/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (c) 2013 Ronald de Man Copyright (C) 2016 Marco Costalba, Lucas Braesch Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include // For std::memset #include #include #include #include #include #include #include "../bitboard.h" #include "../movegen.h" #include "../position.h" #include "../search.h" #include "../thread_win32.h" #include "../types.h" #include "tbprobe.h" #ifndef _WIN32 #include #include #include #include #else #define WIN32_LEAN_AND_MEAN #define NOMINMAX #include #endif using namespace Tablebases; size_t Tablebases::MaxCardinality; namespace { // Each table has a set of flags: all of them refer to DTZ tables, the last one to WDL tables enum TBFlag { STM = 1, Mapped = 2, WinPlies = 4, LossPlies = 8, SingleValue = 128 }; inline WDLScore operator-(WDLScore d) { return WDLScore(-int(d)); } inline WDLScore operator+(WDLScore d1, WDLScore d2) { return WDLScore(int(d1) + int(d2)); } inline Square operator^=(Square& s, int i) { return s = Square(int(s) ^ i); } inline Square operator^(Square s, int i) { return Square(int(s) ^ i); } // DTZ tables don't store valid scores for moves that reset the rule50 counter // like captures and pawn moves but we can easily recover the correct dtz if we // know the position's WDL score. int zeroing_move_dtz(WDLScore wdl) { return wdl == WDLWin ? 1 : wdl == WDLCursedWin ? 101 : wdl == WDLCursedLoss ? -101 : wdl == WDLLoss ? -1 : 0; } // Return the sign of a number (-1, 0, 1) template int sign_of(T val) { return (T(0) < val) - (val < T(0)); } // Numbers in little endian used by sparseIndex[] to point into blockLength[] struct SparseEntry { char block[4]; // Number of block char offset[2]; // Offset within the block }; static_assert(sizeof(SparseEntry) == 6, "SparseEntry must be 6 bytes"); typedef uint16_t Sym; // Huffman symbol struct LR { enum Side { Left, Right, Value }; uint8_t lr[3]; // The first 12 bits is the left-hand symbol, the second 12 // bits is the right-hand symbol. If symbol has length 1, // then the first byte is the stored value. template Sym get() { return S == Left ? ((lr[1] & 0xF) << 8) | lr[0] : S == Right ? (lr[2] << 4) | (lr[1] >> 4) : S == Value ? lr[0] : (assert(false), Sym(-1)); } }; static_assert(sizeof(LR) == 3, "LR tree entry must be 3 bytes"); const int TBPIECES = 6; struct PairsData { int flags; size_t sizeofBlock; // Block size in bytes size_t span; // About every span values there is a SparseIndex[] entry int blocksNum; // Number of blocks in the TB file int maxSymLen; // Maximum length in bits of the Huffman symbols int minSymLen; // Minimum length in bits of the Huffman symbols Sym* lowestSym; // lowestSym[l] is the symbol of length l with the lowest value LR* btree; // btree[sym] stores the left and right symbols that expand sym uint16_t* blockLength; // Number of stored positions (minus one) for each block: 1..65536 int blockLengthSize; // Size of blockLength[] table: padded so it's bigger than blocksNum SparseEntry* sparseIndex; // Partial indices into blockLength[] size_t sparseIndexSize; // Size of SparseIndex[] table uint8_t* data; // Start of Huffman compressed data std::vector base64; // base64[l - min_sym_len] is the 64bit-padded lowest symbol of length l std::vector symlen; // Number of values (-1) represented by a given Huffman symbol: 1..256 Piece pieces[TBPIECES]; // Sequence of the pieces: order is critical to ensure the best compression uint64_t groupSize[TBPIECES]; // Size needed by a given subset of pieces: KRKN -> (KRK) + (N) uint8_t groupLen[TBPIECES]; // Number of pieces in a given group: KRKN -> (3) + (1) }; // Helper struct to avoid to manually define entry