/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef POSITION_H_INCLUDED #define POSITION_H_INCLUDED #include #include #include #include #include #include "bitboard.h" #include "nnue/nnue_accumulator.h" #include "nnue/nnue_architecture.h" #include "types.h" namespace Stockfish { class TranspositionTable; // StateInfo struct stores information needed to restore a Position object to // its previous state when we retract a move. Whenever a move is made on the // board (by calling Position::do_move), a StateInfo object must be passed. struct StateInfo { // Copied when making a move Key materialKey; Key pawnKey; Value nonPawnMaterial[COLOR_NB]; int castlingRights; int rule50; int pliesFromNull; Square epSquare; // Not copied when making a move (will be recomputed anyhow) Key key; Bitboard checkersBB; StateInfo* previous; Bitboard blockersForKing[COLOR_NB]; Bitboard pinners[COLOR_NB]; Bitboard checkSquares[PIECE_TYPE_NB]; Piece capturedPiece; int repetition; // Used by NNUE Eval::NNUE::Accumulator accumulatorBig; Eval::NNUE::Accumulator accumulatorSmall; DirtyPiece dirtyPiece; }; // A list to keep track of the position states along the setup moves (from the // start position to the position just before the search starts). Needed by // 'draw by repetition' detection. Use a std::deque because pointers to // elements are not invalidated upon list resizing. using StateListPtr = std::unique_ptr>; // Position class stores information regarding the board representation as // pieces, side to move, hash keys, castling info, etc. Important methods are // do_move() and undo_move(), used by the search to update node info when // traversing the search tree. class Position { public: static void init(); Position() = default; Position(const Position&) = delete; Position& operator=(const Position&) = delete; // FEN string input/output Position& set(const std::string& fenStr, bool isChess960, StateInfo* si); Position& set(const std::string& code, Color c, StateInfo* si); std::string fen() const; // Position representation Bitboard pieces(PieceType pt = ALL_PIECES) const; template Bitboard pieces(PieceType pt, PieceTypes... pts) const; Bitboard pieces(Color c) const; template Bitboard pieces(Color c, PieceTypes... pts) const; Piece piece_on(Square s) const; Square ep_square() const; bool empty(Square s) const; template int count(Color c) const; template int count() const; template Square square(Color c) const; // Castling CastlingRights castling_rights(Color c) const; bool can_castle(CastlingRights cr) const; bool castling_impeded(CastlingRights cr) const; Square castling_rook_square(CastlingRights cr) const; // Checking Bitboard checkers() const; Bitboard blockers_for_king(Color c) const; Bitboard check_squares(PieceType pt) const; Bitboard pinners(Color c) const; // Attacks to/from a given square Bitboard attackers_to(Square s) const; Bitboard attackers_to(Square s, Bitboard occupied) const; void update_slider_blockers(Color c) const; template Bitboard attacks_by(Color c) const; // Properties of moves bool legal(Move m) const; bool pseudo_legal(const Move m) const; bool capture(Move m) const; bool capture_stage(Move m) const; bool gives_check(Move m) const; Piece moved_piece(Move m) const; Piece captured_piece() const; // Doing and undoing moves void do_move(Move m, StateInfo& newSt); void do_move(Move m, StateInfo& newSt, bool givesCheck); void undo_move(Move m); void do_null_move(StateInfo& newSt, TranspositionTable& tt); void undo_null_move(); // Static Exchange Evaluation bool see_ge(Move m, int threshold = 0) const; // Accessing hash keys Key key() const; Key key_after(Move m) const; Key material_key() const; Key pawn_key() const; // Other properties of the position Color side_to_move() const; int game_ply() const; bool is_chess960() const; bool is_draw(int ply) const; bool upcoming_repetition(int ply) const; bool has_repeated() const; int rule50_count() const; Value non_pawn_material(Color c) const; Value non_pawn_material() const; // Position consistency check, for debugging bool pos_is_ok() const; void flip(); // Used by NNUE StateInfo* state() const; void put_piece(Piece pc, Square s); void remove_piece(Square s); private: // Initialization helpers (used while setting up a position) void set_castling_right(Color c, Square rfrom); void set_state() const; void set_check_info() const; // Other helpers void move_piece(Square from, Square to); template void do_castling(Color us, Square from, Square& to, Square& rfrom, Square& rto); template Key adjust_key50(Key k) const; // Data members Piece board[SQUARE_NB]; Bitboard byTypeBB[PIECE_TYPE_NB]; Bitboard byColorBB[COLOR_NB]; int pieceCount[PIECE_NB]; int castlingRightsMask[SQUARE_NB]; Square castlingRookSquare[CASTLING_RIGHT_NB]; Bitboard