421,422, -1,458,423,424,425,426,427,428, -1, -1, -1, -1, -1,429,430,431, -1, -1, -1, -1, -1,432,433,434, -1, -1, -1, -1, -1,435,436,437, -1, -1, -1, -1, -1,459,438,439, -1, -1, -1, -1, -1, -1,460,440, -1, -1, -1, -1, -1, -1, -1,461 } }; const uint8_t WDL_MAGIC[] = { 0x71, 0xE8, 0x23, 0x5D }; const uint8_t DTZ_MAGIC[] = { 0xD7, 0x66, 0x0C, 0xA5 }; const int wdl_to_dtz[] = { -1, -101, 0, 101, 1 }; const int wdl_to_map[] = { 1, 3, 0, 2, 0 }; const uint8_t pa_flags[] = { 8, 0, 0, 0, 4 }; const Value WDL_to_value[] = { -VALUE_MATE + MAX_PLY + 1, VALUE_DRAW - 2, VALUE_DRAW, VALUE_DRAW + 2, VALUE_MATE - MAX_PLY - 1 }; const int DTZ_ENTRIES = 64; const int TBMAX_PIECE = 254; const int TBMAX_PAWN = 256; const std::string PieceChar = " PNBRQK"; int TBnum_piece; int TBnum_pawn; Mutex TB_mutex; std::string TBPaths; TBEntry_piece TB_piece[TBMAX_PIECE]; TBEntry_pawn TB_pawn[TBMAX_PAWN]; DTZTableEntry DTZ_table[DTZ_ENTRIES]; int Binomial[5][64]; int Pawnidx[5][24]; int Pfactor[5][4]; class HashTable { struct Entry { Key key; TBEntry* ptr; }; static const int TBHASHBITS = 10; static const int HSHMAX = 5; Entry table[1 << TBHASHBITS][HSHMAX]; void insert(Key key, TBEntry* ptr) { Entry* entry = table[key >> (64 - TBHASHBITS)]; for (int i = 0; i < HSHMAX; ++i, ++entry) if (!entry->ptr || entry->key == key) { entry->key = key; entry->ptr = ptr; return; } std::cerr << "HSHMAX too low!" << std::endl; exit(1); } public: TBEntry* operator[](Key key) { Entry* entry = table[key >> (64 - TBHASHBITS)]; for (int i = 0; i < HSHMAX; ++i, ++entry) if (entry->key == key) return entry->ptr; return nullptr; } void clear() { std::memset(table, 0, sizeof(table)); } void insert(const std::vector& pieces); }; HashTable TBHash; class TBFile : public std::ifstream { std::string fname; public: // Open the file with the given name found among the TBPaths. TBPaths stores // the paths to directories where the .rtbw and .rtbz files can be found. // Multiple directories are separated by ";" on Windows and by ":" on // Unix-based operating systems. // // Example: // C:\tb\wdl345;C:\tb\wdl6;D:\tb\dtz345;D:\tb\dtz6 TBFile(const std::string& f) { #ifndef _WIN32 const char SepChar = ':'; #else const char SepChar = ';'; #endif std::stringstream ss(TBPaths); std::string path; while (std::getline(ss, path, SepChar)) { fname = path + "/" + f; std::ifstream::open(fname); if (is_open()) return; } } // Memory map the file. File is closed after mapping char* map(uint64_t* mapping) { assert(is_open()); close(); #ifndef _WIN32 struct stat statbuf; int fd = ::open(fname.c_str(), O_RDONLY); fstat(fd, &statbuf); *mapping = statbuf.st_size; char* data = (char*)mmap(NULL, statbuf.st_size, PROT_READ, MAP_SHARED, fd, 0); ::close(fd); if (data == (char*)(-1)) { std::cerr << "Could not mmap() " << fname << std::endl; exit(1); } #else HANDLE fd = CreateFile(fname.c_str(), GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); DWORD size_high; DWORD size_low = GetFileSize(fd, &size_high); HANDLE mmap = CreateFileMapping(fd, NULL, PAGE_READONLY, size_high, size_low, NULL); CloseHandle(fd); if (!mmap) { std::cerr << "CreateFileMapping() failed" << std::endl; exit(1); } *mapping = (uint64_t)mmap; char* data = (char*)MapViewOfFile(mmap, FILE_MAP_READ, 0, 0, 0); if (!data) { std::cerr << "MapViewOfFile() failed, name = " << fname << ", error = " << GetLastError() << std::endl; exit(1); } #endif return data; } static void unmap(char* data, uint64_t mapping) { #ifndef _WIN32 munmap(data, mapping); #else UnmapViewOfFile(data); CloseHandle((HANDLE)mapping); #endif } }; // Given a position, produce a 64-bit material signature key. If the engine // supports such a key, it should equal the engine's key. Key get_key(Position& pos, bool mirror) { Key key = 0; for (Color c = WHITE; c <= BLACK; ++c) for (PieceType pt = PAWN; pt <= KING; ++pt) for (int j = popcount(pos.pieces(Color(c ^ mirror), pt)); j > 0; --j) key ^= Zobrist::psq[c][pt][j - 1]; return key; } // Given a position with 6 or fewer pieces, produce a text string // of the form KQPvKRP, where "KQP" represents the white pieces if // mirror == false and the black pieces if mirror == true. std::string file_name(const Position& pos, bool mirror) { std::string w, b; for (PieceType pt = KING; pt >= PAWN; --pt) { w += std::string(popcount(pos.pieces(WHITE, pt)), PieceChar[pt]); b += std::string(popcount(pos.pieces(BLACK, pt)), PieceChar[pt]); } return mirror ? b + 'v' + w : w + 'v' + b; } void free_wdl_entry(TBEntry_piece* entry) { TBFile::unmap(entry->data, entry->mapping); free(entry->precomp[0]); free(entry->precomp[1]); } void free_wdl_entry(TBEntry_pawn* entry) { TBFile::unmap(entry->data, entry->mapping); for (File f = FILE_A; f <= FILE_D; ++f) { free(entry->file[f].precomp[0]); free(entry->file[f].precomp[1]); } } void free_dtz_entry(TBEntry* entry) { TBFile::unmap(entry->data, entry->mapping); if (!entry->has_pawns) free(((DTZEntry_piece*)entry)->precomp); else for (File f = FILE_A; f <= FILE_D; ++f) free(((DTZEntry_pawn*)entry)->file[f].precomp); free(entry); } void HashTable::insert(const std::vector& pieces) { TBEntry* entry; StateInfo st; Position pos; std::string code; for (PieceType pt : pieces) code += PieceChar[pt]; int bk = code.find('K', 1); // Black king TBFile f(code.substr(0, bk) + 'v' + code.substr(bk) + ".rtbw"); if (!f.is_open()) return; f.close(); pos.set(code, WHITE, &st); int