copy c'tor as we should // because default one is not compatible with std::atomic_bool. struct Atomic { Atomic() = default; Atomic(const Atomic& e) { ready = e.ready.load(); } // MSVC 2013 wants assignment within body std::atomic_bool ready; }; struct WDLEntry : public Atomic { WDLEntry(const std::string& code); ~WDLEntry(); void* baseAddress; uint64_t mapping; Key key; Key key2; int pieceCount; bool hasPawns; bool hasUniquePieces; union { struct { PairsData* precomp; } piece[2]; // [Side to move] struct { uint8_t pawnCount[2]; // [Lead color / weak color] struct { PairsData* precomp; } file[2][4]; // [Side to move][FILE_A..FILE_D] } pawn; }; }; struct DTZEntry : public Atomic { DTZEntry(const WDLEntry& wdl); ~DTZEntry(); void* baseAddress; uint64_t mapping; Key key; Key key2; int pieceCount; bool hasPawns; bool hasUniquePieces; union { struct { PairsData* precomp; uint16_t map_idx[4]; // WDLWin, WDLLoss, WDLCursedWin, WDLCursedLoss uint8_t* map; } piece; struct { uint8_t pawnCount[2]; struct { PairsData* precomp; uint16_t map_idx[4]; } file[4]; uint8_t* map; } pawn; }; }; typedef decltype(WDLEntry::piece) WDLPiece; typedef decltype(DTZEntry::piece) DTZPiece; typedef decltype(WDLEntry::pawn ) WDLPawn; typedef decltype(DTZEntry::pawn ) DTZPawn; auto item(WDLPiece& e, int stm, int ) -> decltype(e[stm])& { return e[stm]; } auto item(DTZPiece& e, int , int ) -> decltype(e)& { return e; } auto item(WDLPawn& e, int stm, int f) -> decltype(e.file[stm][f])& { return e.file[stm][f]; } auto item(DTZPawn& e, int , int f) -> decltype(e.file[f])& { return e.file[f]; } int MapPawns[SQUARE_NB]; int MapB1H1H7[SQUARE_NB]; int MapA1D1D4[SQUARE_NB]; int MapKK[10][SQUARE_NB]; // [MapA1D1D4][SQUARE_NB] // Comparison function to sort leading pawns in ascending MapPawns[] order bool pawns_comp(Square i, Square j) { return MapPawns[i] < MapPawns[j]; } int off_A1H8(Square sq) { return int(rank_of(sq)) - file_of(sq); } const uint8_t WDL_MAGIC[] = { 0x71, 0xE8, 0x23, 0x5D }; const uint8_t DTZ_MAGIC[] = { 0xD7, 0x66, 0x0C, 0xA5 }; const Value WDL_to_value[] = { -VALUE_MATE + MAX_PLY + 1, VALUE_DRAW - 2, VALUE_DRAW, VALUE_DRAW + 2, VALUE_MATE - MAX_PLY - 1 }; const std::string PieceToChar = " PNBRQK pnbrqk"; Mutex TB_mutex; std::string TBPaths; std::deque WDLTable; std::list DTZTable; int Binomial[6][SQUARE_NB]; // [k][n] k elements from a set of n elements int LeadPawnIdx[4][SQUARE_NB]; // [leadPawnsCnt - 1][SQUARE_NB] int LeadPawnsGroupSize[4][4]; // [leadPawnsCnt - 1][FILE_A..FILE_D] enum { BigEndian, LittleEndian }; template inline void swap_byte(T& x) { char tmp, *c = (char*)&x; if (Half) // Fix a MSVC 2015 warning for (int i = 0; i < Half; ++i) tmp = c[i], c[i] = c[End - i], c[End - i] = tmp; } template T number(void* addr) { const union { uint32_t i; char c[4]; } Le = { 0x01020304 }; const bool IsLittleEndian = (Le.c[0] == 4); T v = *((T*)addr); if (LE != IsLittleEndian) swap_byte(v); return v; } class HashTable { typedef std::pair Entry; static const int TBHASHBITS = 10; static const int HSHMAX = 5; Entry table[1 << TBHASHBITS][HSHMAX]; void insert(Key key, WDLEntry* ptr) { Entry* entry = table[key >> (64 - TBHASHBITS)]; for (int i = 0; i < HSHMAX; ++i, ++entry) if (!entry->second || entry->first == key) { *entry = std::make_pair(key, ptr); return; } std::cerr << "HSHMAX too low!" << std::endl; exit(1); } public: WDLEntry* operator[](Key key) { Entry* entry = table[key >> (64 - TBHASHBITS)]; for (int i = 0; i < HSHMAX; ++i, ++entry) if (entry->first == key) return entry->second; return nullptr; } void clear() { std::memset(table, 0, sizeof(table)); } void insert(const std::vector& pieces); }; HashTable WDLHash; class TBFile : public