castlingPath[CASTLING_RIGHT_NB]; StateInfo* st; int gamePly; Color sideToMove; bool chess960; }; std::ostream& operator<<(std::ostream& os, const Position& pos); inline Color Position::side_to_move() const { return sideToMove; } inline Piece Position::piece_on(Square s) const { assert(is_ok(s)); return board[s]; } inline bool Position::empty(Square s) const { return piece_on(s) == NO_PIECE; } inline Piece Position::moved_piece(Move m) const { return piece_on(m.from_sq()); } inline Bitboard Position::pieces(PieceType pt) const { return byTypeBB[pt]; } template inline Bitboard Position::pieces(PieceType pt, PieceTypes... pts) const { return pieces(pt) | pieces(pts...); } inline Bitboard Position::pieces(Color c) const { return byColorBB[c]; } template inline Bitboard Position::pieces(Color c, PieceTypes... pts) const { return pieces(c) & pieces(pts...); } template inline int Position::count(Color c) const { return pieceCount[make_piece(c, Pt)]; } template inline int Position::count() const { return count(WHITE) + count(BLACK); } template inline Square Position::square(Color c) const { assert(count(c) == 1); return lsb(pieces(c, Pt)); } inline Square Position::ep_square() const { return st->epSquare; } inline bool Position::can_castle(CastlingRights cr) const { return st->castlingRights & cr; } inline CastlingRights Position::castling_rights(Color c) const { return c & CastlingRights(st->castlingRights); } inline bool Position::castling_impeded(CastlingRights cr) const { assert(cr == WHITE_OO || cr == WHITE_OOO || cr == BLACK_OO || cr == BLACK_OOO); return pieces() & castlingPath[cr]; } inline Square Position::castling_rook_square(CastlingRights cr) const { assert(cr == WHITE_OO || cr == WHITE_OOO || cr == BLACK_OO || cr == BLACK_OOO); return castlingRookSquare[cr]; } inline Bitboard Position::attackers_to(Square s) const { return attackers_to(s, pieces()); } template inline Bitboard Position::attacks_by(Color c) const { if constexpr (Pt == PAWN) return c == WHITE ? pawn_attacks_bb(pieces(WHITE, PAWN)) : pawn_attacks_bb(pieces(BLACK, PAWN)); else { Bitboard threats = 0; Bitboard attackers = pieces(c, Pt); while (attackers) threats |= attacks_bb(pop_lsb(attackers), pieces()); return threats; } } inline Bitboard Position::checkers() const { return st->checkersBB; } inline Bitboard Position::blockers_for_king(Color c) const { return st->blockersForKing[c]; } inline Bitboard Position::pinners(Color c) const { return st->pinners[c]; } inline Bitboard Position::check_squares(PieceType pt) const { return st->checkSquares[pt]; } inline Key Position::key() const { return adjust_key50(st->key); } template inline Key Position::adjust_key50(Key k) const { return st->rule50 < 14 - AfterMove ? k : k ^ make_key((st->rule50 - (14 - AfterMove)) / 8); } inline Key Position::pawn_key() const { return st->pawnKey; } inline Key Position::material_key() const { return st->materialKey; } inline Value Position::non_pawn_material(Color c) const { return st->nonPawnMaterial[c]; } inline Value Position::non_pawn_material() const { return non_pawn_material(WHITE) + non_pawn_material(BLACK); } inline int Position::game_ply() const { return gamePly; } inline int Position::rule50_count() const { return st->rule50; } inline bool Position::is_chess960() const { return chess960; } inline bool Position::capture(Move m) const { assert(m.is_ok()); return (!empty(m.to_sq()) && m.type_of() != CASTLING) || m.type_of() == EN_PASSANT; } // Returns true if a move is generated from the capture stage, having also // queen promotions covered, i.e. consistency with the capture stage move generation // is needed to avoid the generation of duplicate moves. inline bool Position::capture_stage(Move m) const { assert(m.is_ok()); return capture(m) || m.promotion_type() == QUEEN; } inline Piece Position::captured_piece() const { return st->capturedPiece; } inline void Position::put_piece(Piece pc, Square s) { board[s] = pc; byTypeBB[ALL_PIECES] |= byTypeBB[type_of(pc)] |= s; byColorBB[color_of(pc)] |= s; pieceCount[pc]++; pieceCount[make_piece(color_of(pc), ALL_PIECES)]++; } inline void Position::remove_piece(Square s) { Piece pc = board[s]; byTypeBB[ALL_PIECES] ^= s; byTypeBB[type_of(pc)] ^= s; byColorBB[color_of(pc)] ^= s; board[s] = NO_PIECE; pieceCount[pc]--; pieceCount[make_piece(color_of(pc), ALL_PIECES)]--; } inline void Position::move_piece(Square from, Square to) { Piece pc = board[from]; Bitboard fromTo = from | to; byTypeBB[ALL_PIECES] ^= fromTo; byTypeBB[type_of(pc)] ^= fromTo; byColorBB[color_of(pc)] ^= fromTo; board[from] = NO_PIECE; board[to] = pc; } inline void Position::do_move(Move m, StateInfo& newSt) { do_move(m, newSt, gives_check(m)); } inline StateInfo* Position::state() const { return st; } } // namespace Stockfish #endif // #ifndef POSITION_H_INCLUDED