/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2009 Marco Costalba Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ //// //// Includes //// #include #include #include #include "material.h" using namespace std; //// //// Local definitions //// namespace { // Values modified by Joona Kiiski const Value BishopPairMidgameBonus = Value(109); const Value BishopPairEndgameBonus = Value(97); // Polynomial material balance parameters const Value RedundantQueenPenalty = Value(358); const Value RedundantRookPenalty = Value(536); const int LinearCoefficients[6] = { 1740, -146, -1246, -197, 206, -7 }; const int QuadraticCoefficientsSameColor[][6] = { { 0, 0, 0, 0, 0, 0 }, { 31, -4, 0, 0, 0, 0 }, { 14, 267, -21, 0, 0, 0 }, { 0, 7, -26, 0, 0, 0 }, { -3, -1, 69, 162, 80, 0 }, { 40, 27, 119, 174, -64, -49 } }; const int QuadraticCoefficientsOppositeColor[][6] = { { 0, 0, 0, 0, 0, 0 }, { -9, 0, 0, 0, 0, 0 }, { 49, 32, 0, 0, 0, 0 }, { -25, 19, -5, 0, 0, 0 }, { 97, -6, 39, -88, 0, 0 }, { 77, 69, -42, 104, 116, 0 } }; // Unmapped endgame evaluation and scaling functions, these // are accessed direcly and not through the function maps. EvaluationFunction EvaluateKmmKm(WHITE); EvaluationFunction EvaluateKXK(WHITE), EvaluateKKX(BLACK); ScalingFunction ScaleKBPK(WHITE), ScaleKKBP(BLACK); ScalingFunction ScaleKQKRP(WHITE), ScaleKRPKQ(BLACK); ScalingFunction ScaleKPsK(WHITE), ScaleKKPs(BLACK); ScalingFunction ScaleKPKPw(WHITE), ScaleKPKPb(BLACK); Key KNNKMaterialKey, KKNNMaterialKey; } //// //// Classes //// typedef EndgameEvaluationFunctionBase EF; typedef EndgameScalingFunctionBase SF; /// See header for a class description. It is declared here to avoid /// to include in the header file. class EndgameFunctions { public: EndgameFunctions(); ~EndgameFunctions(); template T* get(Key key) const; private: template void add(const string& keyCode); static Key buildKey(const string& keyCode); static const string swapColors(const string& keyCode); // Here we store two maps, one for evaluate and one for scaling pair, map > maps; // Maps accessing functions for const and non-const references template const map& get() const { return maps.first; } template map& get() { return maps.first; } }; // Explicit specializations of a member function shall be declared in // the namespace of which the class template is a member. template<> const map& EndgameFunctions::get() const { return maps.second; } template<> map& EndgameFunctions::get() { return maps.second; } //// //// Functions //// /// Constructor for the MaterialInfoTable class MaterialInfoTable::MaterialInfoTable(unsigned int numOfEntries) { size = numOfEntries; entries = new MaterialInfo[size]; funcs = new EndgameFunctions(); if (!entries || !funcs) { cerr << "Failed to allocate " << (numOfEntries * sizeof(MaterialInfo)) << " bytes for material hash table." << endl; Application::exit_with_failure(); } } /// Destructor for the MaterialInfoTable class MaterialInfoTable::~MaterialInfoTable() { delete funcs; delete [] entries; } /// MaterialInfoTable::get_material_info() takes a position object as input, /// computes or looks up a MaterialInfo object, and returns a pointer to it. /// If the material configuration is not already present in the table, it /// is stored there, so we don't have to recompute everything when the /// same material configuration occurs again. MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) { Key key = pos.get_material_key(); int index = key & (size - 1); MaterialInfo* mi = entries + index; // If mi->key matches the position's material hash key, it means that we // have analysed this material configuration before, and we can simply // return the information we found the last time instead of recomputing it. if (mi->key == key) return mi; // Clear the MaterialInfo object, and set its key mi->clear(); mi->key = key; // A special case before looking for a specialized evaluation function // KNN vs K is a draw. if (key == KNNKMaterialKey || key == KKNNMaterialKey) { mi->factor[WHITE] = mi->factor[BLACK] = 0; return mi; } // Let's look if we have a specialized evaluation function for this // particular material configuration. First we look for a fixed // configuration one, then a generic one if previous search failed. if ((mi->evaluationFunction = funcs->get(key)) != NULL) return mi; else if ( pos.non_pawn_material(BLACK) == Value(0) && pos.piece_count(BLACK, PAWN) == 0 && pos.non_pawn_material(WHITE) >= RookValueMidgame) { mi->evaluationFunction = &EvaluateKXK; return mi; } else if ( pos.non_pawn_material(WHITE) == Value(0) && pos.piece_count(WHITE, PAWN) == 0 && pos.non_pawn_material(BLACK) >= RookValueMidgame) { mi->evaluationFunction = &EvaluateKKX; return mi; } else if ( pos.pawns() == EmptyBoardBB && pos.rooks() == EmptyBoardBB && pos.queens() == EmptyBoardBB) { // Minor piece endgame with at least one minor piece per side, // and no pawns. assert(pos.knights(WHITE) | pos.bishops(WHITE)); assert(pos.knights(BLACK) | pos.bishops(BLACK)); if ( pos.piece_count(WHITE, BISHOP) + pos.piece_count(WHITE, KNIGHT) <= 2 && pos.piece_count(BLACK, BISHOP) + pos.piece_count(BLACK, KNIGHT) <= 2) { mi->evaluationFunction = &EvaluateKmmKm; return mi; } } // OK, we didn't find any special evaluation function for the current // material configuration. Is there a suitable scaling function? // // The code below is rather messy, and it could easily get worse later, // if we decide to add more special cases. We face problems when there // are several conflicting applicable scaling functions and we need to // decide which one to use. SF* sf; if ((sf = funcs->get(key)) != NULL) { mi->scalingFunction[sf->color()] = sf; return mi; } if ( pos.non_pawn_material(WHITE) == BishopValueMidgame && pos.piece_count(WHITE, BISHOP) == 1 && pos.piece_count(WHITE, PAWN) >= 1) mi->scalingFunction[WHITE] = &ScaleKBPK; if ( pos.non_pawn_material(BLACK) == BishopValueMidgame && pos.piece_count(BLACK, BISHOP) == 1 && pos.piece_count(BLACK, PAWN) >= 1) mi->scalingFunction[BLACK] = &ScaleKKBP; if ( pos.piece_count(WHITE, PAWN) == 0 && pos.non_pawn_material(WHITE) == QueenValueMidgame && pos.piece_count(WHITE, QUEEN) == 1 && pos.piece_count(BLACK, ROOK) == 1 && pos.piece_count(BLACK, PAWN) >= 1) mi->scalingFunction[WHITE] = &ScaleKQKRP; else if ( pos.piece_count(BLACK, PAWN) == 0 && pos.non_pawn_material(BLACK) == QueenValueMidgame && pos.piece_count(BLACK, QUEEN) == 1 && pos.piece_count(WHITE, ROOK) == 1 && pos.piece_count(WHITE, PAWN) >= 1) mi->scalingFunction[BLACK] = &ScaleKRPKQ; if (pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) == Value(0)) { if (pos.piece_count(BLACK, PAWN) == 0) { assert(pos.piece_count(WHITE, PAWN) >= 2); mi->scalingFunction[WHITE] = &ScaleKPsK; } else if (pos.piece_count(WHITE, PAWN) == 0) { assert(pos.piece_count(BLACK, PAWN) >= 2); mi->scalingFunction[BLACK] = &ScaleKKPs; } else if (pos.piece_count(WHITE, PAWN) == 1 && pos.piece_count(BLACK, PAWN) == 1) { mi->scalingFunction[WHITE] = &ScaleKPKPw; mi->scalingFunction[BLACK] = &ScaleKPKPb; } } // Compute the space weight if (pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) >= 2*QueenValueMidgame + 4*RookValueMidgame + 2*KnightValueMidgame) { int minorPieceCount = pos.piece_count(WHITE, KNIGHT) + pos.piece_count(BLACK, KNIGHT) + pos.piece_count(WHITE, BISHOP) + pos.piece_count(BLACK, BISHOP); mi->spaceWeight = minorPieceCount * minorPieceCount; } // Evaluate the material balance const int bishopsPair_count[2] = { pos.piece_count(WHITE, BISHOP) > 1, pos.piece_count(BLACK, BISHOP) > 1 }; Color c, them; int sign; int matValue = 0; for (c = WHITE, sign = 1; c <= BLACK; c++, sign = -sign) { // No pawns makes it