/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2023 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "search.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "bitboard.h" #include "evaluate.h" #include "misc.h" #include "movegen.h" #include "movepick.h" #include "nnue/evaluate_nnue.h" #include "nnue/nnue_common.h" #include "position.h" #include "syzygy/tbprobe.h" #include "thread.h" #include "timeman.h" #include "tt.h" #include "uci.h" namespace Stockfish { namespace Search { LimitsType Limits; } namespace Tablebases { int Cardinality; bool RootInTB; bool UseRule50; Depth ProbeDepth; } namespace TB = Tablebases; using std::string; using Eval::evaluate; using namespace Search; namespace { // Different node types, used as a template parameter enum NodeType { NonPV, PV, Root }; // Futility margin Value futility_margin(Depth d, bool noTtCutNode, bool improving) { return Value((116 - 44 * noTtCutNode) * (d - improving)); } // Reductions lookup table initialized at startup int Reductions[MAX_MOVES]; // [depth or moveNumber] Depth reduction(bool i, Depth d, int mn, Value delta, Value rootDelta) { int reductionScale = Reductions[d] * Reductions[mn]; return (reductionScale + 1346 - int(delta) * 896 / int(rootDelta)) / 1024 + (!i && reductionScale > 880); } constexpr int futility_move_count(bool improving, Depth depth) { return improving ? (3 + depth * depth) : (3 + depth * depth) / 2; } // History and stats update bonus, based on depth int stat_bonus(Depth d) { return std::min(268 * d - 352, 1153); } // History and stats update malus, based on depth int stat_malus(Depth d) { return std::min(400 * d - 354, 1201); } // Add a small random component to draw evaluations to avoid 3-fold blindness Value value_draw(const Thread* thisThread) { return VALUE_DRAW - 1 + Value(thisThread->nodes & 0x2); } // Skill structure is used to implement strength limit. If we have a UCI_Elo, // we convert it to an appropriate skill level, anchored to the Stash engine. // This method is based on a fit of the Elo results for games played between // Stockfish at various skill levels and various versions of the Stash engine. // Skill 0 .. 19 now covers CCRL Blitz Elo from 1320 to 3190, approximately // Reference: https://github.com/vondele/Stockfish/commit/a08b8d4e9711c2 struct Skill { Skill(int skill_level, int uci_elo) { if (uci_elo) { double e = double(uci_elo - 1320) / (3190 - 1320); level = std::clamp((((37.2473 * e - 40.8525) * e + 22.2943) * e - 0.311438), 0.0, 19.0); } else level = double(skill_level); } bool enabled() const { return level < 20.0; } bool time_to_pick(Depth depth) const { return depth == 1 + int(level); } Move pick_best(size_t multiPV); double level; Move best = MOVE_NONE; }; template Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode); template Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth = 0); Value value_to_tt(Value v, int ply); Value value_from_tt(Value v, int ply, int r50c); void update_pv(Move* pv, Move move, const Move* childPv); void update_continuation_histories(Stack* ss, Piece pc, Square to, int bonus); void update_quiet_stats(const Position& pos, Stack* ss, Move move, int bonus); void update_all_stats(const Position& pos, Stack* ss, Move bestMove, Value bestValue, Value beta, Square prevSq, Move* quietsSearched, int quietCount, Move* capturesSearched, int captureCount, Depth depth); // Utility to verify move generation. All the leaf nodes up // to the given depth are generated and counted, and the sum is returned. template uint64_t perft(Position& pos, Depth depth) { StateInfo st; ASSERT_ALIGNED(&st, Eval::NNUE::CacheLineSize); uint64_t cnt, nodes = 0; const bool leaf = (depth == 2); for (const auto& m : MoveList(pos)) { if (Root && depth <= 1) cnt = 1, nodes++; else { pos.do_move(m, st); cnt = leaf ? MoveList(pos).size() : perft(pos, depth - 1); nodes += cnt; pos.undo_move(m); } if (Root) sync_cout << UCI::move(m, pos.is_chess960()) << ": " << cnt << sync_endl; } return nodes; } } // namespace // Called at startup to initialize various lookup tables void Search::init() { for (int i = 1; i < MAX_MOVES; ++i) Reductions[i] = int((20.37 + std::log(Threads.size()) / 2) * std::log(i)); } // Resets search state to its initial value void Search::clear() { Threads.main()->wait_for_search_finished(); Time.availableNodes = 0; TT.clear(); Threads.clear(); Tablebases::init(Options["SyzygyPath"]); // Free mapped files } // Called when the program receives the UCI 'go' // command. It searches from the root position and outputs the "bestmove". void MainThread::search() { if (Limits.perft) { nodes = perft(rootPos, Limits.perft); sync_cout << "\nNodes searched: " << nodes << "\n" << sync_endl; return; } Color us = rootPos.side_to_move(); Time.init(Limits, us, rootPos.game_ply()); TT.new_search(); Eval::NNUE::verify(); if (rootMoves.empty()) { rootMoves.emplace_back(MOVE_NONE); sync_cout << "info depth 0 score " << UCI::value(rootPos.checkers() ? -VALUE_MATE : VALUE_DRAW) << sync_endl; } else { Threads.start_searching(); // start non-main threads Thread::search(); // main thread start searching } // When we reach the maximum depth, we can arrive here without a raise of // Threads.stop. However, if we are pondering or in an infinite search, // the UCI protocol states that we shouldn't print the best move before the // GUI sends a "stop" or "ponderhit" command. We therefore simply wait here // until the GUI sends one of those commands. while (!Threads.stop && (ponder || Limits.infinite)) {} // Busy wait for a stop or a ponder reset // Stop the threads if not already stopped (also raise the stop if // "ponderhit" just reset Threads.ponder). Threads.stop = true; // Wait until all threads have finished Threads.wait_for_search_finished(); // When playing in 'nodes as time' mode, subtract the searched nodes from // the available ones before exiting. if (Limits.npmsec) Time.availableNodes += Limits.inc[us] - Threads.nodes_searched(); Thread* bestThread = this; Skill skill = Skill(Options["Skill Level"], Options["UCI_LimitStrength"] ? int(Options["UCI_Elo"]) : 0); if (int(Options["MultiPV"]) == 1 && !Limits.depth && !skill.enabled() && rootMoves[0].pv[0] != MOVE_NONE) bestThread = Threads.get_best_thread(); bestPreviousScore = bestThread->rootMoves[0].score; bestPreviousAverageScore = bestThread->rootMoves[0].averageScore; // Send again PV info if we have a new best thread if (bestThread != this) sync_cout << UCI::pv(bestThread->rootPos, bestThread->completedDepth) << sync_endl; sync_cout << "bestmove " << UCI::move(bestThread->rootMoves[0].pv[0], rootPos.is_chess960()); if (bestThread->rootMoves[0].pv.size() > 1 || bestThread->rootMoves[0].extract_ponder_from_tt(rootPos)) std::cout << " ponder " << UCI::move(bestThread->rootMoves[0].pv[1], rootPos.is_chess960()); std::cout << sync_endl; } // Main iterative deepening loop. It calls search() // repeatedly with increasing depth until the allocated thinking time has been // consumed, the user stops the search, or the maximum search depth is reached. void Thread::search() { // Allocate stack with extra size to allow access from (ss - 7) to (ss + 2): // (ss - 7) is needed for update_continuation_histories(ss - 1) which accesses (ss - 6), // (ss + 2) is needed for initialization of cutOffCnt and killers. Stack stack[MAX_PLY + 10], *ss = stack + 7; Move pv[MAX_PLY + 1]; Value alpha, beta, delta; Move lastBestMove = MOVE_NONE; Depth lastBestMoveDepth = 