/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2020 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // A class that converts the input features of the NNUE evaluation function #ifndef NNUE_FEATURE_TRANSFORMER_H_INCLUDED #define NNUE_FEATURE_TRANSFORMER_H_INCLUDED #include "nnue_common.h" #include "nnue_architecture.h" #include "features/index_list.h" #include // std::memset() namespace Eval::NNUE { // Input feature converter class FeatureTransformer { private: // Number of output dimensions for one side static constexpr IndexType kHalfDimensions = kTransformedFeatureDimensions; public: // Output type using OutputType = TransformedFeatureType; // Number of input/output dimensions static constexpr IndexType kInputDimensions = RawFeatures::kDimensions; static constexpr IndexType kOutputDimensions = kHalfDimensions * 2; // Size of forward propagation buffer static constexpr std::size_t kBufferSize = kOutputDimensions * sizeof(OutputType); // Hash value embedded in the evaluation file static constexpr std::uint32_t GetHashValue() { return RawFeatures::kHashValue ^ kOutputDimensions; } // Read network parameters bool ReadParameters(std::istream& stream) { for (std::size_t i = 0; i < kHalfDimensions; ++i) biases_[i] = read_little_endian(stream); for (std::size_t i = 0; i < kHalfDimensions * kInputDimensions; ++i) weights_[i] = read_little_endian(stream); return !stream.fail(); } // Proceed with the difference calculation if possible bool UpdateAccumulatorIfPossible(const Position& pos) const { const auto now = pos.state(); if (now->accumulator.computed_accumulation) return true; const auto prev = now->previous; if (prev && prev->accumulator.computed_accumulation) { UpdateAccumulator(pos); return true; } return false; } // Convert input features void Transform(const Position& pos, OutputType* output) const { if (!UpdateAccumulatorIfPossible(pos)) RefreshAccumulator(pos); const auto& accumulation = pos.state()->accumulator.accumulation; #if defined(USE_AVX2) constexpr IndexType kNumChunks = kHalfDimensions / kSimdWidth; constexpr int kControl = 0b11011000; const __m256i kZero = _mm256_setzero_si256(); #elif defined(USE_SSE2) constexpr IndexType kNumChunks = kHalfDimensions / kSimdWidth; #ifdef USE_SSE41 const __m128i kZero = _mm_setzero_si128(); #else const __m128i k0x80s = _mm_set1_epi8(-128); #endif #elif defined(USE_MMX) constexpr IndexType kNumChunks = kHalfDimensions / kSimdWidth; const __m64 k0x80s = _mm_set1_pi8(-128); #elif defined(USE_NEON) constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth / 2); const int8x8_t kZero = {0}; #endif const Color perspectives[2] = {pos.side_to_move(), ~pos.side_to_move()}; for (IndexType p = 0; p < 2; ++p) { const IndexType offset = kHalfDimensions * p; #if defined(USE_AVX2) auto out = reinterpret_cast<__m256i*>(&output[offset]); for (IndexType j = 0; j < kNumChunks; ++j) { __m256i sum0 = _mm256_loadA_si256( &reinterpret_cast(accumulation[perspectives[p]][0])[j * 2 + 0]); __m256i sum1 = _mm256_loadA_si256( &reinterpret_cast(accumulation[perspectives[p]][0])[j * 2 + 1]); _mm256_storeA_si256(&out[j], _mm256_permute4x64_epi64(_mm256_max_epi8( _mm256_packs_epi16(sum0, sum1), kZero), kControl)); } #elif defined(USE_SSE2) auto out = reinterpret_cast<__m128i*>(&output[offset]); for (IndexType j = 0; j < kNumChunks; ++j) { __m128i sum0 = _mm_load_si128(&reinterpret_cast( accumulation[perspectives[p]][0])[j * 2 + 0]); __m128i sum1 = _mm_load_si128(&reinterpret_cast( accumulation[perspectives[p]][0])[j * 2 + 1]); const __m128i packedbytes = _mm_packs_epi16(sum0, sum1); _mm_store_si128(&out[j], #ifdef USE_SSE41 _mm_max_epi8(packedbytes, kZero) #else _mm_subs_epi8(_mm_adds_epi8(packedbytes, k0x80s), k0x80s) #endif ); } #elif defined(USE_MMX) auto out = reinterpret_cast<__m64*>(&output[offset]); for (IndexType j = 0; j < kNumChunks; ++j) { __m64 sum0 = *(&reinterpret_cast( accumulation[perspectives[p]][0])[j * 2 + 0]); __m64 sum1 = *(&reinterpret_cast( accumulation[perspectives[p]][0])[j * 2 + 1]); const __m64 packedbytes = _mm_packs_pi16(sum0, sum1); out[j] = _mm_subs_pi8(_mm_adds_pi8(packedbytes, k0x80s), k0x80s); } #elif defined(USE_NEON) const auto out = reinterpret_cast(&output[offset]); for (IndexType j = 0; j < kNumChunks; ++j) { int16x8_t sum = reinterpret_cast( accumulation[perspectives[p]][0])[j]; out[j] = vmax_s8(vqmovn_s16(sum), kZero); } #else for (IndexType j = 0; j < kHalfDimensions; ++j) { BiasType sum = accumulation[static_cast(perspectives[p])][0][j]; output[offset + j] = static_cast( std::max(0, std::min(127, sum))); } #endif } #if defined(USE_MMX) _mm_empty(); #endif } private: // Calculate cumulative value without using difference calculation void RefreshAccumulator(const Position& pos) const { auto& accumulator = pos.state()->accumulator; IndexType i = 0; Features::IndexList active_indices[2]; RawFeatures::AppendActiveIndices(pos, kRefreshTriggers[i], active_indices); for (Color perspective : { WHITE, BLACK }) { std::memcpy(accumulator.accumulation[perspective][i], biases_, kHalfDimensions * sizeof(BiasType)); for (const auto index : active_indices[perspective]) { const IndexType offset = kHalfDimensions * index; #if defined(USE_AVX512) auto accumulation = reinterpret_cast<__m512i*>( &accumulator.accumulation[perspective][i][0]); auto column = reinterpret_cast(&weights_[offset]); constexpr IndexType kNumChunks = kHalfDimensions / kSimdWidth; for (IndexType j = 0; j < kNumChunks; ++j) _mm512_storeA_si512(&accumulation[j], _mm512_add_epi16(_mm512_loadA_si512(&accumulation[j]), column[j])); #elif defined(USE_AVX2) auto accumulation = reinterpret_cast<__m256i*>( &accumulator.accumulation[perspective][i][0]); auto column = reinterpret_cast(&weights_[offset]); constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth / 2); for (IndexType j = 0; j < kNumChunks; ++j) _mm256_storeA_si256(&accumulation[j], _mm256_add_epi16(_mm256_loadA_si256(&accumulation[j]), column[j])); #elif defined(USE_SSE2) auto accumulation = reinterpret_cast<__m128i*>( &accumulator.accumulation[perspective][i][0]); auto column = reinterpret_cast(&weights_[offset]); constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth / 2); for (IndexType j = 0; j < kNumChunks; ++j) accumulation[j] = _mm_add_epi16(accumulation[j], column[j]); #elif defined(USE_MMX) auto accumulation = reinterpret_cast<__m64*>( &accumulator.accumulation[perspective][i][0]); auto column = reinterpret_cast(&weights_[offset]); constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth / 2); for (IndexType j = 0; j < kNumChunks; ++j) accumulation[j] = _mm_add_pi16(accumulation[j], column[j]); #elif defined(USE_NEON) auto accumulation = reinterpret_cast( &accumulator.accumulation[perspective][i][0]); auto column = reinterpret_cast(&weights_[offset]); constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth / 2); for (IndexType j = 0; j < kNumChunks; ++j) accumulation[j] = vaddq_s16(accumulation[j], column[j]); #else for (IndexType j = 0; j < kHalfDimensions; ++j) accumulator.accumulation[perspective][i][j] += weights_[offset + j]; #endif } } #if defined(USE_MMX) _mm_empty(); #endif accumulator.computed_accumulation = true; } // Calculate cumulative value using difference calculation void UpdateAccumulator(const Position& pos) const { const auto prev_accumulator = pos.state()->previous->accumulator; auto& accumulator = pos.state()->accumulator; IndexType i = 0; Features::IndexList removed_indices[2], added_indices[2]; bool reset[2]; RawFeatures::AppendChangedIndices(pos, kRefreshTriggers[i], removed_indices, added_indices, reset); for (Color perspective : { WHITE, BLACK }) { #if defined(USE_AVX2) constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth / 2); auto accumulation = reinterpret_cast<__m256i*>( &accumulator.accumulation[perspective][i][0]); #elif defined(USE_SSE2) constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth / 2); auto accumulation = reinterpret_cast<__m128i*>( &accumulator.accumulation[perspective][i][0]); #elif defined(USE_MMX) constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth / 2); auto accumulation = reinterpret_cast<__m64*>( &accumulator.accumulation[perspective][i][0]); #elif defined(USE_NEON) constexpr IndexType kNumChunks = kHalfDimensions / (kSimdWidth / 2); auto accumulation = reinterpret_cast( &accumulator.accumulation[perspective][i][0]); #endif if (reset[perspective]) { std::memcpy(accumulator.accumulation[perspective][i], biases_, kHalfDimensions * sizeof(BiasType)); } else { std::memcpy(accumulator.accumulation[perspective][i], prev_accumulator.accumulation[perspective][i], kHalfDimensions * sizeof(BiasType)); // Difference calculation for the deactivated features for (const auto index : removed_indices[perspective]) { const IndexType offset = kHalfDimensions * index; #if defined(USE_AVX2) auto column = reinterpret_cast(&weights_[offset]); for (IndexType j = 0; j < kNumChunks; ++j) accumulation[j] = _mm256_sub_epi16(accumulation[j], column[j]); #elif defined(USE_SSE2) auto column = reinterpret_cast(&weights_[offset]); for (IndexType j = 0; j < kNumChunks; ++j) accumulation[j] = _mm_sub_epi16(accumulation[j], column[j]); #elif defined(USE_MMX) auto column = reinterpret_cast(&weights_[offset]); for (IndexType j = 0; j < kNumChunks; ++j) accumulation[j] = _mm_sub_pi16(accumulation[j], column[j]); #elif defined(USE_NEON) auto column = reinterpret_cast(&weights_[offset]); for (IndexType j = 0; j < kNumChunks; ++j) accumulation[j] = vsubq_s16(accumulation[j], column[j]); #else for (IndexType j = 0; j < kHalfDimensions; ++j) accumulator.accumulation[perspective][i][j] -= weights_[offset + j]; #endif } } { // Difference calculation for the activated features for (const auto index : added_indices[perspective]) { const IndexType offset = kHalfDimensions * index; #if defined(USE_AVX2) auto column = reinterpret_cast(&weights_[offset]); for (IndexType j = 0; j < kNumChunks; ++j) accumulation[j] = _mm256_add_epi16(accumulation[j], column[j]); #elif defined(USE_SSE2) auto column = reinterpret_cast(&weights_[offset]); for (IndexType j = 0; j < kNumChunks; ++j) accumulation[j] = _mm_add_epi16(accumulation[j], column[j]); #elif defined(USE_MMX) auto column = reinterpret_cast(&weights_[offset]); for (IndexType j = 0; j < kNumChunks; ++j) accumulation[j] = _mm_add_pi16(accumulation[j], column[j]); #elif defined(USE_NEON) auto column = reinterpret_cast(&weights_[offset]); for (IndexType j = 0; j < kNumChunks; ++j) accumulation[j] = vaddq_s16(accumulation[j], column[j]); #else for (IndexType j = 0; j < kHalfDimensions; ++j) accumulator.accumulation[perspective][i][j] += weights_[offset + j]; #endif } } } #if defined(USE_MMX) _mm_empty(); #endif accumulator.computed_accumulation = true; } using BiasType = std::int16_t; using WeightType = std::int16_t; alignas(kCacheLineSize) BiasType biases_[kHalfDimensions]; alignas(kCacheLineSize) WeightType weights_[kHalfDimensions * kInputDimensions]; }; } // namespace Eval::NNUE #endif // #ifndef NNUE_FEATURE_TRANSFORMER_H_INCLUDED