/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2020 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // Definition of layer ClippedReLU of NNUE evaluation function #ifndef NNUE_LAYERS_CLIPPED_RELU_H_INCLUDED #define NNUE_LAYERS_CLIPPED_RELU_H_INCLUDED #include "../nnue_common.h" namespace Eval::NNUE::Layers { // Clipped ReLU template class ClippedReLU { public: // Input/output type using InputType = typename PreviousLayer::OutputType; using OutputType = std::uint8_t; static_assert(std::is_same::value, ""); // Number of input/output dimensions static constexpr IndexType kInputDimensions = PreviousLayer::kOutputDimensions; static constexpr IndexType kOutputDimensions = kInputDimensions; // Size of forward propagation buffer used in this layer static constexpr std::size_t kSelfBufferSize = CeilToMultiple(kOutputDimensions * sizeof(OutputType), kCacheLineSize); // Size of the forward propagation buffer used from the input layer to this layer static constexpr std::size_t kBufferSize = PreviousLayer::kBufferSize + kSelfBufferSize; // Hash value embedded in the evaluation file static constexpr std::uint32_t GetHashValue() { std::uint32_t hash_value = 0x538D24C7u; hash_value += PreviousLayer::GetHashValue(); return hash_value; } // Read network parameters bool ReadParameters(std::istream& stream) { return previous_layer_.ReadParameters(stream); } // Forward propagation const OutputType* Propagate( const TransformedFeatureType* transformed_features, char* buffer) const { const auto input = previous_layer_.Propagate( transformed_features, buffer + kSelfBufferSize); const auto output = reinterpret_cast(buffer); #if defined(USE_AVX2) constexpr IndexType kNumChunks = kInputDimensions / kSimdWidth; const __m256i kZero = _mm256_setzero_si256(); const __m256i kOffsets = _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0); const auto in = reinterpret_cast(input); const auto out = reinterpret_cast<__m256i*>(output); for (IndexType i = 0; i < kNumChunks; ++i) { const __m256i words0 = _mm256_srai_epi16(_mm256_packs_epi32( _mm256_loadA_si256(&in[i * 4 + 0]), _mm256_loadA_si256(&in[i * 4 + 1])), kWeightScaleBits); const __m256i words1 = _mm256_srai_epi16(_mm256_packs_epi32( _mm256_loadA_si256(&in[i * 4 + 2]), _mm256_loadA_si256(&in[i * 4 + 3])), kWeightScaleBits); _mm256_storeA_si256(&out[i], _mm256_permutevar8x32_epi32(_mm256_max_epi8( _mm256_packs_epi16(words0, words1), kZero), kOffsets)); } constexpr IndexType kStart = kNumChunks * kSimdWidth; #elif defined(USE_SSSE3) constexpr IndexType kNumChunks = kInputDimensions / kSimdWidth; #ifdef USE_SSE41 const __m128i kZero = _mm_setzero_si128(); #else const __m128i k0x80s = _mm_set1_epi8(-128); #endif const auto in = reinterpret_cast(input); const auto out = reinterpret_cast<__m128i*>(output); for (IndexType i = 0; i < kNumChunks; ++i) { const __m128i words0 = _mm_srai_epi16(_mm_packs_epi32( _mm_load_si128(&in[i * 4 + 0]), _mm_load_si128(&in[i * 4 + 1])), kWeightScaleBits); const __m128i words1 = _mm_srai_epi16(_mm_packs_epi32( _mm_load_si128(&in[i * 4 + 2]), _mm_load_si128(&in[i * 4 + 3])), kWeightScaleBits); const __m128i packedbytes = _mm_packs_epi16(words0, words1); _mm_store_si128(&out[i], #ifdef USE_SSE41 _mm_max_epi8(packedbytes, kZero) #else _mm_subs_epi8(_mm_adds_epi8(packedbytes, k0x80s), k0x80s) #endif ); } constexpr IndexType kStart = kNumChunks * kSimdWidth; #elif defined(USE_NEON) constexpr IndexType kNumChunks = kInputDimensions / (kSimdWidth / 2); const int8x8_t kZero = {0}; const auto in = reinterpret_cast(input); const auto out = reinterpret_cast(output); for (IndexType i = 0; i < kNumChunks; ++i) { int16x8_t shifted; const auto pack = reinterpret_cast(&shifted); pack[0] = vqshrn_n_s32(in[i * 2 + 0], kWeightScaleBits); pack[1] = vqshrn_n_s32(in[i * 2 + 1], kWeightScaleBits); out[i] = vmax_s8(vqmovn_s16(shifted), kZero); } constexpr IndexType kStart = kNumChunks * (kSimdWidth / 2); #else constexpr IndexType kStart = 0; #endif for (IndexType i = kStart; i < kInputDimensions; ++i) { output[i] = static_cast( std::max(0, std::min(127, input[i] >> kWeightScaleBits))); } return output; } private: PreviousLayer previous_layer_; }; } // namespace Eval::NNUE::Layers #endif // NNUE_LAYERS_CLIPPED_RELU_H_INCLUDED