std::ifstream { std::string fname; public: // Look for and open the file among the TBPaths directories where the .rtbw // and .rtbz files can be found. Multiple directories are separated by ";" // on Windows and by ":" on Unix-based operating systems. // // Example: // C:\tb\wdl345;C:\tb\wdl6;D:\tb\dtz345;D:\tb\dtz6 TBFile(const std::string& f) { #ifndef _WIN32 const char SepChar = ':'; #else const char SepChar = ';'; #endif std::stringstream ss(TBPaths); std::string path; while (std::getline(ss, path, SepChar)) { fname = path + "/" + f; std::ifstream::open(fname); if (is_open()) return; } } // Memory map the file and check it. File should be already open and will be // closed after mapping. uint8_t* map(void** baseAddress, uint64_t* mapping, const uint8_t TB_MAGIC[]) { if (!is_open()) { std::cerr << "Could not find " << fname << std::endl; *baseAddress = nullptr; return nullptr; } close(); #ifndef _WIN32 struct stat statbuf; int fd = ::open(fname.c_str(), O_RDONLY); fstat(fd, &statbuf); *mapping = statbuf.st_size; *baseAddress = mmap(nullptr, statbuf.st_size, PROT_READ, MAP_SHARED, fd, 0); ::close(fd); if (*baseAddress == MAP_FAILED) { std::cerr << "Could not mmap() " << fname << std::endl; exit(1); } #else HANDLE fd = CreateFile(fname.c_str(), GENERIC_READ, FILE_SHARE_READ, nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr); DWORD size_high; DWORD size_low = GetFileSize(fd, &size_high); HANDLE mmap = CreateFileMapping(fd, nullptr, PAGE_READONLY, size_high, size_low, nullptr); CloseHandle(fd); if (!mmap) { std::cerr << "CreateFileMapping() failed" << std::endl; exit(1); } *mapping = (uint64_t)mmap; *baseAddress = MapViewOfFile(mmap, FILE_MAP_READ, 0, 0, 0); if (!*baseAddress) { std::cerr << "MapViewOfFile() failed, name = " << fname << ", error = " << GetLastError() << std::endl; exit(1); } #endif uint8_t* data = (uint8_t*)*baseAddress; if ( *data++ != TB_MAGIC[0] || *data++ != TB_MAGIC[1] || *data++ != TB_MAGIC[2] || *data++ != TB_MAGIC[3]) { std::cerr << "Corrupted table in file " << fname << std::endl; unmap(*baseAddress, *mapping); *baseAddress = nullptr; return nullptr; } return data; } static void unmap(void* baseAddress, uint64_t mapping) { #ifndef _WIN32 munmap(baseAddress, mapping); #else UnmapViewOfFile(baseAddress); CloseHandle((HANDLE)mapping); #endif } }; WDLEntry::WDLEntry(const std::string& code) { StateInfo st; Position pos; memset(this, 0, sizeof(WDLEntry)); ready = false; key = pos.set(code, WHITE, &st).material_key(); pieceCount = popcount(pos.pieces()); hasPawns = pos.pieces(PAWN); for (Color c = WHITE; c <= BLACK; ++c) for (PieceType pt = PAWN; pt < KING; ++pt) if (popcount(pos.pieces(c, pt)) == 1) hasUniquePieces = true; if (hasPawns) { // Set the leading color. In case both sides have pawns the leading color // is the side with less pawns because this leads to better compression. bool c = !pos.count(BLACK) || ( pos.count(WHITE) && pos.count(BLACK) >= pos.count(WHITE)); pawn.pawnCount[0] = pos.count(c ? WHITE : BLACK); pawn.pawnCount[1] = pos.count(c ? BLACK : WHITE); } key2 = pos.set(code, BLACK, &st).material_key(); } WDLEntry::~WDLEntry() { if (baseAddress) TBFile::unmap(baseAddress, mapping); for (int i = 0; i < 2; ++i) if (hasPawns) for (File f = FILE_A; f <= FILE_D; ++f) delete pawn.file[i][f].precomp; else delete piece[i].precomp; } DTZEntry::DTZEntry(const WDLEntry& wdl) { memset(this, 0, sizeof(DTZEntry)); ready = false; key = wdl.key; key2 = wdl.key2; pieceCount = wdl.pieceCount; hasPawns = wdl.hasPawns; hasUniquePieces = wdl.hasUniquePieces; if (hasPawns) { pawn.pawnCount[0] = wdl.pawn.pawnCount[0]; pawn.pawnCount[1] = wdl.pawn.pawnCount[1]; } } DTZEntry::~DTZEntry() { if (baseAddress) TBFile::unmap(baseAddress, mapping); if (hasPawns) for (File f = FILE_A; f <= FILE_D; ++f) delete pawn.file[f].precomp; else delete piece.precomp; } void HashTable::insert(const std::vector& pieces) { std::string code; for (PieceType pt : pieces) code += PieceToChar[pt]; TBFile file(code.insert(code.find('K', 1), "v") + ".rtbw"); // KRK -> KRvK if (!file.is_open()) return; file.close(); MaxCardinality = std::max(pieces.size(), MaxCardinality); WDLTable.push_back(WDLEntry(code)); insert(WDLTable.back().key , &WDLTable.back()); insert(WDLTable.back().key2, &WDLTable.back()); } // TB are compressed with canonical Huffman code. The compressed data is divided into // blocks of size d->sizeofBlock, and each block stores a variable number of symbols. // Each symbol represents either a WDL or (remapped) DTZ value, or a pair of other symbols // (recursively). If you keep expanding the symbols in a block, you end up with up to 65536 // WDL or DTZ values. Each symbol represents up to 256 values and will correspond after // Huffman coding to at least 1 bit. So a block of 32 bytes corresponds to at most // 32 x 8 x 256 = 65536 values. This maximum is only reached for tables that consist mostly // of draws or mostly of wins, but such tables are actually quite common. In principle, the // blocks in WDL tables are 64 bytes long (and will be aligned on cache lines). But for // mostly-draw or mostly-win tables this can leave many 64-byte blocks only half-filled, so // in such cases blocks are 32 bytes long. The blocks of DTZ tables are up to 1024 bytes long. // The generator picks the size that leads to the smallest table. The "book" of symbols and // Huffman codes is the same for all blocks in the table (a non-symmetric pawnless TB file // will have one table for wtm and one for btm, a TB file with pawns will have tables per // file a,b,c,d). int decompress_pairs(PairsData* d, uint64_t idx) { // Special case where all table positions store the same value if (d->flags & TBFlag::SingleValue) return d->minSymLen; // First we need to locate the right block that stores the value at index "idx". // Because each block n stores blockLength[n] + 1 values, the index i of the block // that contains the value at position idx is: // // for (i = -1, sum = 0; sum <= idx; i++) // sum += blockLength[i + 1] + 1; // // This can be slow, so we use SparseIndex[] populated with a set of SparseEntry that // point to known indices into blockLength[]. Namely SparseIndex[k] is a SparseEntry // that stores the blockLength[] index and the offset within that block of the value // with index N(k), where: // // N(k) = k * d->span + d->span / 2 (1) // First step is to get the 'k' of the N(k) nearest to our idx, using defintion (1) uint32_t k = idx / d->span; // Then we read the corresponding SparseIndex[] entry uint32_t block = number(&d->sparseIndex[k].block); int idxOffset = number(&d->sparseIndex[k].offset); // Now compute the difference idx - N(k). From defintion of k we know that // // idx = k * d->span + idx % d->span (2) // // So from (1) and (2) we can compute idx - N(K): int diff = idx % d->span - d->span / 2; // Sum to idxOffset to find the offset corresponding to our idx idxOffset += diff; // Move to previous/next block, until we reach the correct block that contains idx, // that is when 0 <= idxOffset <= d->blockLength[block] while (idxOffset < 0) idxOffset += d->blockLength[--block] + 1; while (idxOffset > d->blockLength[block]) idxOffset -= d->blockLength[block++] + 1; // Finally, we find the start address of our block of canonical Huffman coded symbols uint32_t* ptr = (uint32_t*)(d->data + block * d->sizeofBlock); // Read