0; MainThread* mainThread = (this == Threads.main() ? Threads.main() : nullptr); double timeReduction = 1, totBestMoveChanges = 0; Color us = rootPos.side_to_move(); int iterIdx = 0; std::memset(ss - 7, 0, 10 * sizeof(Stack)); for (int i = 7; i > 0; --i) { (ss - i)->continuationHistory = &this->continuationHistory[0][0][NO_PIECE][0]; // Use as a sentinel (ss - i)->staticEval = VALUE_NONE; } for (int i = 0; i <= MAX_PLY + 2; ++i) (ss + i)->ply = i; ss->pv = pv; bestValue = -VALUE_INFINITE; if (mainThread) { if (mainThread->bestPreviousScore == VALUE_INFINITE) for (int i = 0; i < 4; ++i) mainThread->iterValue[i] = VALUE_ZERO; else for (int i = 0; i < 4; ++i) mainThread->iterValue[i] = mainThread->bestPreviousScore; } size_t multiPV = size_t(Options["MultiPV"]); Skill skill(Options["Skill Level"], Options["UCI_LimitStrength"] ? int(Options["UCI_Elo"]) : 0); // When playing with strength handicap enable MultiPV search that we will // use behind-the-scenes to retrieve a set of possible moves. if (skill.enabled()) multiPV = std::max(multiPV, size_t(4)); multiPV = std::min(multiPV, rootMoves.size()); int searchAgainCounter = 0; // Iterative deepening loop until requested to stop or the target depth is reached while (++rootDepth < MAX_PLY && !Threads.stop && !(Limits.depth && mainThread && rootDepth > Limits.depth)) { // Age out PV variability metric if (mainThread) totBestMoveChanges /= 2; // Save the last iteration's scores before the first PV line is searched and // all the move scores except the (new) PV are set to -VALUE_INFINITE. for (RootMove& rm : rootMoves) rm.previousScore = rm.score; size_t pvFirst = 0; pvLast = 0; if (!Threads.increaseDepth) searchAgainCounter++; // MultiPV loop. We perform a full root search for each PV line for (pvIdx = 0; pvIdx < multiPV && !Threads.stop; ++pvIdx) { if (pvIdx == pvLast) { pvFirst = pvLast; for (pvLast++; pvLast < rootMoves.size(); pvLast++) if (rootMoves[pvLast].tbRank != rootMoves[pvFirst].tbRank) break; } // Reset UCI info selDepth for each depth and each PV line selDepth = 0; // Reset aspiration window starting size Value avg = rootMoves[pvIdx].averageScore; delta = Value(9) + int(avg) * avg / 14847; alpha = std::max(avg - delta, -VALUE_INFINITE); beta = std::min(avg + delta, VALUE_INFINITE); // Adjust optimism based on root move's averageScore (~4 Elo) optimism[us] = 121 * avg / (std::abs(avg) + 109); optimism[~us] = -optimism[us]; // Start with a small aspiration window and, in the case of a fail // high/low, re-search with a bigger window until we don't fail // high/low anymore. int failedHighCnt = 0; while (true) { // Adjust the effective depth searched, but ensure at least one effective increment // for every four searchAgain steps (see issue #2717). Depth adjustedDepth = std::max(1, rootDepth - failedHighCnt - 3 * (searchAgainCounter + 1) / 4); bestValue = Stockfish::search(rootPos, ss, alpha, beta, adjustedDepth, false); // Bring the best move to the front. It is critical that sorting // is done with a stable algorithm because all the values but the // first and eventually the new best one is set to -VALUE_INFINITE // and we want to keep the same order for all the moves except the // new PV that goes to the front. Note that in the case of MultiPV // search the already searched PV lines are preserved. std::stable_sort(rootMoves.begin() + pvIdx, rootMoves.begin() + pvLast); // If search has been stopped, we break immediately. Sorting is // safe because RootMoves is still valid, although it refers to // the previous iteration. if (Threads.stop) break; // When failing high/low give some update (without cluttering // the UI) before a re-search. if (mainThread && multiPV == 1 && (bestValue <= alpha || bestValue >= beta) && Time.elapsed() > 3000) sync_cout << UCI::pv(rootPos, rootDepth) << sync_endl; // In case of failing low/high increase aspiration window and // re-search, otherwise exit the loop. if (bestValue <= alpha) { beta = (alpha + beta) / 2; alpha = std::max(bestValue - delta, -VALUE_INFINITE); failedHighCnt = 0; if (mainThread) mainThread->stopOnPonderhit = false; } else if (bestValue >= beta) { beta = std::min(bestValue + delta, VALUE_INFINITE); ++failedHighCnt; } else break; delta += delta / 3; assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE); } // Sort the PV lines searched so far and update the GUI std::stable_sort(rootMoves.begin() + pvFirst, rootMoves.begin() + pvIdx + 1); if (mainThread && (Threads.stop || pvIdx + 1 == multiPV || Time.elapsed() > 3000)) sync_cout << UCI::pv(rootPos, rootDepth) << sync_endl; } if (!Threads.stop) completedDepth = rootDepth; if (rootMoves[0].pv[0] != lastBestMove) { lastBestMove = rootMoves[0].pv[0]; lastBestMoveDepth = rootDepth; } // Have we found a "mate in x"? if (Limits.mate && bestValue >= VALUE_MATE_IN_MAX_PLY && VALUE_MATE - bestValue <= 2 * Limits.mate) Threads.stop = true; if (!mainThread) continue; // If the skill level is enabled and time is up, pick a sub-optimal best move if (skill.enabled() && skill.time_to_pick(rootDepth)) skill.pick_best(multiPV); // Use part of the gained time from a previous stable move for the current move for (Thread* th : Threads) { totBestMoveChanges += th->bestMoveChanges; th->bestMoveChanges = 0; } // Do we have time for the next iteration? Can we stop searching now? if (Limits.use_time_management() && !Threads.stop && !mainThread->stopOnPonderhit) { double fallingEval = (66 + 14 * (mainThread->bestPreviousAverageScore - bestValue) + 6 * (mainThread->iterValue[iterIdx] - bestValue)) / 616.6; fallingEval = std::clamp(fallingEval, 0.51, 1.51); // If the bestMove is stable over several iterations, reduce time accordingly timeReduction = lastBestMoveDepth + 8 < completedDepth ? 1.56 : 0.69; double reduction = (1.4 + mainThread->previousTimeReduction) / (2.17 * timeReduction); double bestMoveInstability = 1 + 1.79 * totBestMoveChanges / Threads.size(); double totalTime = Time.optimum() * fallingEval * reduction * bestMoveInstability; // Cap used time in case of a single legal move for a better viewer experience if (rootMoves.size() == 1) totalTime = std::min(500.0, totalTime); // Stop the search if we have exceeded the totalTime if (Time.elapsed() > totalTime) { // If we are allowed to ponder do not stop the search now but // keep pondering until the GUI sends "ponderhit" or "stop". if (mainThread->ponder) mainThread->stopOnPonderhit = true; else Threads.stop = true; } else if (!mainThread->ponder && Time.elapsed() > totalTime * 0.50) Threads.increaseDepth = false; else Threads.increaseDepth = true; } mainThread->iterValue[iterIdx] = bestValue; iterIdx = (iterIdx + 1) & 3; } if (!mainThread) return; mainThread->previousTimeReduction = timeReduction; // If the skill level is enabled, swap the best PV line with the sub-optimal one if (skill.enabled()) std::swap(rootMoves[0], *std::find(rootMoves.begin(), rootMoves.end(), skill.best ? skill.best : skill.pick_best(multiPV))); } namespace { // Main search function for both PV and non-PV nodes template Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode) { constexpr bool PvNode = nodeType != NonPV; constexpr bool rootNode = nodeType == Root; // Dive into quiescence search when the depth reaches zero if (depth <= 0) return qsearch < PvNode ? PV : NonPV > (pos, ss, alpha, beta); // Check if we have an upcoming move that draws by repetition, or // if the opponent had an alternative move earlier to this position. if (!rootNode && alpha < VALUE_DRAW && pos.has_game_cycle(ss->ply)) { alpha = value_draw(pos.this_thread()); if (alpha >= beta) return alpha; } assert(-VALUE_INFINITE <= alpha && alpha < beta && beta <= VALUE_INFINITE); assert(PvNode || (alpha == beta - 1)); assert(0 < depth && depth < MAX_PLY); assert(!