num = pos.count(WHITE) + pos.count(BLACK); bool hasPawns = pos.count(WHITE) + pos.count(BLACK); if (num > Tablebases::MaxCardinality) Tablebases::MaxCardinality = num; if (hasPawns) { if (TBnum_pawn == TBMAX_PAWN) { std::cerr << "TBMAX_PAWN limit too low!" << std::endl; exit(1); } TBEntry_pawn* ptr = &TB_pawn[TBnum_pawn++]; // FIXME: What it means this one? if ( !pos.count(BLACK) || ( pos.count(WHITE) && pos.count(BLACK) >= pos.count(WHITE))) { ptr->pawns[0] = pos.count(WHITE); ptr->pawns[1] = pos.count(BLACK); } else { ptr->pawns[0] = pos.count(BLACK); ptr->pawns[1] = pos.count(WHITE); } entry = (TBEntry*)ptr; } else { if (TBnum_piece == TBMAX_PIECE) { std::cerr << "TBMAX_PIECE limit too low!" << std::endl; exit(1); } TBEntry_piece* ptr = &TB_piece[TBnum_piece++]; int uniquePieces = 0; for (PieceType pt = PAWN; pt <= KING; ++pt) uniquePieces += (popcount(pos.pieces(WHITE, pt)) == 1) + (popcount(pos.pieces(BLACK, pt)) == 1); if (uniquePieces >= 3) ptr->hasUniquePieces = 1; else { // No unique pieces, other than W_KING and B_KING assert(uniquePieces == 2); ptr->hasUniquePieces = 0; } entry = (TBEntry*)ptr; } Key key1 = pos.material_key(); Key key2 = pos.set(code, BLACK, &st).material_key(); entry->key = key1; entry->ready = 0; entry->num = num; entry->symmetric = (key1 == key2); entry->has_pawns = hasPawns; insert(key1, entry); insert(key2, entry); } uint64_t encode_piece(TBEntry_piece* ptr, uint8_t* norm, Square* pos, int* factor) { uint64_t idx; int i; int n = ptr->num; if (pos[0] & 4) for (i = 0; i < n; ++i) pos[i] ^= 7; if (pos[0] & 0x20) for (i = 0; i < n; ++i) pos[i] ^= 070; for (i = 0; i < n; ++i) if (Offdiag[pos[i]]) break; if (i < (ptr->hasUniquePieces ? 3 : 2) && Offdiag[pos[i]] > 0) for (i = 0; i < n; ++i) pos[i] = (Square)Flipdiag[pos[i]]; if (ptr->hasUniquePieces) { // There are unique pieces other than W_KING and B_KING i = pos[1] > pos[0]; int j = (pos[2] > pos[0]) + (pos[2] > pos[1]); if (Offdiag[pos[0]]) idx = Triangle[pos[0]] * 63*62 + (pos[1] - i) * 62 + (pos[2] - j); else if (Offdiag[pos[1]]) idx = 6*63*62 + Diag[pos[0]] * 28*62 + Lower[pos[1]] * 62 + pos[2] - j; else if (Offdiag[pos[2]]) idx = 6*63*62 + 4*28*62 + (Diag[pos[0]]) * 7*28 + (Diag[pos[1]] - i) * 28 + Lower[pos[2]]; else idx = 6*63*62 + 4*28*62 + 4*7*28 + (Diag[pos[0]] * 7*6) + (Diag[pos[1]] - i) * 6 + (Diag[pos[2]] - j); i = 3; } else { assert(!ptr->hasUniquePieces); idx = KK_idx[Triangle[pos[0]]][pos[1]]; i = 2; } idx *= factor[0]; while (i < n) { int t = norm[i]; std::sort(&pos[i], &pos[i + t]); uint64_t s = 0; for (int l = i; l < i + t; ++l) { int j = 0; for (int k = 0; k < i; ++k) j += pos[l] > pos[k]; s += Binomial[l - i][pos[l] - j]; } idx += s * factor[i]; i += t; } return idx; } // determine file of leftmost pawn and sort pawns File pawn_file(TBEntry_pawn *ptr, Square *pos) { static const File file_to_file[] = { FILE_A, FILE_B, FILE_C, FILE_D, FILE_D, FILE_C, FILE_B, FILE_A }; for (int i = 1; i < ptr->pawns[0]; ++i) if (Flap[pos[0]] > Flap[pos[i]]) std::swap(pos[0], pos[i]); return file_to_file[pos[0] & 7]; } uint64_t encode_pawn(TBEntry_pawn *ptr, uint8_t *norm, Square *pos, int *factor) { int i; int n = ptr->num; if (pos[0] & 4) for (i = 0; i < n; ++i) pos[i] ^= 7; for (i = 1; i < ptr->pawns[0]; ++i) for (int j = i + 1; j < ptr->pawns[0]; ++j) if (Ptwist[pos[i]] < Ptwist[pos[j]]) std::swap(pos[i], pos[j]); int t = ptr->pawns[0] - 1; uint64_t idx = Pawnidx[t][Flap[pos[0]]]; for (i = t; i > 0; --i) idx += Binomial[t - i][Ptwist[pos[i]]]; idx *= factor[0]; // remaining pawns i = ptr->pawns[0]; t = i + ptr->pawns[1]; if (t > i) { std::sort(&pos[i], &pos[t]); uint64_t s = 0; for (int m = i; m < t; ++m) { int j = 0; for (int k = 0; k < i; ++k) j += pos[m] > pos[k]; s += Binomial[m - i][pos[m] - j - 8]; } idx += s * factor[i]; i = t; } while (i < n) { t = norm[i]; std::sort(&pos[i], &pos[i + t]); uint64_t s = 0; for (int l = i; l < i + t; ++l) { int j = 0; for (int k = 0; k < i; ++k) j += pos[l] > pos[k]; s += Binomial[l - i][pos[l] - j]; } idx += s * factor[i]; i += t; } return idx; } // place k like pieces on n squares int subfactor(int k, int n) { assert(n > 0 && k > 0 && k <= n); int numerator = n; int denominator = 1; for (int i = 1; i < k; ++i) { numerator *= n - i; denominator *= i + 1; } return numerator / denominator; } uint64_t calc_factors_piece(int *factor, int num, int order, uint8_t *norm, uint8_t hasUniquePieces) { int n = 64 - norm[0]; uint64_t result = 1; for (int i = norm[0], k = 0; i < num || k == order; ++k) { if (k == order) { factor[0] = (int)result; result *= hasUniquePieces ? 31332 : 462; } else { factor[i] = (int)result; result *= subfactor(norm[i], n); n -= norm[i]; i += norm[i]; } } return result; } uint64_t calc_factors_pawn(int *factor, int num, int order, int order2, uint8_t *norm, File f) { assert(FILE_A <= f && f <= FILE_D); int i = norm[0]; if (order2 < 0x0f) i += norm[i]; int n = 64 - i; uint64_t result = 1; for (int k = 0; i < num || k == order || k == order2; ++k) { if (k == order) { factor[0] = (int)result; result *= Pfactor[norm[0] - 1][f]; } else if (k == order2) { factor[norm[0]] = (int)result; result *= subfactor(norm[norm[0]], 48 - norm[0]); } else { factor[i] = (int)result; result *= subfactor(norm[i], n); n -= norm[i]; i += norm[i]; } } return result; } void set_norm_piece(TBEntry_piece *ptr, uint8_t *norm, uint8_t *pieces) { int i, j; for (i = 0; i < ptr->num; ++i) norm[i] = 0; norm[0] = ptr->hasUniquePieces ? 