the first 64 bits in our block. We still don't know the symbol length but // we know is at the beginning of this 64 bits sequence. uint64_t buf64 = number(ptr); ptr += 2; int buf64Size = 64; Sym sym; while (true) { int len = 0; // This is the symbol length - d->min_sym_len // Now get the symbol length. For any symbol s64 of length l right-padded // to 64 bits holds d->base64[l-1] >= s64 >= d->base64[l] so we can find // the symbol length iterating through base64[]. while (buf64 < d->base64[len]) ++len; // Symbols of same length are mapped to consecutive numbers, so we can compute // the offset of our symbol of length len, stored at the beginning of buf64. sym = (buf64 - d->base64[len]) >> (64 - len - d->minSymLen); // Now add the value of the lowest symbol of length len to get our symbol sym += number(&d->lowestSym[len]); // If our offset is within the number of values represented by symbol sym // we are done... if (idxOffset < (int)d->symlen[sym] + 1) break; // ...otherwise update the offset and continue to iterate idxOffset -= d->symlen[sym] + 1; len += d->minSymLen; // Get the real length buf64 <<= len; // Consume the just processed symbol buf64Size -= len; if (buf64Size <= 32) { // Refill the buffer buf64Size += 32; buf64 |= (uint64_t)number(ptr++) << (64 - buf64Size); } } // Ok, now we have our symbol that stores d->symlen[sym] values, the score we are // looking for is among those values. We binary-search for it expanding the symbol // in a pair of left and right child symbols and continue recursively until we are // at a symbol of length 1 (symlen[sym] + 1 == 1), which is the value we need. while (d->symlen[sym]) { // Each btree[] entry expands in a left-handed and right-handed pair of // additional symbols. We keep expanding recursively picking the symbol // that contains our idxOffset. Sym sl = d->btree[sym].get(); if (idxOffset < (int)d->symlen[sl] + 1) sym = sl; else { idxOffset -= d->symlen[sl] + 1; sym = d->btree[sym].get(); } } return d->btree[sym].get(); } bool check_dtz_stm(WDLEntry*, File, int) { return true; } bool check_dtz_stm(DTZEntry* entry, File f, int stm) { int flags = entry->hasPawns ? entry->pawn.file[f].precomp->flags : entry->piece.precomp->flags; return (flags & TBFlag::STM) == stm || ((entry->key == entry->key2) && !entry->hasPawns); } // DTZ scores are sorted by frequency of occurrence and then assigned the // values 0, 1, 2, ... in order of decreasing frequency. This is done for each // of the four WDLScore values. The mapping information necessary to reconstruct // the original values is stored in the TB file and read during map[] init. int map_score(WDLEntry*, File, int value, WDLScore) { return value - 2; } int map_score(DTZEntry* entry, File f, int value, WDLScore wdl) { const int WDLMap[] = { 1, 3, 0, 2, 0 }; int flags = entry->hasPawns ? entry->pawn.file[f].precomp->flags : entry->piece.precomp->flags; uint8_t* map = entry->hasPawns ? entry->pawn.map : entry->piece.map; uint16_t* idx = entry->hasPawns ? entry->pawn.file[f].map_idx : entry->piece.map_idx; if (flags & TBFlag::Mapped) value = map[idx[WDLMap[wdl + 2]] + value]; // DTZ tables store distance to zero in number of moves but // under some conditions we want to return plies, so we have // to multiply score by 2. if ( (wdl == WDLWin && !(flags & TBFlag::WinPlies)) || (wdl == WDLLoss && !