(PvNode && cutNode)); Move pv[MAX_PLY + 1], capturesSearched[32], quietsSearched[32]; StateInfo st; ASSERT_ALIGNED(&st, Eval::NNUE::CacheLineSize); TTEntry* tte; Key posKey; Move ttMove, move, excludedMove, bestMove; Depth extension, newDepth; Value bestValue, value, ttValue, eval, maxValue, probCutBeta; bool givesCheck, improving, priorCapture, singularQuietLMR; bool capture, moveCountPruning, ttCapture; Piece movedPiece; int moveCount, captureCount, quietCount; // Step 1. Initialize node Thread* thisThread = pos.this_thread(); ss->inCheck = pos.checkers(); priorCapture = pos.captured_piece(); Color us = pos.side_to_move(); moveCount = captureCount = quietCount = ss->moveCount = 0; bestValue = -VALUE_INFINITE; maxValue = VALUE_INFINITE; // Check for the available remaining time if (thisThread == Threads.main()) static_cast(thisThread)->check_time(); // Used to send selDepth info to GUI (selDepth counts from 1, ply from 0) if (PvNode && thisThread->selDepth < ss->ply + 1) thisThread->selDepth = ss->ply + 1; if (!rootNode) { // Step 2. Check for aborted search and immediate draw if (Threads.stop.load(std::memory_order_relaxed) || pos.is_draw(ss->ply) || ss->ply >= MAX_PLY) return (ss->ply >= MAX_PLY && !ss->inCheck) ? evaluate(pos) : value_draw(pos.this_thread()); // Step 3. Mate distance pruning. Even if we mate at the next move our score // would be at best mate_in(ss->ply + 1), but if alpha is already bigger because // a shorter mate was found upward in the tree then there is no need to search // because we will never beat the current alpha. Same logic but with reversed // signs apply also in the opposite condition of being mated instead of giving // mate. In this case, return a fail-high score. alpha = std::max(mated_in(ss->ply), alpha); beta = std::min(mate_in(ss->ply + 1), beta); if (alpha >= beta) return alpha; } else thisThread->rootDelta = beta - alpha; assert(0 <= ss->ply && ss->ply < MAX_PLY); (ss + 1)->excludedMove = bestMove = MOVE_NONE; (ss + 2)->killers[0] = (ss + 2)->killers[1] = MOVE_NONE; (ss + 2)->cutoffCnt = 0; ss->doubleExtensions = (ss - 1)->doubleExtensions; Square prevSq = is_ok((ss - 1)->currentMove) ? to_sq((ss - 1)->currentMove) : SQ_NONE; ss->statScore = 0; // Step 4. Transposition table lookup. excludedMove = ss->excludedMove; posKey = pos.key(); tte = TT.probe(posKey, ss->ttHit); ttValue = ss->ttHit ? value_from_tt(tte->value(), ss->ply, pos.rule50_count()) : VALUE_NONE; ttMove = rootNode ? thisThread->rootMoves[thisThread->pvIdx].pv[0] : ss->ttHit ? tte->move() : MOVE_NONE; ttCapture = ttMove && pos.capture_stage(ttMove); // At this point, if excluded, skip straight to step 6, static eval. However, // to save indentation, we list the condition in all code between here and there. if (!excludedMove) ss->ttPv = PvNode || (ss->ttHit && tte->is_pv()); // At non-PV nodes we check for an early TT cutoff if (!PvNode && !excludedMove && tte->depth() > depth && ttValue != VALUE_NONE // Possible in case of TT access race or if !ttHit && (tte->bound() & (ttValue >= beta ? BOUND_LOWER : BOUND_UPPER))) { // If ttMove is quiet, update move sorting heuristics on TT hit (~2 Elo) if (ttMove) { if (ttValue >= beta) { // Bonus for a quiet ttMove that fails high (~2 Elo) if (!ttCapture) update_quiet_stats(pos, ss, ttMove, stat_bonus(depth)); // Extra penalty for early quiet moves of // the previous ply (~0 Elo on STC, ~2 Elo on LTC). if (prevSq != SQ_NONE && (ss - 1)->moveCount <= 2 && !priorCapture) update_continuation_histories(ss - 1, pos.piece_on(prevSq), prevSq, -stat_malus(depth + 1)); } // Penalty for a quiet ttMove that fails low (~1 Elo) else if (!ttCapture) { int penalty = -stat_malus(depth); thisThread->mainHistory[us][from_to(ttMove)] << penalty; update_continuation_histories(ss, pos.moved_piece(ttMove), to_sq(ttMove), penalty); } } // Partial workaround for the graph history interaction problem // For high rule50 counts don't produce transposition table cutoffs. if (pos.rule50_count() < 90) return ttValue; } // Step 5. Tablebases probe if (!rootNode && !excludedMove && TB::Cardinality) { int piecesCount = pos.count(); if (piecesCount <= TB::Cardinality && (piecesCount < TB::Cardinality || depth >= TB::ProbeDepth) && pos.rule50_count() == 0 && !pos.can_castle(ANY_CASTLING)) { TB::ProbeState err; TB::WDLScore wdl = Tablebases::probe_wdl(pos, &err); // Force check of time on the next occasion if (thisThread == Threads.main()) static_cast(thisThread)->callsCnt = 0; if (err != TB::ProbeState::FAIL) { thisThread->tbHits.fetch_add(1, std::memory_order_relaxed); int drawScore = TB::UseRule50 ? 1 : 0; Value tbValue = VALUE_TB - ss->ply; // use the range VALUE_TB to VALUE_TB_WIN_IN_MAX_PLY to score value = wdl < -drawScore ? -tbValue : wdl > drawScore ? tbValue : VALUE_DRAW + 2 * wdl * drawScore; Bound b = wdl < -drawScore ? BOUND_UPPER : wdl > drawScore ? BOUND_LOWER : BOUND_EXACT; if (b == BOUND_EXACT || (b == BOUND_LOWER ? value >= beta : value <= alpha)) { tte->save(posKey, value_to_tt(value, ss->ply), ss->ttPv, b, std::min(MAX_PLY - 1, depth + 6), MOVE_NONE, VALUE_NONE); return value; } if (PvNode) { if (b == BOUND_LOWER) bestValue = value, alpha = std::max(alpha, bestValue); else maxValue = value; } } } } CapturePieceToHistory& captureHistory = thisThread->captureHistory; // Step 6. Static evaluation of the position if (ss->inCheck) { // Skip early pruning when in check ss->staticEval = eval = VALUE_NONE; improving = false; goto moves_loop; } else if (excludedMove) { // Providing the hint that this node's accumulator will be used often // brings significant Elo gain (~13 Elo). Eval::NNUE::hint_common_parent_position(pos); eval = ss->staticEval; } else if (ss->ttHit) { // Never assume anything about values stored in TT ss->staticEval = eval = tte->eval(); if (eval == VALUE_NONE) ss->staticEval = eval = evaluate(pos); else if (PvNode) Eval::NNUE::hint_common_parent_position(pos); // ttValue can be used as a better position evaluation (~7 Elo) if (ttValue != VALUE_NONE && (tte->bound() & (ttValue > eval ? BOUND_LOWER : BOUND_UPPER))) eval = ttValue; } else { ss->staticEval = eval = evaluate(pos); // Save static evaluation into the transposition table tte->save(posKey, VALUE_NONE, ss->ttPv, BOUND_NONE, DEPTH_NONE, MOVE_NONE, eval); } // Use static evaluation difference to improve quiet move ordering (~4 Elo) if (is_ok((ss - 1)->currentMove) && !