difficult to win, even with a material advantage if ( pos.piece_count(c, PAWN) == 0 && pos.non_pawn_material(c) - pos.non_pawn_material(opposite_color(c)) <= BishopValueMidgame) { if ( pos.non_pawn_material(c) == pos.non_pawn_material(opposite_color(c)) || pos.non_pawn_material(c) < RookValueMidgame) mi->factor[c] = 0; else { switch (pos.piece_count(c, BISHOP)) { case 2: mi->factor[c] = 32; break; case 1: mi->factor[c] = 12; break; case 0: mi->factor[c] = 6; break; } } } // Redundancy of major pieces, formula based on Kaufman's paper // "The Evaluation of Material Imbalances in Chess" // http://mywebpages.comcast.net/danheisman/Articles/evaluation_of_material_imbalance.htm if (pos.piece_count(c, ROOK) >= 1) matValue -= sign * ((pos.piece_count(c, ROOK) - 1) * RedundantRookPenalty + pos.piece_count(c, QUEEN) * RedundantQueenPenalty); // Second-degree polynomial material imbalance by Tord Romstad // // We use NO_PIECE_TYPE as a place holder for the bishop pair "extended piece", // this allow us to be more flexible in defining bishop pair bonuses. them = opposite_color(c); for (PieceType pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; pt1++) { int c1, c2, c3; c1 = sign * (pt1 != NO_PIECE_TYPE ? pos.piece_count(c, pt1) : bishopsPair_count[c]); if (!c1) continue; matValue += c1 * LinearCoefficients[pt1]; for (PieceType pt2 = NO_PIECE_TYPE; pt2 <= pt1; pt2++) { c2 = (pt2 != NO_PIECE_TYPE ? pos.piece_count(c, pt2) : bishopsPair_count[c]); c3 = (pt2 != NO_PIECE_TYPE ? pos.piece_count(them, pt2) : bishopsPair_count[them]); matValue += c1 * c2 * QuadraticCoefficientsSameColor[pt1][pt2]; matValue += c1 * c3 * QuadraticCoefficientsOppositeColor[pt1][pt2]; } } } mi->value = int16_t(matValue / 16); return mi; } /// EndgameFunctions member definitions. This class is used to store the maps /// of end game and scaling functions that MaterialInfoTable will query for /// each key. The maps are constant and are populated only at construction, /// but are per-thread instead of globals to avoid expensive locks needed /// because std::map is not guaranteed to be thread-safe even if accessed /// only for a lookup. EndgameFunctions::EndgameFunctions() { KNNKMaterialKey = buildKey("KNNK"); KKNNMaterialKey = buildKey("KKNN"); add >("KPK"); add >("KBNK"); add >("KRKP"); add >("KRKB"); add >("KRKN"); add >("KQKR"); add >("KBBKN"); add >("KNPK"); add >("KRPKR"); add >("KBPKB"); add >("KBPPKB"); add >("KBPKN"); add >("KRPPKRP"); add >("KRPPKRP"); } EndgameFunctions::~EndgameFunctions() { for (map::iterator it = maps.first.begin(); it != maps.first.end(); ++it) delete (*it).second; for (map::iterator it = maps.second.begin(); it != maps.second.end(); ++it) delete (*it).second; } Key EndgameFunctions::buildKey(const string& keyCode) { assert(keyCode.length() > 0 && keyCode[0] == 'K'); assert(keyCode.length() < 8); stringstream s; bool upcase = false; // Build up a fen substring with the given pieces, note // that the fen string could be of an illegal position. for (size_t i = 0; i < keyCode.length(); i++) { if (keyCode[i] == 'K') upcase = !upcase; s << char(upcase? toupper(keyCode[i]) : tolower(keyCode[i])); } s << 8 - keyCode.length() << "/8/8/8/8/8/8/8 w -"; return Position(s.str()).get_material_key(); } const string EndgameFunctions::swapColors(const string& keyCode) { // Build corresponding key for the opposite color: "KBPKN" -> "KNKBP" size_t idx = keyCode.find("K", 1); return keyCode.substr(idx) + keyCode.substr(0, idx); } template void EndgameFunctions::add(const string& keyCode) { typedef typename T::Base F; get().insert(pair(buildKey(keyCode), new T(WHITE))); get().insert(pair(buildKey(swapColors(keyCode)), new T(BLACK))); } template T* EndgameFunctions::get(Key key) const { typename map::const_iterator it(get().find(key)); return (it != get().end() ? it->second : NULL); }