3 : 2; for (i = norm[0]; i < ptr->num; i += norm[i]) for (j = i; j < ptr->num && pieces[j] == pieces[i]; ++j) ++norm[i]; } void set_norm_pawn(TBEntry_pawn *ptr, uint8_t *norm, uint8_t *pieces) { int i, j; for (i = 0; i < ptr->num; ++i) norm[i] = 0; norm[0] = ptr->pawns[0]; if (ptr->pawns[1]) norm[ptr->pawns[0]] = ptr->pawns[1]; for (i = ptr->pawns[0] + ptr->pawns[1]; i < ptr->num; i += norm[i]) for (j = i; j < ptr->num && pieces[j] == pieces[i]; ++j) ++norm[i]; } void setup_pieces_piece(TBEntry_piece *ptr, unsigned char *data, uint64_t *tb_size) { int i; int order; for (i = 0; i < ptr->num; ++i) ptr->pieces[0][i] = uint8_t(data[i + 1] & 0x0f); order = data[0] & 0x0f; set_norm_piece(ptr, ptr->norm[0], ptr->pieces[0]); tb_size[0] = calc_factors_piece(ptr->factor[0], ptr->num, order, ptr->norm[0], ptr->hasUniquePieces); for (i = 0; i < ptr->num; ++i) ptr->pieces[1][i] = uint8_t(data[i + 1] >> 4); order = data[0] >> 4; set_norm_piece(ptr, ptr->norm[1], ptr->pieces[1]); tb_size[1] = calc_factors_piece(ptr->factor[1], ptr->num, order, ptr->norm[1], ptr->hasUniquePieces); } void setup_pieces_piece_dtz(DTZEntry_piece *ptr, unsigned char *data, uint64_t *tb_size) { for (int i = 0; i < ptr->num; ++i) ptr->pieces[i] = uint8_t(data[i + 1] & 0x0f); int order = data[0] & 0x0f; set_norm_piece((TBEntry_piece *)ptr, ptr->norm, ptr->pieces); tb_size[0] = calc_factors_piece(ptr->factor, ptr->num, order, ptr->norm, ptr->hasUniquePieces); } void setup_pieces_pawn(TBEntry_pawn *ptr, unsigned char *data, uint64_t *tb_size, File f) { assert(FILE_A <= f && f <= FILE_D); int j = 1 + (ptr->pawns[1] > 0); int order = data[0] & 0x0f; int order2 = ptr->pawns[1] ? (data[1] & 0x0f) : 0x0f; for (int i = 0; i < ptr->num; ++i) ptr->file[f].pieces[0][i] = uint8_t(data[i + j] & 0x0f); set_norm_pawn(ptr, ptr->file[f].norm[0], ptr->file[f].pieces[0]); tb_size[0] = calc_factors_pawn(ptr->file[f].factor[0], ptr->num, order, order2, ptr->file[f].norm[0], f); order = data[0] >> 4; order2 = ptr->pawns[1] ? (data[1] >> 4) : 0x0f; for (int i = 0; i < ptr->num; ++i) ptr->file[f].pieces[1][i] = uint8_t(data[i + j] >> 4); set_norm_pawn(ptr, ptr->file[f].norm[1], ptr->file[f].pieces[1]); tb_size[1] = calc_factors_pawn(ptr->file[f].factor[1], ptr->num, order, order2, ptr->file[f].norm[1], f); } void setup_pieces_pawn_dtz(DTZEntry_pawn *ptr, unsigned char *data, uint64_t *tb_size, File f) { assert(FILE_A <= f && f <= FILE_D); int j = 1 + (ptr->pawns[1] > 0); int order = data[0] & 0x0f; int order2 = ptr->pawns[1] ? (data[1] & 0x0f) : 0x0f; for (int i = 0; i < ptr->num; ++i) ptr->file[f].pieces[i] = uint8_t(data[i + j] & 0x0f); set_norm_pawn((TBEntry_pawn *)ptr, ptr->file[f].norm, ptr->file[f].pieces); tb_size[0] = calc_factors_pawn(ptr->file[f].factor, ptr->num, order, order2, ptr->file[f].norm, f); } void calc_symlen(PairsData *d, int s, char *tmp) { int s1, s2; uint8_t* w = d->sympat + 3 * s; s2 = (w[2] << 4) | (w[1] >> 4); if (s2 == 0x0fff) d->symlen[s] = 0; else { s1 = ((w[1] & 0xf) << 8) | w[0]; if (!tmp[s1]) calc_symlen(d, s1, tmp); if (!tmp[s2]) calc_symlen(d, s2, tmp); d->symlen[s] = uint8_t(d->symlen[s1] + d->symlen[s2] + 1); } tmp[s] = 1; } uint16_t ReadUshort(uint8_t* d) { return uint16_t(d[0] | (d[1] << 8)); } uint32_t ReadUint32(uint8_t* d) { return d[0] | (d[1] << 8) | (d[2] << 16) | (d[3] << 24); } PairsData *setup_pairs(unsigned char *data, uint64_t tb_size, uint64_t *size, unsigned char **next, uint8_t *flags, int wdl) { PairsData *d; int i; *flags = data[0]; if (data[0] & 0x80) { d = (PairsData *)malloc(sizeof(PairsData)); d->idxbits = 0; if (wdl) d->min_len = data[1]; else d->min_len = 0; *next = data + 2; size[0] = size[1] = size[2] = 0; return d; } int blocksize = data[1]; int idxbits = data[2]; int real_num_blocks = ReadUint32(&data[4]); int num_blocks = real_num_blocks + *(uint8_t *)(&data[3]); int max_len = data[8]; int min_len = data[9]; int h = max_len - min_len + 1; int num_syms = ReadUshort(&data[10 + 2 * h]); d = (PairsData *)malloc(sizeof(PairsData) + (h - 1) * sizeof(base_t) + num_syms); d->blocksize = blocksize; d->idxbits = idxbits; d->offset = (uint16_t*)(&data[10]); d->symlen = ((uint8_t *)d) + sizeof(PairsData) + (h - 1) * sizeof(base_t); d->sympat = &data[12 + 2 * h]; d->min_len = min_len; *next = &data[12 + 2 * h + 3 * num_syms + (num_syms & 1)]; uint64_t num_indices = (tb_size + (1ULL << idxbits) - 1) >> idxbits; size[0] = 6ULL * num_indices; size[1] = 2ULL * num_blocks; size[2] = (1ULL << blocksize) * real_num_blocks; // char tmp[num_syms]; char tmp[4096]; for (i = 0; i < num_syms; ++i) tmp[i] = 0; for (i = 0; i < num_syms; ++i) if (!tmp[i]) calc_symlen(d, i, tmp); d->base[h - 1] = 0; for (i = h - 2; i >= 0; --i) d->base[i] = (d->base[i + 1] + ReadUshort((uint8_t*)(d->offset + i)) - ReadUshort((uint8_t*)(d->offset + i + 1))) / 2; for (i = 0; i < h; ++i) d->base[i] <<= 64 - (min_len + i); d->offset -= d->min_len; return d; } int init_table_wdl(TBEntry *entry, const std::string& fname) { uint8_t *next; int s; uint64_t tb_size[8]; uint64_t size[8 * 3]; uint8_t flags; TBFile file(fname); if (!file.is_open()) { std::cerr << "Could not find " << fname << std::endl; return 0; } // First mmap the table into memory entry->data = file.map(&entry->mapping); uint8_t *data = (uint8_t *)entry->data; if ( data[0] != WDL_MAGIC[0] || data[1] != WDL_MAGIC[1] || data[2] != WDL_MAGIC[2] || data[3] != WDL_MAGIC[3]) { std::cerr << "Corrupted table" << std::endl; TBFile::unmap(entry->data, entry->mapping); entry->data = 0; return 0; } int split = data[4] & 1; File maxFile = data[4] & 2 ? FILE_D : FILE_A; data += 5; if (!entry->has_pawns) { TBEntry_piece *ptr = (TBEntry_piece *)entry; setup_pieces_piece(ptr, data, &tb_size[0]); data += ptr->num + 1; data += (uintptr_t)data & 1; ptr->precomp[0] = setup_pairs(data, tb_size[0], &size[0], &next, &flags, 1); data = next; if (split) { ptr->precomp[1] = setup_pairs(data, tb_size[1], &size[3], &next, &flags, 1); data = next; } else ptr->precomp[1] = NULL; ptr->precomp[0]->indextable = (char *)data; data += size[0]; if (split) { ptr->precomp[1]->indextable = (char *)data; data += size[3]; } ptr->precomp[0]->sizetable = (uint16_t *)data; data += size[1]; if (split) { ptr->precomp[1]->sizetable = (uint16_t *)data; data += size[4]; } data = (uint8_t *)(((uintptr_t)data + 0x3f) & ~0x3f); ptr->precomp[0]->data = data; data += size[2]; if (split) { data = (uint8_t *)(((uintptr_t)data + 0x3f) & ~0x3f); ptr->precomp[1]->data = data; } } else { TBEntry_pawn *ptr = (TBEntry_pawn *)entry; s = 1 + (ptr->pawns[1] > 0); for (File f = FILE_A; f <= FILE_D; ++f) { setup_pieces_pawn((TBEntry_pawn *)ptr, data, &tb_size[2 * f], f); data += ptr->num + s; } data += (uintptr_t)data & 1; for (File f = FILE_A; f <= maxFile; ++f) { ptr->file[f].precomp[0] = setup_pairs(data, tb_size[2 * f], &size[6 * f], &next, &flags, 1); data = next; if (split) { ptr->file[f].precomp[1] = setup_pairs(data, tb_size[2 * f + 1], &size[6 * f + 3], &next, &flags, 1); data = next; } else ptr->file[f].precomp[1] = NULL; } for (File f = FILE_A; f <= maxFile; ++f) { ptr->file[f].precomp[0]->indextable = (char *)data; data += size[6 * f]; if (split) { ptr->file[f].precomp[1]->indextable = (char *)data; data += size[6 * f + 3]; } } for (File f = FILE_A; f <= maxFile; ++f) { ptr->file[f].precomp[0]->sizetable = (uint16_t *)data; data += size[6 * f + 1]; if (split) { ptr->file[f].precomp[1]->sizetable = (uint16_t *)data; data += size[6 * f + 4]; } } for (File f = FILE_A; f <= maxFile; ++f) { data = (uint8_t *)(((uintptr_t)data + 0x3f) & ~0x3f); ptr->file[f].precomp[0]->data = data; data += size[6 * f + 2]; if (split) { data = (uint8_t *)(((uintptr_t)data + 0x3f) & ~0x3f); ptr->file[f].precomp[1]->data = data; data += size[6 * f + 5]; } } } return 1; } int init_table_dtz(TBEntry *entry) { uint8_t *data = (uint8_t *)entry->data; uint8_t *next; int s; uint64_t tb_size[4]; uint64_t size[4 * 3]; if (!data) return 0; if (data[0] != DTZ_MAGIC[0] || data[1] != DTZ_MAGIC[1] || data[2] != DTZ_MAGIC[2] || data[3] != DTZ_MAGIC[3]) { std::cerr << "Corrupted table" << std::endl; return 0; } File maxFile = data[4] & 2 ? FILE_D : FILE_A; data += 5; if (!entry->has_pawns) { DTZEntry_piece *ptr = (DTZEntry_piece *)entry; setup_pieces_piece_dtz(ptr, data, &tb_size[0]); data += ptr->num + 1; data += (uintptr_t)data & 1; ptr->precomp = setup_pairs(data, tb_size[0], &size[0], &next, &(ptr->flags), 0); data = next; ptr->map = data; if (ptr->flags & 2) { int i; for (i = 0; i < 4; ++i) { ptr->map_idx[i] = (uint16_t)(data + 1 - ptr->map); data += 1 + data[0]; } data += (uintptr_t)data & 1; } ptr->precomp->indextable = (char *)data; data += size[0]; ptr->precomp->sizetable = (uint16_t *)data; data += size[1]; data = (uint8_t *)(((uintptr_t)data + 0x3f) & ~0x3f); ptr->precomp->data = data; data += size[2]; } else { DTZEntry_pawn *ptr = (DTZEntry_pawn *)entry; s = 1 + (ptr->pawns[1] > 0); for (File f = FILE_A; f <= FILE_D; ++f) { setup_pieces_pawn_dtz(ptr, data, &tb_size[f], f); data += ptr->num + s; } data += (uintptr_t)data & 1; for (File f = FILE_A; f <= maxFile; ++f) { ptr->file[f].precomp = setup_pairs(data, tb_size[f], &size[3 * f], &next, &(ptr->flags[f]), 0); data = next; } ptr->map = data; for (File f = FILE_A; f <= maxFile; ++f) { if (ptr->flags[f] & 2) for (int i = 0; i < 4; ++i) { ptr->map_idx[f][i] = (uint16_t)(data + 1 - ptr->map); data += 1 + data[0]; } } data += (uintptr_t)data & 1; for (File f = FILE_A; f <= maxFile; ++f) { ptr->file[f].precomp->indextable = (char *)data; data += size[3 * f]; } for (File f = FILE_A; f <= maxFile; ++f) { ptr->file[f].precomp->sizetable = (uint16_t *)data; data += size[3 * f + 1]; } for (File f = FILE_A; f <= maxFile; ++f) { data = (uint8_t *)(((uintptr_t)data + 0x3f) & ~0x3f); ptr->file[f].precomp->data = data; data += size[3 * f + 2]; } } return 1; } template inline void byteSwap(T& x) { char tmp, *c = (char*)(&x); for (int i = 0; i < Half; ++i) tmp = c[i], c[i] = c[End-i], c[End-i] = tmp; } int decompress_pairs(PairsData* d, uint64_t idx) { const union { uint32_t i; char c[4]; } LE = { 0x01020304 }; const bool LittleEndian = (LE.c[0] == 4); if (!d->idxbits) return d->min_len; // idx = blockidx | litidx where litidx is a signed number of lenght d->idxbits uint32_t blockidx = (uint32_t)(idx >> d->idxbits); int litidx = (idx & ((1ULL << d->idxbits) - 1)) - (1ULL << (d->idxbits - 1)); // indextable points to an array of blocks of 6 bytes representing numbers in // little endian. The low 4 bytes are the block, the high 2 bytes the idxOffset. uint32_t block = *(uint32_t *)(d->indextable + 6 * blockidx); uint16_t idxOffset = *(uint16_t *)(d->indextable + 6 * blockidx + 4); if (!LittleEndian) { byteSwap(block); byteSwap(idxOffset); } litidx += idxOffset; while (litidx < 0) litidx += d->sizetable[--block] + 1; while (litidx > d->sizetable[block]) litidx -= d->sizetable[block++] + 1; uint32_t* ptr = (uint32_t*)(d->data + (block << d->blocksize)); uint64_t code = *((uint64_t*)ptr); if (LittleEndian) byteSwap(code); int m = d->min_len; uint16_t *offset = d->offset; base_t* base = d->base - m; uint8_t* symlen = d->symlen; int sym, bitcnt; ptr += 2; bitcnt = 0; // number of "empty bits" in code for (;;) { int l = m; while (code < base[l]) ++l; sym = offset[l]; if (!LittleEndian) sym = ((sym & 0xff) << 8) | (sym >> 8); sym += (int)((code - base[l]) >> (64 - l)); if (litidx < (int)symlen[sym] + 1) break; litidx -= (int)symlen[sym] + 1; code <<= l; bitcnt += l; if (bitcnt >= 32) { bitcnt -= 32; uint32_t tmp = *ptr++; if (LittleEndian) byteSwap(tmp); code |= (uint64_t)tmp << bitcnt; } } uint8_t *sympat = d->sympat; while (symlen[sym] != 0) { uint8_t* w = sympat + (3 * sym); int s1 = ((w[1] & 0xf) << 8) | w[0]; if (litidx < (int)symlen[s1] + 1) sym = s1; else { litidx -= (int)symlen[s1] + 1; sym = (w[2] << 4) | (w[1] >> 4); } } return sympat[3 * sym]; } void load_dtz_table(const std::string& fname, uint64_t key1, uint64_t key2) { DTZ_table[0].key1 = key1; DTZ_table[0].key2 = key2; DTZ_table[0].entry = NULL; TBEntry* ptr = TBHash[key1]; if (!ptr) return; TBEntry* ptr3 = (TBEntry*)malloc(ptr->has_pawns ? sizeof(DTZEntry_pawn) : sizeof(DTZEntry_piece)); TBFile file(fname); ptr3->data = file.is_open() ? file.map(&ptr3->mapping) : nullptr; ptr3->key = ptr->key; ptr3->num = ptr->num; ptr3->symmetric = ptr->symmetric; ptr3->has_pawns = ptr->has_pawns; if (ptr3->has_pawns) { DTZEntry_pawn *entry = (DTZEntry_pawn *)ptr3; entry->pawns[0] = ((TBEntry_pawn *)ptr)->pawns[0]; entry->pawns[1] = ((TBEntry_pawn *)ptr)->pawns[1]; } else { DTZEntry_piece *entry = (DTZEntry_piece *)ptr3; entry->hasUniquePieces = ((TBEntry_piece *)ptr)->hasUniquePieces; } if (!init_table_dtz(ptr3)) free(ptr3); else DTZ_table[0].entry = ptr3; } WDLScore probe_wdl_table(Position& pos, int* success) { Key key = pos.material_key(); if (pos.count(WHITE) + pos.count(BLACK) == 2) return WDLDraw; // KvK TBEntry* ptr = TBHash[key]; if (!ptr) { *success = 0; return WDLDraw; } // Init table at first access attempt if (!ptr->ready) { std::unique_lock lk(TB_mutex); if (!ptr->ready) { if (!init_table_wdl(ptr, file_name(pos, ptr->key != key) + ".rtbw")) { // Was ptr2->key = 0ULL; Just leave !ptr->ready condition *success = 0; return WDLDraw; } ptr->ready = 1; } } Square squares[TBPIECES]; int bside, smirror, cmirror; assert(key == ptr->key || !ptr->symmetric); // Entries are stored from point of view of white, so in case of a symmetric // material distribution, we just need to lookup the relative TB entry in // case we are black. Instead in case of asymmetric distribution, because // stored entry is the same for both keys, we have first to verify if the // entry is stored according to our key, otherwise we have to lookup // the relative entry. if (ptr->symmetric) { cmirror = pos.side_to_move() * 8; smirror = pos.side_to_move() * 070; bside = WHITE; } else { cmirror = (key != ptr->key) * 8; // Switch color smirror = (key != ptr->key) * 070; // Vertical flip SQ_A1 -> SQ_A8 bside = (key != ptr->key) ^ pos.side_to_move(); } // squares[i] is to contain the square 0-63 (A1-H8) for a piece of type // pc[i] ^ cmirror, where 1 = white pawn, ..., 14 = black king. // Pieces of the same type are guaranteed to be consecutive. if (!ptr->has_pawns) { TBEntry_piece* entry = (TBEntry_piece*)ptr; for (int i = 0; i < entry->num; ) { Piece pc = Piece(entry->pieces[bside][i] ^ cmirror); Bitboard b = pos.pieces(color_of(pc), type_of(pc)); do squares[i++] = pop_lsb(&b); while (b); } uint64_t idx = encode_piece(entry, entry->norm[bside], squares, entry->factor[bside]); return WDLScore(decompress_pairs(entry->precomp[bside], idx) - 2); } else { TBEntry_pawn* entry = (TBEntry_pawn*)ptr; Piece pc = Piece(entry->file[0].pieces[0][0] ^ cmirror); Bitboard b = pos.pieces(color_of(pc), type_of(pc)); int i = 0; do squares[i++] = pop_lsb(&b) ^ smirror; while (b); File f = pawn_file(entry, squares); for ( ; i < entry->num; ) { pc = Piece(entry->file[f].pieces[bside][i] ^ cmirror); b = pos.pieces(color_of(pc), type_of(pc)); do squares[i++] = pop_lsb(&b) ^ smirror; while (b); } uint64_t idx = encode_pawn(entry, entry->file[f].norm[bside], squares, entry->file[f].factor[bside]); return WDLScore(decompress_pairs(entry->file[f].precomp[bside], idx) - 2); } } int probe_dtz_table(Position& pos, int wdl, int *success) { uint64_t idx; int i, res; Square squares[TBPIECES]; Key key = pos.material_key(); if (DTZ_table[0].key1 != key && DTZ_table[0].key2 != key) { for (i = 1; i < DTZ_ENTRIES; ++i) if (DTZ_table[i].key1 == key) break; if (i < DTZ_ENTRIES) { DTZTableEntry table_entry = DTZ_table[i]; for (; i > 0; --i) DTZ_table[i] = DTZ_table[i - 1]; DTZ_table[0] = table_entry; } else { TBEntry* ptr = TBHash[key]; if (!ptr) { *success = 0; return 0; } bool mirror = (ptr->key != key); if (DTZ_table[DTZ_ENTRIES - 1].entry) free_dtz_entry(DTZ_table[DTZ_ENTRIES-1].entry); for (i = DTZ_ENTRIES - 1; i > 0; --i) DTZ_table[i] = DTZ_table[i - 1]; std::string fname = file_name(pos, mirror) + ".rtbz"; load_dtz_table(fname, get_key(pos, mirror), get_key(pos, !mirror)); } } TBEntry* ptr = DTZ_table[0].entry; if (!ptr) { *success = 0; return 0; } int bside, mirror, cmirror; if (!ptr->symmetric) { if (key != ptr->key) { cmirror = 8; mirror = 070; bside = (pos.side_to_move() == WHITE); } else { cmirror = mirror = 0; bside = !