(ss - 1)->inCheck && !priorCapture) { int bonus = std::clamp(-13 * int((ss - 1)->staticEval + ss->staticEval), -1652, 1546); thisThread->mainHistory[~us][from_to((ss - 1)->currentMove)] << bonus; if (type_of(pos.piece_on(prevSq)) != PAWN && type_of((ss - 1)->currentMove) != PROMOTION) thisThread->pawnHistory[pawn_structure(pos)][pos.piece_on(prevSq)][prevSq] << bonus / 4; } // Set up the improving flag, which is true if current static evaluation is // bigger than the previous static evaluation at our turn (if we were in // check at our previous move we look at static evaluation at move prior to it // and if we were in check at move prior to it flag is set to true) and is // false otherwise. The improving flag is used in various pruning heuristics. improving = (ss - 2)->staticEval != VALUE_NONE ? ss->staticEval > (ss - 2)->staticEval : (ss - 4)->staticEval != VALUE_NONE ? ss->staticEval > (ss - 4)->staticEval : true; // Step 7. Razoring (~1 Elo) // If eval is really low check with qsearch if it can exceed alpha, if it can't, // return a fail low. // Adjust razor margin according to cutoffCnt. (~1 Elo) if (eval < alpha - 472 - (284 - 165 * ((ss + 1)->cutoffCnt > 3)) * depth * depth) { value = qsearch(pos, ss, alpha - 1, alpha); if (value < alpha) return value; } // Step 8. Futility pruning: child node (~40 Elo) // The depth condition is important for mate finding. if (!ss->ttPv && depth < 9 && eval - futility_margin(depth, cutNode && !ss->ttHit, improving) - (ss - 1)->statScore / 337 >= beta && eval >= beta && eval < 29008 // smaller than TB wins && (!ttMove || ttCapture)) return (eval + beta) / 2; // Step 9. Null move search with verification search (~35 Elo) if (!PvNode && (ss - 1)->currentMove != MOVE_NULL && (ss - 1)->statScore < 17496 && eval >= beta && eval >= ss->staticEval && ss->staticEval >= beta - 23 * depth + 304 && !excludedMove && pos.non_pawn_material(us) && ss->ply >= thisThread->nmpMinPly && beta > VALUE_TB_LOSS_IN_MAX_PLY) { assert(eval - beta >= 0); // Null move dynamic reduction based on depth and eval Depth R = std::min(int(eval - beta) / 144, 6) + depth / 3 + 4; ss->currentMove = MOVE_NULL; ss->continuationHistory = &thisThread->continuationHistory[0][0][NO_PIECE][0]; pos.do_null_move(st); Value nullValue = -search(pos, ss + 1, -beta, -beta + 1, depth - R, !cutNode); pos.undo_null_move(); // Do not return unproven mate or TB scores if (nullValue >= beta && nullValue < VALUE_TB_WIN_IN_MAX_PLY) { if (thisThread->nmpMinPly || depth < 15) return nullValue; assert(!thisThread->nmpMinPly); // Recursive verification is not allowed // Do verification search at high depths, with null move pruning disabled // until ply exceeds nmpMinPly. thisThread->nmpMinPly = ss->ply + 3 * (depth - R) / 4; Value v = search(pos, ss, beta - 1, beta, depth - R, false); thisThread->nmpMinPly = 0; if (v >= beta) return nullValue; } } // Step 10. Internal iterative reductions (~9 Elo) // For PV nodes without a ttMove, we decrease depth by 2, // or by 4 if the current position is present in the TT and // the stored depth is greater than or equal to the current depth. // Use qsearch if depth <= 0. if (PvNode && !ttMove) depth -= 2 + 2 * (ss->ttHit && tte->depth() >= depth); if (depth <= 0) return qsearch(pos, ss, alpha, beta); // For cutNodes without a ttMove, we decrease depth by 2 if depth is high enough. if (cutNode && depth >= 8 && !ttMove) depth -= 2; probCutBeta = beta + 163 - 67 * improving; // Step 11. ProbCut (~10 Elo) // If we have a good enough capture (or queen promotion) and a reduced search returns a value // much above beta, we can (almost) safely prune the previous move. if ( !PvNode && depth > 3 && std::abs(beta) < VALUE_TB_WIN_IN_MAX_PLY // If value from transposition table is lower than probCutBeta, don't attempt probCut // there and in further interactions with transposition table cutoff depth is set to depth - 3 // because probCut search has depth set to depth - 4 but we also do a move before it // So effective depth is equal to depth - 3 && !(tte->depth() >= depth - 3 && ttValue != VALUE_NONE && ttValue < probCutBeta)) { assert(probCutBeta < VALUE_INFINITE); MovePicker mp(pos, ttMove, probCutBeta - ss->staticEval, &captureHistory); while ((move = mp.next_move()) != MOVE_NONE) if (move != excludedMove && pos.legal(move)) { assert(pos.capture_stage(move)); // Prefetch the TT entry for the resulting position prefetch(TT.first_entry(pos.key_after(move))); ss->currentMove = move; ss->continuationHistory = &thisThread ->continuationHistory[ss->inCheck][true][pos.moved_piece(move)][to_sq(move)]; pos.do_move(move, st); // Perform a preliminary qsearch to verify that the move holds value = -qsearch(pos, ss + 1, -probCutBeta, -probCutBeta + 1); // If the qsearch held, perform the regular search if (value >= probCutBeta) value = -search(pos, ss + 1, -probCutBeta, -probCutBeta + 1, depth - 4, !cutNode); pos.undo_move(move); if (value >= probCutBeta) { // Save ProbCut data into transposition table tte->save(posKey, value_to_tt(value, ss->ply), ss->ttPv, BOUND_LOWER, depth - 3, move, ss->staticEval); return value - (probCutBeta - beta); } } Eval::NNUE::hint_common_parent_position(pos); } moves_loop: // When in check, search starts here // Step 12. A small Probcut idea, when we are in check (~4 Elo) probCutBeta = beta + 425; if (ss->inCheck && !PvNode && ttCapture && (tte->bound() & BOUND_LOWER) && tte->depth() >= depth - 4 && ttValue >= probCutBeta && std::abs(ttValue) < VALUE_TB_WIN_IN_MAX_PLY && std::abs(beta) < VALUE_TB_WIN_IN_MAX_PLY) return probCutBeta; const PieceToHistory* contHist[] = {(ss - 1)->continuationHistory, (ss - 2)->continuationHistory, (ss - 3)->continuationHistory, (ss - 4)->continuationHistory, nullptr, (ss - 6)->continuationHistory}; Move countermove = prevSq != SQ_NONE ? thisThread->counterMoves[pos.piece_on(prevSq)][prevSq] : MOVE_NONE; MovePicker mp(pos, ttMove, depth, &thisThread->mainHistory, &captureHistory, contHist, &thisThread->pawnHistory, countermove, ss->killers); value = bestValue; moveCountPruning = singularQuietLMR = false; // Indicate PvNodes that will probably fail low if the node was searched // at a depth equal to or greater than the current depth, and the result // of this search was a fail low. bool likelyFailLow = PvNode && ttMove && (tte->bound() & BOUND_UPPER) && tte->depth() >= depth; // Step 13. Loop through all pseudo-legal moves until no moves remain // or a beta cutoff occurs. while ((move = mp.next_move(moveCountPruning)) != MOVE_NONE) { assert(is_ok(move)); if (move == excludedMove) continue; // Check for legality if (!pos.legal(move)) continue; // At root obey the "searchmoves" option and skip moves not listed in Root // Move List. In MultiPV mode we also skip PV moves that have been already // searched and those of lower "TB rank" if we are in a TB root position. if (rootNode && !std::count(thisThread->rootMoves.begin() + thisThread->pvIdx, thisThread->rootMoves.begin() + thisThread->pvLast, move)) continue; ss->moveCount = ++moveCount; if (rootNode && thisThread == Threads.main() && Time.elapsed() > 3000) sync_cout << "info depth " << depth << " currmove " << UCI::move(move, pos.is_chess960()) << " currmovenumber " << moveCount + thisThread->pvIdx << sync_endl; if (PvNode) (ss + 1)->pv = nullptr; extension = 0; capture = pos.capture_stage(move); movedPiece = pos.moved_piece(move); givesCheck = pos.gives_check(move); // Calculate new depth for this move newDepth = depth - 1; Value delta = beta - alpha; Depth r = reduction(improving, depth, moveCount, delta, thisThread->rootDelta); // Step 14. Pruning at shallow depth (~120 Elo). // Depth conditions are important for mate finding. if (!rootNode && pos.non_pawn_material(us) && bestValue > VALUE_TB_LOSS_IN_MAX_PLY) { // Skip quiet moves if movecount exceeds our FutilityMoveCount threshold (~8 Elo) if (!moveCountPruning) moveCountPruning = moveCount >= futility_move_count(improving, depth); // Reduced depth of the next LMR search int lmrDepth = newDepth - r; if (capture || givesCheck) { // Futility pruning for captures (~2 Elo) if (!givesCheck && lmrDepth < 7 && !ss->inCheck) { Piece capturedPiece = pos.piece_on(to_sq(move)); int futilityEval = ss->staticEval + 238 + 305 * lmrDepth + PieceValue[capturedPiece] + captureHistory[movedPiece][to_sq(move)][type_of(capturedPiece)] / 7; if (futilityEval < alpha) continue; } // SEE based pruning for captures and checks (~11 Elo) if (!pos.see_ge(move, Value(-187) * depth)) continue; } else { int history = (*contHist[0])[movedPiece][to_sq(move)] + (*contHist[1])[movedPiece][to_sq(move)] + (*contHist[3])[movedPiece][to_sq(move)] + thisThread->pawnHistory[pawn_structure(pos)][movedPiece][to_sq(move)]; // Continuation history based pruning (~2 Elo) if (lmrDepth < 6 && history < -3752 * depth) continue; history += 2 * thisThread->mainHistory[us][from_to(move)]; lmrDepth += history / 7838; lmrDepth = std::max(lmrDepth, -1); // Futility pruning: parent node (~13 Elo) if (!ss->inCheck && lmrDepth < 14 && ss->staticEval + (bestValue < ss->staticEval - 57 ? 