(flags & TBFlag::LossPlies)) || wdl == WDLCursedWin || wdl == WDLCursedLoss) value *= 2; return value + 1; } // Compute a unique index out of a position and use it to probe the TB file. To // encode k pieces of same type and color, first sort the pieces by square in // ascending order s1 <= s2 <= ... <= sk then compute the unique index as: // // idx = Binomial[1][s1] + Binomial[2][s2] + ... + Binomial[k][sk] // template int probe_table(const Position& pos, Entry* entry, WDLScore wdl = WDLDraw, ProbeState* result = nullptr) { Square squares[TBPIECES]; Piece pieces[TBPIECES]; uint64_t idx; int stm, next = 0, flipColor = 0, flipSquares = 0, size = 0, leadPawnsCnt = 0; PairsData* precomp; Bitboard b, leadPawns = 0; File tbFile = FILE_A; // A given TB entry like KRK has associated two material keys: KRvk and Kvkr. // If both sides have the same pieces we have a symmetric material and the // keys are equal. The stored TB entry is calculated always with WHITE side // to move and if the position to lookup has instead BLACK to move, we need // to switch color and flip the squares before the lookup: if (entry->key == entry->key2) { flipColor = pos.side_to_move() * 8; // Switch color flipSquares = pos.side_to_move() * 070; // Vertical flip: SQ_A8 -> SQ_A1 stm = WHITE; } // In case of sides with different pieces, if the position to look up has a // different key form the stored one (entry->key), then we have to switch // color and flip the squares: else { flipColor = (pos.material_key() != entry->key) * 8; flipSquares = (pos.material_key() != entry->key) * 070; // TB entry is stored with WHITE as stronger side, so side to move has // to be flipped accordingly, for example Kvkr (white to move) maps to // KRvk (black to move). stm = (pos.material_key() != entry->key) ^ pos.side_to_move(); } // For pawns, TB files store separate tables according if leading pawn is on // file a, b, c or d after reordering. To determine which of the 4 tables // must be probed we pick the file of the pawn with maximum MapPawns[]. if (entry->hasPawns) { Piece pc = Piece(item(entry->pawn, 0, 0).precomp->pieces[0] ^ flipColor); assert(type_of(pc) == PAWN); leadPawns = b = pos.pieces(color_of(pc), PAWN); while (b) squares[size++] = pop_lsb(&b) ^ flipSquares; leadPawnsCnt = size; std::swap(squares[0], *std::max_element(squares, squares + leadPawnsCnt, pawns_comp)); tbFile = file_of(squares[0]); if (tbFile > FILE_D) tbFile = file_of(squares[0] ^ 7); // Horizontal flip: SQ_H1 -> SQ_A1 precomp = item(entry->pawn, stm, tbFile).precomp; } else precomp = item(entry->piece, stm, 0).precomp; // DTZ tables are one-sided, i.e. they store positions only for white to // move or only for black to move, so check for side to move to be stm, // early exit otherwise. if ( std::is_same::value && !check_dtz_stm(entry, tbFile, stm)) { *result = CHANGE_STM; return 0; } // Now we are ready to get all the position pieces (but the lead pawns) and // directly map them to the correct color and square. b = pos.pieces() ^ leadPawns; for ( ; b; ++size) { Square sq = pop_lsb(&b); squares[size] = sq ^ flipSquares; pieces[size] = Piece(pos.piece_on(sq) ^ flipColor); } // Then we reorder the pieces to have the same sequence as the one stored // in precomp->pieces[i]. The sequence ensures the best compression. for (int i = leadPawnsCnt; i < size; ++i) for (int j = i; j < size; ++j) if (precomp->pieces[i] == pieces[j]) { std::swap(pieces[i], pieces[j]); std::swap(squares[i], squares[j]); break; } // Now we map again the squares so that the square of the lead piece is in // the triangle A1-D1-D4. We take care that the condition on the diagonal // flip is checked after horizontal and vertical flips are already done. if (file_of(squares[0]) > FILE_D) for (int i = 0; i < size; ++i) squares[i] ^= 7; // Horizontal flip: SQ_H1 -> SQ_A1 // Encode leading pawns starting with the one with minimum MapPawns[] and // proceeding in ascending order. if (entry->hasPawns) { idx = LeadPawnIdx[leadPawnsCnt - 