(pos.side_to_move() == WHITE); } } else { cmirror = pos.side_to_move() == WHITE ? 0 : 8; mirror = pos.side_to_move() == WHITE ? 0 : 070; bside = 0; } if (!ptr->has_pawns) { DTZEntry_piece *entry = (DTZEntry_piece *)ptr; if ((entry->flags & 1) != bside && !entry->symmetric) { *success = -1; return 0; } uint8_t *pc = entry->pieces; for (i = 0; i < entry->num;) { Bitboard bb = pos.pieces((Color)((pc[i] ^ cmirror) >> 3), (PieceType)(pc[i] & 7)); do { squares[i++] = pop_lsb(&bb); } while (bb); } idx = encode_piece((TBEntry_piece *)entry, entry->norm, squares, entry->factor); res = decompress_pairs(entry->precomp, idx); if (entry->flags & 2) res = entry->map[entry->map_idx[wdl_to_map[wdl + 2]] + res]; if (!(entry->flags & pa_flags[wdl + 2]) || (wdl & 1)) res *= 2; } else { DTZEntry_pawn *entry = (DTZEntry_pawn *)ptr; int k = entry->file[0].pieces[0] ^ cmirror; Bitboard bb = pos.pieces((Color)(k >> 3), (PieceType)(k & 7)); i = 0; do { squares[i++] = pop_lsb(&bb) ^ mirror; } while (bb); File f = pawn_file((TBEntry_pawn *)entry, squares); if ((entry->flags[f] & 1) != bside) { *success = -1; return 0; } uint8_t *pc = entry->file[f].pieces; for (; i < entry->num;) { bb = pos.pieces((Color)((pc[i] ^ cmirror) >> 3), (PieceType)(pc[i] & 7)); do { squares[i++] = pop_lsb(&bb) ^ mirror; } while (bb); } idx = encode_pawn((TBEntry_pawn *)entry, entry->file[f].norm, squares, entry->file[f].factor); res = decompress_pairs(entry->file[f].precomp, idx); if (entry->flags[f] & 2) res = entry->map[entry->map_idx[f][wdl_to_map[wdl + 2]] + res]; if (!(entry->flags[f] & pa_flags[wdl + 2]) || (wdl & 1)) res *= 2; } return res; } // Add underpromotion captures to list of captures. ExtMove *add_underprom_caps(Position& pos, ExtMove *stack, ExtMove *end) { ExtMove *moves, *extra = end; for (moves = stack; moves < end; ++moves) { Move move = moves->move; if (type_of(move) == PROMOTION && !pos.empty(to_sq(move))) { (*extra++).move = (Move)(move - (1 << 12)); (*extra++).move = (Move)(move - (2 << 12)); (*extra++).move = (Move)(move - (3 << 12)); } } return extra; } WDLScore probe_ab(Position& pos, WDLScore alpha, WDLScore beta, int *success) { WDLScore value; ExtMove stack[64]; ExtMove *moves, *end; StateInfo st; // Generate (at least) all legal non-ep captures including (under)promotions. // It is OK to generate more, as long as they are filtered out below. if (!pos.checkers()) { end = generate(pos, stack); // Since underpromotion captures are not included, we need to add them. end = add_underprom_caps(pos, stack, end); } else end = generate(pos, stack); CheckInfo ci(pos); for (moves = stack; moves < end; ++moves) { Move capture = moves->move; if ( !pos.capture(capture) || type_of(capture) == ENPASSANT || !pos.legal(capture, ci.pinned)) continue; pos.do_move(capture, st, pos.gives_check(capture, ci)); value = -probe_ab(pos, -beta, -alpha, success); pos.undo_move(capture); if (*success == 0) return WDLDraw; if (value > alpha) { if (value >= beta) { *success = 2; return value; } alpha = value; } } value = probe_wdl_table(pos, success); if (*success == 0) return WDLDraw; if (alpha >= value) { *success = 1 + (alpha > 0); return alpha; } else { *success = 1; return value; } } } // namespace void Tablebases::free() { for (int i = 0; i < TBnum_piece; ++i) free_wdl_entry(&TB_piece[i]); for (int i = 0; i < TBnum_pawn; ++i) free_wdl_entry(&TB_pawn[i]); for (int i = 0; i < DTZ_ENTRIES; ++i) if (DTZ_table[i].entry) { free_dtz_entry(DTZ_table[i].entry); DTZ_table[i].entry = nullptr; } TBHash.clear(); TBnum_piece = TBnum_pawn = 0; MaxCardinality = 0; } void Tablebases::init(const std::string& paths) { Tablebases::free(); TBPaths = paths; if (TBPaths.empty() || TBPaths == "") return; // Fill binomial[] with the Binomial Coefficents using pascal triangle // so that binomial[k-1][n] = Binomial(n, k). for (int k = 0; k < 5; ++k) { Binomial[k][0] = 0; for (int n = 1; n < 64; ++n) Binomial[k][n] = (k ? Binomial[k-1][n-1] : 1) + Binomial[k][n-1]; } for (int i = 0; i < 5; ++i) { int k = 0; for (int j = 1; j <= 4; ++j) { int s = 0; for ( ; k < 6 * j; ++k) { Pawnidx[i][k] = s; s += (i ? Binomial[i - 1][Ptwist[Invflap[k]]] : 1); } Pfactor[i][j - 1] = s; } } for (PieceType p1 = PAWN; p1 < KING; ++p1) { TBHash.insert({KING, p1, KING}); for (PieceType p2 = PAWN; p2 <= p1; ++p2) { TBHash.insert({KING, p1, p2, KING}); TBHash.insert({KING, p1, KING, p2}); for (PieceType p3 = PAWN; p3 < KING; ++p3) TBHash.insert({KING, p1, p2, KING, p3}); for (PieceType p3 = PAWN; p3 <= p2; ++p3) { TBHash.insert({KING, p1, p2, p3, KING}); for (PieceType p4 = PAWN; p4 <= p3; ++p4) TBHash.insert({KING, p1, p2, p3, p4, KING}); for (PieceType p4 = PAWN; p4 < KING; ++p4) TBHash.insert({KING, p1, p2, p3, KING, p4}); } for (PieceType p3 = PAWN; p3 <= p1; ++p3) for (PieceType p4 = PAWN; p4 <= (p1 == p3 ? p2 : p3); ++p4) TBHash.insert({KING, p1, p2, KING, p3, p4}); } } std::cerr << "info string Found " << TBnum_piece + TBnum_pawn << " tablebases" << std::endl; } // Probe the WDL table for a particular position. // If *success != 0, the probe was successful. // The return value is from the point of view of the side to move: // -2 : loss // -1 : loss, but draw under 50-move rule // 0 : draw // 1 : win, but draw under 50-move rule // 2 : win WDLScore Tablebases::probe_wdl(Position& pos, int *success) { *success = 1; WDLScore v = probe_ab(pos, WDLHardLoss, WDLHardWin, success); // If en passant is not possible, we are done. if (pos.ep_square() == SQ_NONE) return v; if (*success == 0) return WDLDraw; // Now handle en passant. WDLScore v1 = WDLScore(-3); // FIXME use a proper enum value here // Generate (at least) all legal en passant captures. ExtMove stack[MAX_MOVES]; ExtMove *moves, *end; StateInfo st; if (!pos.checkers()) end = generate(pos, stack); else end = generate(pos, stack); CheckInfo ci(pos); for (moves = stack; moves < end; ++moves) { Move capture = moves->move; if (type_of(capture) != ENPASSANT || !pos.legal(capture, ci.pinned)) continue; pos.do_move(capture, st, pos.gives_check(capture, ci)); WDLScore v0 = -probe_ab(pos, WDLHardLoss, WDLHardWin, success); pos.undo_move(capture); if (*success == 0) return WDLDraw; if (v0 > v1) v1 = v0; } if (v1 > -3) { if (v1 >= v) v = v1; else if (v == 0) { // Check whether there is at least one legal non-ep move. for (moves = stack; moves < end; ++moves) { Move capture = moves->move; if (type_of(capture) == ENPASSANT) continue; if (pos.legal(capture, ci.pinned)) break; } if (moves == end && !pos.checkers()) { end = generate(pos, end); for (; moves < end; ++moves) { Move move = moves->move; if (pos.legal(move, ci.pinned)) break; } } // If not, then we are forced to play the losing ep capture. if (moves == end) v = v1; } } return v; } // This routine treats a position with en passant captures as one without. static int probe_dtz_no_ep(Position& pos, int *success) { int dtz; WDLScore wdl = probe_ab(pos, WDLHardLoss, WDLHardWin, success); if (*success == 0) return 0; if (wdl == WDLDraw) return 0; if (*success == 2) return wdl == WDLHardWin ? 1 : 101; ExtMove stack[MAX_MOVES]; ExtMove *moves, *end = NULL; StateInfo st; CheckInfo ci(pos); if (wdl > 0) { // Generate at least all legal non-capturing pawn moves // including non-capturing promotions. if (!pos.checkers()) end = generate(pos, stack); else end = generate(pos, stack); for (moves = stack; moves < end; ++moves) { Move move = moves->move; if ( type_of(pos.moved_piece(move)) != PAWN || pos.capture(move) || !pos.legal(move, ci.pinned)) continue; pos.do_move(move, st, pos.gives_check(move, ci)); WDLScore v = -probe_ab(pos, WDLHardLoss, -wdl + WDLSoftWin, success); pos.undo_move(move); if (*success == 0) return 0; if (v == wdl) return v == WDLHardWin ? 1 : 101; } } dtz = 1 + probe_dtz_table(pos, wdl, success); if (*success >= 0) { if (wdl & 1) dtz += 100; return wdl >= 0 ? dtz : -dtz; } if (wdl > 0) { int best = 0xffff; for (moves = stack; moves < end; ++moves) { Move move = moves->move; if (pos.capture(move) || type_of(pos.moved_piece(move)) == PAWN || !pos.legal(move, ci.pinned)) continue; pos.do_move(move, st, pos.gives_check(move, ci)); int v = -Tablebases::probe_dtz(pos, success); pos.undo_move(move); if (*success == 0) return 0; if (v > 0 && v + 1 < best) best = v + 1; } return best; } else { int best = -1; if (!pos.checkers()) end = generate(pos, stack); else end = generate(pos, stack); for (moves = stack; moves < end; ++moves) { int v; Move move = moves->move; if (!pos.legal(move, ci.pinned)) continue; pos.do_move(move, st, pos.gives_check(move, ci)); if (st.rule50 == 0) { if (wdl == -2) v = -1; else { v = probe_ab(pos, WDLSoftWin, WDLHardWin, success); v = (v == 2) ? 0 : -101; } } else { v = -Tablebases::probe_dtz(pos, success) - 1; } pos.undo_move(move); if (*success == 0) return 0; if (v < best) best = v; } return best; } } // Probe the DTZ table for a particular position. // If *success != 0, the probe was successful. // The return value is from the point of view of the side to move: // n < -100 : loss, but draw under 50-move rule // -100 <= n < -1 : loss in n ply (assuming 50-move counter == 0) // 0 : draw // 1 < n <= 100 : win in n ply (assuming 50-move counter == 0) // 100 < n : win, but draw under 50-move rule // // The return value n can be off by 1: a return value -n can mean a loss // in n+1 ply and a return value +n can mean a win in n+1 ply. This // cannot happen for tables with positions exactly on the "edge" of // the 50-move rule. // // This implies that if dtz > 0 is returned, the position is certainly // a win if dtz + 50-move-counter <= 99. Care must be taken that the engine // picks moves that preserve dtz + 50-move-counter <= 99. // // If n = 100 immediately after a capture or pawn move, then the position // is also certainly a win, and during the whole phase until the next // capture or pawn move, the inequality to be preserved is // dtz + 50-movecounter <= 100. // // In short, if a move is available resulting in dtz + 50-move-counter <= 99, // then do not accept moves leading to dtz + 50-move-counter == 100. // int Tablebases::probe_dtz(Position& pos, int *success) { *success = 1; int v = probe_dtz_no_ep(pos, success); if (pos.ep_square() == SQ_NONE) return v; if (*success == 0) return 0; // Now handle en passant. int v1 = -3; ExtMove stack[MAX_MOVES]; ExtMove *moves, *end; StateInfo st; if (!pos.checkers()) end = generate(pos, stack); else end = generate(pos, stack); CheckInfo ci(pos); for (moves = stack; moves < end; ++moves) { Move capture = moves->move; if (type_of(capture) != ENPASSANT || !pos.legal(capture, ci.pinned)) continue; pos.do_move(capture, st, pos.gives_check(capture, ci)); WDLScore v0 = -probe_ab(pos, WDLHardLoss, WDLHardWin, success); pos.undo_move(capture); if (*success == 0) return 0; if (v0 > v1) v1 = v0; } if (v1 > -3) { v1 = wdl_to_dtz[v1 + 2]; if (v < -100) { if (v1 >= 0) v = v1; } else if (v < 0) { if (v1 >= 0 || v1 < -100) v = v1; } else if (v > 100) { if (v1 > 0) v = v1; } else if (v > 0) { if (v1 == 1) v = v1; } else if (v1 >= 0) { v = v1; } else { for (moves = stack; moves < end; ++moves) { Move move = moves->move; if (type_of(move) == ENPASSANT) continue; if (pos.legal(move, ci.pinned)) break; } if (moves == end && !pos.checkers()) { end = generate(pos, end); for (; moves < end; ++moves) { Move move = moves->move; if (pos.legal(move, ci.pinned)) break; } } if (moves == end) v = v1; } } return v; } // Check whether there has been at least one repetition of positions // since the last capture or pawn move. static int has_repeated(StateInfo *st) { while (1) { int i = 4, e = std::min(st->rule50, st->pliesFromNull); if (e < i) return 0; StateInfo *stp = st->previous->previous; do { stp = stp->previous->previous; if (stp->key == st->key) return 1; i += 2; } while (i <= e); st = st->previous; } } // Use the DTZ tables to filter out moves that don't preserve the win or draw. // If the position is lost, but DTZ is fairly high, only keep moves that // maximise DTZ. // // A return value false indicates that not all probes were successful and that // no moves were filtered out. bool Tablebases::root_probe(Position& pos, Search::RootMoves& rootMoves, Value& score) { int success; int dtz = probe_dtz(pos, &success); if (!success) return false; StateInfo st; CheckInfo ci(pos); // Probe each move for (size_t i = 0; i < rootMoves.size(); ++i) { Move move = rootMoves[i].pv[0]; pos.do_move(move, st, pos.gives_check(move, ci)); int v = 0; if (pos.checkers() && dtz > 0) { ExtMove s[MAX_MOVES]; if (generate(pos, s) == s) v = 1; } if (!v) { if (st.rule50 != 0) { v = -Tablebases::probe_dtz(pos, &success); if (v > 0) ++v; else if (v < 0) --v; } else { v = -Tablebases::probe_wdl(pos, &success); v = wdl_to_dtz[v + 2]; } } pos.undo_move(move); if (!success) return false; rootMoves[i].score = (Value)v; } // Obtain 50-move counter for the root position. // In Stockfish there seems to be no clean way, so we do it like this: int cnt50 = st.previous->rule50; // Use 50-move counter to determine whether the root position is // won, lost or drawn. int wdl = 0; if (dtz > 0) wdl = (dtz + cnt50 <= 100) ? 2 : 1; else if (dtz < 0) wdl = (-dtz + cnt50 <= 100) ? -2 : -1; // Determine the score to report to the user. score = WDL_to_value[wdl + 2]; // If the position is winning or losing, but too few moves left, adjust the // score to show how close it is to winning or losing. // NOTE: int(PawnValueEg) is used as scaling factor in score_to_uci(). if (wdl == 1 && dtz <= 100) score = (Value)(((200 - dtz - cnt50) * int(PawnValueEg)) / 200); else if (wdl == -1 && dtz >= -100) score = -(Value)(((200 + dtz - cnt50) * int(PawnValueEg)) / 200); // Now be a bit smart about filtering out moves. size_t j = 0; if (dtz > 0) { // winning (or 50-move rule draw) int best = 0xffff; for (size_t i = 0; i < rootMoves.size(); ++i) { int v = rootMoves[i].score; if (v > 0 && v < best) best = v; } int max = best; // If the current phase has not seen repetitions, then try all moves // that stay safely within the 50-move budget, if there are any. if (!has_repeated(st.previous) && best + cnt50 <= 99) max = 99 - cnt50; for (size_t i = 0; i < rootMoves.size(); ++i) { int v = rootMoves[i].score; if (v > 0 && v <= max) rootMoves[j++] = rootMoves[i]; } } else if (dtz < 0) { // losing (or 50-move rule draw) int best = 0; for (size_t i = 0; i < rootMoves.size(); ++i) { int v = rootMoves[i].score; if (v < best) best = v; } // Try all moves, unless we approach or have a 50-move rule draw. if (-best * 2 + cnt50 < 100) return true; for (size_t i = 0; i < rootMoves.size(); ++i) { if (rootMoves[i].score == best) rootMoves[j++] = rootMoves[i]; } } else { // drawing // Try all moves that preserve the draw. for (size_t i = 0; i < rootMoves.size(); ++i) { if (rootMoves[i].score == 0) rootMoves[j++] = rootMoves[i]; } } rootMoves.resize(j, Search::RootMove(MOVE_NONE)); return true; } // Use the WDL tables to filter out moves that don't preserve the win or draw. // This is a fallback for the case that some or all DTZ tables are missing. // // A return value false indicates that not all probes were successful and that // no moves were filtered out. bool Tablebases::root_probe_wdl(Position& pos, Search::RootMoves& rootMoves, Value& score) { int success; WDLScore wdl = Tablebases::probe_wdl(pos, &success); if (!success) return false; score = WDL_to_value[wdl + 2]; StateInfo st; CheckInfo ci(pos); int best = WDLHardLoss; // Probe each move for (size_t i = 0; i < rootMoves.size(); ++i) { Move move = rootMoves[i].pv[0]; pos.do_move(move, st, pos.gives_check(move, ci)); WDLScore v = -Tablebases::probe_wdl(pos, &success); pos.undo_move(move); if (!success) return false; rootMoves[i].score = (Value)v; if (v > best) best = v; } size_t j = 0; for (size_t i = 0; i < rootMoves.size(); ++i) { if (rootMoves[i].score == best) rootMoves[j++] = rootMoves[i]; } rootMoves.resize(j, Search::RootMove(MOVE_NONE)); return true; }