124 : 71) + 118 * lmrDepth <= alpha) continue; lmrDepth = std::max(lmrDepth, 0); // Prune moves with negative SEE (~4 Elo) if (!pos.see_ge(move, Value(-26 * lmrDepth * lmrDepth))) continue; } } // Step 15. Extensions (~100 Elo) // We take care to not overdo to avoid search getting stuck. if (ss->ply < thisThread->rootDepth * 2) { // Singular extension search (~94 Elo). If all moves but one fail low on a // search of (alpha-s, beta-s), and just one fails high on (alpha, beta), // then that move is singular and should be extended. To verify this we do // a reduced search on the position excluding the ttMove and if the result // is lower than ttValue minus a margin, then we will extend the ttMove. // Note: the depth margin and singularBeta margin are known for having non-linear // scaling. Their values are optimized to time controls of 180+1.8 and longer // so changing them requires tests at these types of time controls. // Recursive singular search is avoided. if (!rootNode && move == ttMove && !excludedMove && depth >= 4 - (thisThread->completedDepth > 27) + 2 * (PvNode && tte->is_pv()) && std::abs(ttValue) < VALUE_TB_WIN_IN_MAX_PLY && (tte->bound() & BOUND_LOWER) && tte->depth() >= depth - 3) { Value singularBeta = ttValue - (66 + 58 * (ss->ttPv && !PvNode)) * depth / 64; Depth singularDepth = newDepth / 2; ss->excludedMove = move; value = search(pos, ss, singularBeta - 1, singularBeta, singularDepth, cutNode); ss->excludedMove = MOVE_NONE; if (value < singularBeta) { extension = 1; singularQuietLMR = !ttCapture; // Avoid search explosion by limiting the number of double extensions if (!PvNode && value < singularBeta - 17 && ss->doubleExtensions <= 11) { extension = 2; depth += depth < 15; } } // Multi-cut pruning // Our ttMove is assumed to fail high based on the bound of the TT entry, // and if after excluding the ttMove with a reduced search we fail high over the original beta, // we assume this expected cut-node is not singular (multiple moves fail high), // and we can prune the whole subtree by returning a softbound. else if (singularBeta >= beta) return singularBeta; // Negative extensions // If other moves failed high over (ttValue - margin) without the ttMove on a reduced search, // but we cannot do multi-cut because (ttValue - margin) is lower than the original beta, // we do not know if the ttMove is singular or can do a multi-cut, // so we reduce the ttMove in favor of other moves based on some conditions: // If the ttMove is assumed to fail high over current beta (~7 Elo) else if (ttValue >= beta) extension = -2 - !PvNode; // If we are on a cutNode but the ttMove is not assumed to fail high over current beta (~1 Elo) else if (cutNode) extension = depth < 19 ? -2 : -1; // If the ttMove is assumed to fail low over the value of the reduced search (~1 Elo) else if (ttValue <= value) extension = -1; } // Check extensions (~1 Elo) else if (givesCheck && depth > 10) extension = 1; // Quiet ttMove extensions (~1 Elo) else if (PvNode && move == ttMove && move == ss->killers[0] && (*contHist[0])[movedPiece][to_sq(move)] >= 4325) extension = 1; // Recapture extensions (~1 Elo) else if (PvNode && move == ttMove && to_sq(move) == prevSq && captureHistory[movedPiece][to_sq(move)][type_of(pos.piece_on(to_sq(move)))] > 4146) extension = 1; } // Add extension to new depth newDepth += extension; ss->doubleExtensions = (ss - 1)->doubleExtensions + (extension == 2); // Speculative prefetch as early as possible prefetch(TT.first_entry(pos.key_after(move))); // Update the current move (this must be done after singular extension search) ss->currentMove = move; ss->continuationHistory = &thisThread->continuationHistory[ss->inCheck][capture][movedPiece][to_sq(move)]; // Step 16. Make the move pos.do_move(move, st, givesCheck); // Decrease reduction if position is or has been on the PV (~4 Elo) if (ss->ttPv && !likelyFailLow) r -= cutNode && tte->depth() >= depth ? 3 : 2; // Decrease reduction if opponent's move count is high (~1 Elo) if ((ss - 1)->moveCount > 7) r--; // Increase reduction for cut nodes (~3 Elo) if (cutNode) r += 2; // Increase reduction if ttMove is a capture (~3 Elo) if (ttCapture) r++; // Decrease reduction for PvNodes (~2 Elo) if (PvNode) r--; // Decrease reduction if a quiet ttMove has been singularly extended (~1 Elo) if (singularQuietLMR) r--; // Increase reduction on repetition (~1 Elo) if (move == (ss - 4)->currentMove && pos.has_repeated()) r += 2; // Increase reduction if next ply has a lot of fail high (~5 Elo) if ((ss + 1)->cutoffCnt > 3) r++; // Set reduction to 0 for first picked move (ttMove) (~2 Elo) // Nullifies all previous reduction adjustments to ttMove and leaves only history to do them else if (move == ttMove) r = 0; ss->statScore = 2 * thisThread->mainHistory[us][from_to(move)] + (*contHist[0])[movedPiece][to_sq(move)] + (*contHist[1])[movedPiece][to_sq(move)] + (*contHist[3])[movedPiece][to_sq(move)] - 3817; // Decrease/increase reduction for moves with a good/bad history (~25 Elo) r -= ss->statScore / 14767; // Step 17. Late moves reduction / extension (LMR, ~117 Elo) // We use various heuristics for the sons of a node after the first son has // been searched. In general, we would like to reduce them, but there are many // cases where we extend a son if it has good chances to be "interesting". if (depth >= 2 && moveCount > 1 + rootNode && (!ss->ttPv || !capture || (cutNode && (ss - 1)->moveCount > 1))) { // In general we want to cap the LMR depth search at newDepth, but when // reduction is negative, we allow this move a limited search extension // beyond the first move depth. This may lead to hidden double extensions. // To prevent problems when the max value is less than the min value, // std::clamp has been replaced by a more robust implementation. Depth d = std::max(1, std::min(newDepth - r, newDepth + 1)); value = -search(pos, ss + 1, -(alpha + 1), -alpha, d, true); // Do a full-depth search when reduced LMR search fails high if (value > alpha && d < newDepth) { // Adjust full-depth search based on LMR results - if the result // was good enough search deeper, if it was bad enough search shallower. const bool doDeeperSearch = value > (bestValue + 53 + 2 * newDepth); // (~1 Elo) const bool doShallowerSearch = value < bestValue + newDepth; // (~2 Elo) newDepth += doDeeperSearch - doShallowerSearch; if (newDepth > d) value = -search(pos, ss + 1, -(alpha + 1), -alpha, newDepth, !cutNode); int bonus = value <= alpha ? -stat_malus(newDepth) : value >= beta ? stat_bonus(newDepth) : 0; update_continuation_histories(ss, movedPiece, to_sq(move), bonus); } } // Step 18. Full-depth search when LMR is skipped else if (!PvNode || moveCount > 1) { // Increase reduction if ttMove is not present (~1 Elo) if (!ttMove) r += 2; // Note that if expected reduction is high, we reduce search depth by 1 here value = -search(pos, ss + 1, -(alpha + 1), -alpha, newDepth - (r > 3), !cutNode); } // For PV nodes only, do a full PV search on the first move or after a fail high, // otherwise let the parent node fail low with value <= alpha and try another move. if (PvNode && (moveCount == 1 || value > alpha)) { (ss + 1)->pv = pv; (ss + 1)->pv[0] = MOVE_NONE; value = -search(pos, ss + 1, -beta, -alpha, newDepth, false); } // Step 19. Undo move pos.undo_move(move); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); // Step 20. Check for a new best move // Finished searching the move. If a stop occurred, the return value of // the search cannot be trusted, and we return immediately without // updating best move, PV and TT. if (Threads.stop.load(std::memory_order_relaxed)) return VALUE_ZERO; if (rootNode) { RootMove& rm = *std::find(thisThread->rootMoves.begin(), thisThread->rootMoves.end(), move); rm.averageScore = rm.averageScore != -VALUE_INFINITE ? (2 * value + rm.averageScore) / 3 : value; // PV move or new best move? if (moveCount == 1 || value > alpha) { rm.score = rm.uciScore = value; rm.selDepth = thisThread->selDepth; rm.scoreLowerbound = rm.scoreUpperbound = false; if (value >= beta) { rm.scoreLowerbound = true; rm.uciScore = beta; } else if (value <= alpha) { rm.scoreUpperbound = true; rm.uciScore = alpha; } rm.pv.resize(1); assert((ss + 1)->pv); for (Move* m = (ss + 1)->pv; *m != MOVE_NONE; ++m) rm.pv.push_back(*m); // We record how often the best move has been changed in each iteration. // This information is used for time management. In MultiPV mode, // we must take care to only do this for the first PV line. if (moveCount > 1 && !thisThread->pvIdx) ++thisThread->bestMoveChanges; } else // All other moves but the PV, are set to the lowest value: this // is not a problem when sorting because the sort is stable and the // move position in the list is preserved - just the PV is pushed up. rm.score = -VALUE_INFINITE; } if (value > bestValue) { bestValue = value; if (value > alpha) { bestMove = move; if (PvNode && !rootNode) // Update pv even in fail-high case update_pv(ss->pv, move, (ss + 1)->pv); if (value >= beta) { ss->cutoffCnt += 1 + !ttMove; assert(value >= beta); // Fail high break; } else { // Reduce other moves if we have found at least one score improvement (~2 Elo) if (depth > 2 && depth < 12 && beta < 13782 && value > -11541) depth -= 2; assert(depth > 0); alpha = value; // Update alpha! Always alpha < beta } } } // If the move is worse than some previously searched move, // remember it, to update its stats later. if (move != bestMove && moveCount <= 32) { if (capture) capturesSearched[captureCount++] = move; else quietsSearched[quietCount++] = move; } } // Step 21. Check for mate and stalemate // All legal moves have been searched and if there are no legal moves, it // must be a mate or a stalemate. If we are in a singular extension search then // return a fail low score. assert(moveCount || !ss->inCheck || excludedMove || !MoveList(pos).size()); if (!moveCount) bestValue = excludedMove ? alpha : ss->inCheck ? mated_in(ss->ply) : VALUE_DRAW; // If there is a move that produces search value greater than alpha we update the stats of searched moves else if (bestMove) update_all_stats(pos, ss, bestMove, bestValue, beta, prevSq, quietsSearched, quietCount, capturesSearched, captureCount, depth); // Bonus for prior countermove that caused the fail low else if (!priorCapture && prevSq != SQ_NONE) { int bonus = (depth > 6) + (PvNode || cutNode) + ((ss - 1)->statScore < -18782) + ((ss - 1)->moveCount > 10); update_continuation_histories(ss - 1, pos.piece_on(prevSq), prevSq, stat_bonus(depth) * bonus); thisThread->mainHistory[~us][from_to((ss - 1)->currentMove)] << stat_bonus(depth) * bonus / 2; } if (PvNode) bestValue = std::min(bestValue, maxValue); // If no good move is found and the previous position was ttPv, then the previous // opponent move is probably good and the new position is added to the search tree. (~7 Elo) if (bestValue <= alpha) ss->ttPv = ss->ttPv || ((ss - 1)->ttPv && depth > 3); // Write gathered information in transposition table if (!excludedMove && !(rootNode && thisThread->pvIdx)) tte->save(posKey, value_to_tt(bestValue, ss->ply), ss->ttPv, bestValue >= beta ? BOUND_LOWER : PvNode && bestMove ? BOUND_EXACT : BOUND_UPPER, depth, bestMove, ss->staticEval); assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); return bestValue; } // Quiescence search function, which is called by the main search // function with zero depth, or recursively with further decreasing depth per call. // (~155 Elo) template Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) { static_assert(nodeType != Root); constexpr bool PvNode = nodeType == PV; assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE); assert(PvNode || (alpha == beta - 1)); assert(depth <= 0); // Check if we have an upcoming move that draws by repetition, or // if the opponent had an alternative move earlier to this position. if (alpha < VALUE_DRAW && pos.has_game_cycle(ss->ply)) { alpha = value_draw(pos.this_thread()); if (alpha >= beta) return alpha; } Move pv[MAX_PLY + 1]; StateInfo st; ASSERT_ALIGNED(&st, Eval::NNUE::CacheLineSize); TTEntry* tte; Key posKey; Move ttMove, move, bestMove; Depth ttDepth; Value bestValue, value, ttValue, futilityValue, futilityBase; bool pvHit, givesCheck, capture; int moveCount; Color us = pos.side_to_move(); // Step 1. Initialize node if (PvNode) { (ss + 1)->pv = pv; ss->pv[0] = MOVE_NONE; } Thread* thisThread = pos.this_thread(); bestMove = MOVE_NONE; ss->inCheck = pos.checkers(); moveCount = 0; // Used to send selDepth info to GUI (selDepth counts from 1, ply from 0) if (PvNode && thisThread->selDepth < ss->ply + 1) thisThread->selDepth = ss->ply + 1; // Step 2. Check for an immediate draw or maximum ply reached if (pos.is_draw(ss->ply) || ss->ply >= MAX_PLY) return (ss->ply >= MAX_PLY && !ss->inCheck) ? evaluate(pos) : VALUE_DRAW; assert(0 <= ss->ply && ss->ply < MAX_PLY); // Decide the replacement and cutoff priority of the qsearch TT entries ttDepth = ss->inCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS : DEPTH_QS_NO_CHECKS; // Step 3. Transposition table lookup posKey = pos.key(); tte = TT.probe(posKey, ss->ttHit); ttValue = ss->ttHit ? value_from_tt(tte->value(), ss->ply, pos.rule50_count()) : VALUE_NONE; ttMove = ss->ttHit ? tte->move() : MOVE_NONE; pvHit = ss->ttHit && tte->is_pv(); // At non-PV nodes we check for an early TT cutoff if (!PvNode && tte->depth() >= ttDepth && ttValue != VALUE_NONE // Only in case of TT access race or if !ttHit && (tte->bound() & (ttValue >= beta ? BOUND_LOWER : BOUND_UPPER))) return ttValue; // Step 4. Static evaluation of the position if (ss->inCheck) bestValue = futilityBase = -VALUE_INFINITE; else { if (ss->ttHit) { // Never assume anything about values stored in TT if ((ss->staticEval = bestValue = tte->eval()) == VALUE_NONE) ss->staticEval = bestValue = evaluate(pos); // ttValue can be used as a better position evaluation (~13 Elo) if (ttValue != VALUE_NONE && (tte->bound() & (ttValue > bestValue ? BOUND_LOWER : BOUND_UPPER))) bestValue = ttValue; } else // In case of null move search, use previous static eval with a different sign ss->staticEval = bestValue = (ss - 1)->currentMove != MOVE_NULL ? evaluate(pos) : -(ss - 1)->staticEval; // Stand pat. Return immediately if static value is at least beta if (bestValue >= beta) { if (!ss->ttHit) tte->save(posKey, value_to_tt(bestValue, ss->ply), false, BOUND_LOWER, DEPTH_NONE, MOVE_NONE, ss->staticEval); return bestValue; } if (bestValue > alpha) alpha = bestValue; futilityBase = ss->staticEval + 182; } const PieceToHistory* contHist[] = {(ss - 1)->continuationHistory, (ss - 2)->continuationHistory}; // Initialize a MovePicker object for the current position, and prepare // to search the moves. Because the depth is <= 0 here, only captures, // queen promotions, and other checks (only if depth >= DEPTH_QS_CHECKS) // will be generated. Square prevSq = is_ok((ss - 1)->currentMove) ? to_sq((ss - 1)->currentMove) : SQ_NONE; MovePicker mp(pos, ttMove, depth, &thisThread->mainHistory, &thisThread->captureHistory, contHist, &thisThread->pawnHistory); int quietCheckEvasions = 0; // Step 5. Loop through all pseudo-legal moves until no moves remain // or a beta cutoff occurs. while ((move = mp.next_move()) != MOVE_NONE) { assert(is_ok(move)); // Check for legality if (!pos.legal(move)) continue; givesCheck = pos.gives_check(move); capture = pos.capture_stage(move); moveCount++; // Step 6. Pruning if (bestValue > VALUE_TB_LOSS_IN_MAX_PLY && pos.non_pawn_material(us)) { // Futility pruning and moveCount pruning (~10 Elo) if (!givesCheck && to_sq(move) != prevSq && futilityBase > VALUE_TB_LOSS_IN_MAX_PLY && type_of(move) != PROMOTION) { if (moveCount > 2) continue; futilityValue = futilityBase + PieceValue[pos.piece_on(to_sq(move))]; // If static eval + value of piece we are going to capture is much lower // than alpha we can prune this move. if (futilityValue <= alpha) { bestValue = std::max(bestValue, futilityValue); continue; } // If static eval is much lower than alpha and move is not winning material // we can prune this move. if (futilityBase <= alpha && !pos.see_ge(move, VALUE_ZERO + 1)) { bestValue = std::max(bestValue, futilityBase); continue; } // If static exchange evaluation is much worse than what is needed to not // fall below alpha we can prune this move. if (futilityBase > alpha && !pos.see_ge(move, (alpha - futilityBase) * 4)) { bestValue = alpha; continue; } } // We prune after the second quiet check evasion move, where being 'in check' is // implicitly checked through the counter, and being a 'quiet move' apart from // being a tt move is assumed after an increment because captures are pushed ahead. if (quietCheckEvasions > 1) break; // Continuation history based pruning (~3 Elo) if (!capture && (*contHist[0])[pos.moved_piece(move)][to_sq(move)] < 0 && (*contHist[1])[pos.moved_piece(move)][to_sq(move)] < 0) continue; // Do not search moves with bad enough SEE values (~5 Elo) if (!pos.see_ge(move, Value(-77))) continue; } // Speculative prefetch as early as possible prefetch(TT.first_entry(pos.key_after(move))); // Update the current move ss->currentMove = move; ss->continuationHistory = &thisThread ->continuationHistory[ss->inCheck][capture][pos.moved_piece(move)][to_sq(move)]; quietCheckEvasions += !capture && ss->inCheck; // Step 7. Make and search the move pos.do_move(move, st, givesCheck); value = -qsearch(pos, ss + 1, -beta, -alpha, depth - 1); pos.undo_move(move); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); // Step 8. Check for a new best move if (value > bestValue) { bestValue = value; if (value > alpha) { bestMove = move; if (PvNode) // Update pv even in fail-high case update_pv(ss->pv, move, (ss + 1)->pv); if (value < beta) // Update alpha here! alpha = value; else break; // Fail high } } } // Step 9. Check for mate // All legal moves have been searched. A special case: if we're in check // and no legal moves were found, it is checkmate. if (ss->inCheck && bestValue == -VALUE_INFINITE) { assert(!MoveList(pos).size()); return mated_in(ss->ply); // Plies to mate from the root } if (abs(bestValue) < VALUE_TB_WIN_IN_MAX_PLY) bestValue = bestValue >= beta ? (3 * bestValue + beta) / 4 : bestValue; // Save gathered info in transposition table tte->save(posKey, value_to_tt(bestValue, ss->ply), pvHit, bestValue >= beta ? BOUND_LOWER : BOUND_UPPER, ttDepth, bestMove, ss->staticEval); assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); return bestValue; } // Adjusts a mate or TB score from "plies to mate from the root" // to "plies to mate from the current position". Standard scores are unchanged. // The function is called before storing a value in the transposition table. Value value_to_tt(Value v, int ply) { assert(v != VALUE_NONE); return v >= VALUE_TB_WIN_IN_MAX_PLY ? v + ply : v <= VALUE_TB_LOSS_IN_MAX_PLY ? v - ply : v; } // Inverse of value_to_tt(): it adjusts a mate or TB score // from the transposition table (which refers to the plies to mate/be mated from // current position) to "plies to mate/be mated (TB win/loss) from the root". // However, to avoid potentially false mate or TB scores related to the 50 moves rule // and the graph history interaction, we return highest non-TB score instead. Value value_from_tt(Value v, int ply, int r50c) { if (v == VALUE_NONE) return VALUE_NONE; // handle TB win or better if (v >= VALUE_TB_WIN_IN_MAX_PLY) { // Downgrade a potentially false mate score if (v >= VALUE_MATE_IN_MAX_PLY && VALUE_MATE - v > 100 - r50c) return VALUE_TB_WIN_IN_MAX_PLY - 1; // Downgrade a potentially false TB score. if (VALUE_TB - v > 100 - r50c) return VALUE_TB_WIN_IN_MAX_PLY - 1; return v - ply; } // handle TB loss or worse if (v <= VALUE_TB_LOSS_IN_MAX_PLY) { // Downgrade a potentially false mate score. if (v <= VALUE_MATED_IN_MAX_PLY && VALUE_MATE + v > 100 - r50c) return VALUE_TB_LOSS_IN_MAX_PLY + 1; // Downgrade a potentially false TB score. if (VALUE_TB + v > 100 - r50c) return VALUE_TB_LOSS_IN_MAX_PLY + 1; return v + ply; } return v; } // Adds current move and appends child pv[] void update_pv(Move* pv, Move move, const Move* childPv) { for (*pv++ = move; childPv && *childPv != MOVE_NONE;) *pv++ = *childPv++; *pv = MOVE_NONE; } // Updates stats at the end of search() when a bestMove is found void update_all_stats(const Position& pos, Stack* ss, Move bestMove, Value bestValue, Value beta, Square prevSq, Move* quietsSearched, int quietCount, Move* capturesSearched, int captureCount, Depth depth) { Color us = pos.side_to_move(); Thread* thisThread = pos.this_thread(); CapturePieceToHistory& captureHistory = thisThread->captureHistory; Piece moved_piece = pos.moved_piece(bestMove); PieceType captured; int quietMoveBonus = stat_bonus(depth + 1); int quietMoveMalus = stat_malus(depth); if (!pos.capture_stage(bestMove)) { int bestMoveBonus = bestValue > beta + 173 ? quietMoveBonus // larger bonus : stat_bonus(depth); // smaller bonus // Increase stats for the best move in case it was a quiet move update_quiet_stats(pos, ss, bestMove, bestMoveBonus); thisThread->pawnHistory[pawn_structure(pos)][moved_piece][to_sq(bestMove)] << quietMoveBonus; // Decrease stats for all non-best quiet moves for (int i = 0; i < quietCount; ++i) { thisThread->pawnHistory[pawn_structure(pos)][pos.moved_piece(quietsSearched[i])] [to_sq(quietsSearched[i])] << -quietMoveMalus; thisThread->mainHistory[us][from_to(quietsSearched[i])] << -quietMoveMalus; update_continuation_histories(ss, pos.moved_piece(quietsSearched[i]), to_sq(quietsSearched[i]), -quietMoveMalus); } } else { // Increase stats for the best move in case it was a capture move captured = type_of(pos.piece_on(to_sq(bestMove))); captureHistory[moved_piece][to_sq(bestMove)][captured] << quietMoveBonus; } // Extra penalty for a quiet early move that was not a TT move or // main killer move in previous ply when it gets refuted. if (prevSq != SQ_NONE && ((ss - 1)->moveCount == 1 + (ss - 1)->ttHit || ((ss - 1)->currentMove == (ss - 1)->killers[0])) && !pos.captured_piece()) update_continuation_histories(ss - 1, pos.piece_on(prevSq), prevSq, -quietMoveMalus); // Decrease stats for all non-best capture moves for (int i = 0; i < captureCount; ++i) { moved_piece = pos.moved_piece(capturesSearched[i]); captured = type_of(pos.piece_on(to_sq(capturesSearched[i]))); captureHistory[moved_piece][to_sq(capturesSearched[i])][captured] << -quietMoveMalus; } } // Updates histories of the move pairs formed // by moves at ply -1, -2, -3, -4, and -6 with current move. void update_continuation_histories(Stack* ss, Piece pc, Square to, int bonus) { for (int i : {1, 2, 3, 4, 6}) { // Only update the first 2 continuation histories if we are in check if (ss->inCheck && i > 2) break; if (is_ok((ss - i)->currentMove)) (*(ss - i)->continuationHistory)[pc][to] << bonus / (1 + 3 * (i == 3)); } } // Updates move sorting heuristics void update_quiet_stats(const Position& pos, Stack* ss, Move move, int bonus) { // Update killers if (ss->killers[0] != move) { ss->killers[1] = ss->killers[0]; ss->killers[0] = move; } Color us = pos.side_to_move(); Thread* thisThread = pos.this_thread(); thisThread->mainHistory[us][from_to(move)] << bonus; update_continuation_histories(ss, pos.moved_piece(move), to_sq(move), bonus); // Update countermove history if (is_ok((ss - 1)->currentMove)) { Square prevSq = to_sq((ss - 1)->currentMove); thisThread->counterMoves[pos.piece_on(prevSq)][prevSq] = move; } } // When playing with strength handicap, choose the best move among a set of RootMoves // using a statistical rule dependent on 'level'. Idea by Heinz van Saanen. Move Skill::pick_best(size_t multiPV) { const RootMoves& rootMoves = Threads.main()->rootMoves; static PRNG rng(now()); // PRNG sequence should be non-deterministic // RootMoves are already sorted by score in descending order Value topScore = rootMoves[0].score; int delta = std::min(topScore - rootMoves[multiPV - 1].score, PawnValue); int maxScore = -VALUE_INFINITE; double weakness = 120 - 2 * level; // Choose best move. For each move score we add two terms, both dependent on // weakness. One is deterministic and bigger for weaker levels, and one is // random. Then we choose the move with the resulting highest score. for (size_t i = 0; i < multiPV; ++i) { // This is our magic formula int push = int((weakness * int(topScore - rootMoves[i].score) + delta * (rng.rand() % int(weakness))) / 128); if (rootMoves[i].score + push >= maxScore) { maxScore = rootMoves[i].score + push; best = rootMoves[i].pv[0]; } } return best; } } // namespace // Used to print debug info and, more importantly, // to detect when we are out of available time and thus stop the search. void MainThread::check_time() { if (--callsCnt > 0) return; // When using nodes, ensure checking rate is not lower than 0.1% of nodes callsCnt = Limits.nodes ? std::min(512, int(Limits.nodes / 1024)) : 512; static TimePoint lastInfoTime = now(); TimePoint elapsed = Time.elapsed(); TimePoint tick = Limits.startTime + elapsed; if (tick - lastInfoTime >= 1000) { lastInfoTime = tick; dbg_print(); } // We should not stop pondering until told so by the GUI if (ponder) return; if ((Limits.use_time_management() && (elapsed > Time.maximum() || stopOnPonderhit)) || (Limits.movetime && elapsed >= Limits.movetime) || (Limits.nodes && Threads.nodes_searched() >= uint64_t(Limits.nodes))) Threads.stop = true; } // Formats PV information according to the UCI protocol. UCI requires // that all (if any) unsearched PV lines are sent using a previous search score. string UCI::pv(const Position& pos, Depth depth) { std::stringstream ss; TimePoint elapsed = Time.elapsed() + 1; const RootMoves& rootMoves = pos.this_thread()->rootMoves; size_t pvIdx = pos.this_thread()->pvIdx; size_t multiPV = std::min(size_t(Options["MultiPV"]), rootMoves.size()); uint64_t nodesSearched = Threads.nodes_searched(); uint64_t tbHits = Threads.tb_hits() + (TB::RootInTB ? rootMoves.size() : 0); for (size_t i = 0; i < multiPV; ++i) { bool updated = rootMoves[i].score != -VALUE_INFINITE; if (depth == 1 && !updated && i > 0) continue; Depth d = updated ? depth : std::max(1, depth - 1); Value v = updated ? rootMoves[i].uciScore : rootMoves[i].previousScore; if (v == -VALUE_INFINITE) v = VALUE_ZERO; bool tb = TB::RootInTB && std::abs(v) <= VALUE_TB; v = tb ? rootMoves[i].tbScore : v; if (ss.rdbuf()->in_avail()) // Not at first line ss << "\n"; ss << "info" << " depth " << d << " seldepth " << rootMoves[i].selDepth << " multipv " << i + 1 << " score " << UCI::value(v); if (Options["UCI_ShowWDL"]) ss << UCI::wdl(v, pos.game_ply()); if (i == pvIdx && !tb && updated) // tablebase- and previous-scores are exact ss << (rootMoves[i].scoreLowerbound ? " lowerbound" : (rootMoves[i].scoreUpperbound ? " upperbound" : "")); ss << " nodes " << nodesSearched << " nps " << nodesSearched * 1000 / elapsed << " hashfull " << TT.hashfull() << " tbhits " << tbHits << " time " << elapsed << " pv"; for (Move m : rootMoves[i].pv) ss << " " << UCI::move(m, pos.is_chess960()); } return ss.str(); } // Called in case we have no ponder move before exiting the search, // for instance, in case we stop the search during a fail high at root. // We try hard to have a ponder move to return to the GUI, // otherwise in case of 'ponder on' we have nothing to think about. bool RootMove::extract_ponder_from_tt(Position& pos) { StateInfo st; ASSERT_ALIGNED(&st, Eval::NNUE::CacheLineSize); bool ttHit; assert(pv.size() == 1); if (pv[0] == MOVE_NONE) return false; pos.do_move(pv[0], st); TTEntry* tte = TT.probe(pos.key(), ttHit); if (ttHit) { Move m = tte->move(); // Local copy to be SMP safe if (MoveList(pos).contains(m)) pv.push_back(m); } pos.undo_move(pv[0]); return pv.size() > 1; } void Tablebases::rank_root_moves(Position& pos, Search::RootMoves& rootMoves) { RootInTB = false; UseRule50 = bool(Options["Syzygy50MoveRule"]); ProbeDepth = int(Options["SyzygyProbeDepth"]); Cardinality = int(Options["SyzygyProbeLimit"]); bool dtz_available = true; // Tables with fewer pieces than SyzygyProbeLimit are searched with // ProbeDepth == DEPTH_ZERO if (Cardinality > MaxCardinality) { Cardinality = MaxCardinality; ProbeDepth = 0; } if (Cardinality >= popcount(pos.pieces()) && !pos.can_castle(ANY_CASTLING)) { // Rank moves using DTZ tables RootInTB = root_probe(pos, rootMoves); if (!RootInTB) { // DTZ tables are missing; try to rank moves using WDL tables dtz_available = false; RootInTB = root_probe_wdl(pos, rootMoves); } } if (RootInTB) { // Sort moves according to TB rank std::stable_sort(rootMoves.begin(), rootMoves.end(), [](const RootMove& a, const RootMove& b) { return a.tbRank > b.tbRank; }); // Probe during search only if DTZ is not available and we are winning if (dtz_available || rootMoves[0].tbScore <= VALUE_DRAW) Cardinality = 0; } else { // Clean up if root_probe() and root_probe_wdl() have failed for (auto& m : rootMoves) m.tbRank = 0; } } } // namespace Stockfish