1][squares[0]]; std::sort(squares + 1, squares + leadPawnsCnt, pawns_comp); for (int i = 1; i < leadPawnsCnt; ++i) idx += Binomial[i][MapPawns[squares[i]]]; next = leadPawnsCnt; goto encode_remaining; // With pawns we have finished special treatments } if (rank_of(squares[0]) > RANK_4) for (int i = 0; i < size; ++i) squares[i] ^= 070; // Vertical flip: SQ_A8 -> SQ_A1 // Look for the first piece not on the A1-D4 diagonal and ensure it is // mapped below the diagonal. for (int i = 0; i < size; ++i) { if (!off_A1H8(squares[i])) continue; if (off_A1H8(squares[i]) > 0 && i < (entry->hasUniquePieces ? 3 : 2)) for (int j = i; j < size; ++j) // A1-H8 diagonal flip: SQ_A3 -> SQ_C3 squares[j] = Square(((squares[j] >> 3) | (squares[j] << 3)) & 63); break; } // The encoding function maps a position to its index into the table. // Suppose we have KRvK. Let's say the pieces are on square numbers wK, wR // and bK (each 0...63). The simplest way to map this position to an index // is like this: // // index = wK * 64*64 + wR * 64 + bK; // // But this way the TB is going to have 64*64*64 = 262144 positions, with // lots of positions being equivalent (because they are mirrors of each // other) and lots of positions being invalid (two pieces on one square, // adjacent kings, etc.). // Usually the first step is to take the wK and bK together. There are just // 462 ways legal and not-mirrored ways to place the wK and bK on the board. // Once we have placed the wK and bK, there are 62 squares left for the wR // Mapping its square from 0..63 to 0..61 can be done like: // // wR -= (wR > wK) + (wR > bK); // // In words: if wR "comes later" than wK, we deduct 1, and the same if wR // "comes later" than bK. In case of two same pieces like KRRvK we want to // place the two Rs "together". If we have 62 squares left, we can place two // Rs "together" in 62*61/2 ways. // In case we have at least 3 unique pieces (inlcuded kings) we encode them // together. if (entry->hasUniquePieces) { int adjust1 = squares[1] > squares[0]; int adjust2 = (squares[2] > squares[0]) + (squares[2] > squares[1]); // MapA1D1D4[] maps the b1-d1-d3 triangle to 0...5. There are 63 squares // for second piece and and 62 (mapped to 0...61) for the third. if (off_A1H8(squares[0])) idx = MapA1D1D4[squares[0]] * 63 * 62 + (squares[1] - adjust1) * 62 + squares[2] - adjust2; // First piece is on diagonal: map to 6, rank_of() maps a1-d4 diagonal // to 0...3 and MapB1H1H7[] maps the b1-h1-h7 triangle to 0..27 else if (off_A1H8(squares[1])) idx = 6 * 63 * 62 + rank_of(squares[0]) * 28 * 62 + MapB1H1H7[squares[1]] * 62 + squares[2] - adjust2; // First 2 pieces are on the diagonal a1-h8 else if (off_A1H8(squares[2])) idx = 6 * 63 * 62 + 4 * 28 * 62 + rank_of(squares[0]) * 7 * 28 + (rank_of(squares[1]) - adjust1) * 28 + MapB1H1H7[squares[2]]; // All 3 pieces on the diagonal a1-h8 else idx = 6 * 63 * 62 + 4 * 28 * 62 + 4 * 7 * 28 + rank_of(squares[0]) * 7 * 6 + (rank_of(squares[1]) - adjust1) * 6 + (rank_of(squares[2]) - adjust2); next = 3; // Continue encoding form piece[3] } else { // We don't have at least 3 unique pieces, like in KRRvKBB, just map // the kings. idx = MapKK[MapA1D1D4[squares[0]]][squares[1]]; next = 2; } encode_remaining: idx *= precomp->groupSize[0]; // Reorder remainig pawns then pieces according to square, in ascending order int remainingPawns = entry->hasPawns ? entry->pawn.pawnCount[1] : 0; while (next < size) { int end = next + (remainingPawns ? remainingPawns : precomp->groupLen[next]); std::sort(squares + next, squares + end); uint64_t s = 0; // Map squares to lower index if "come later" than previous (as done earlier for pieces) for (int i = next; i < end; ++i) { int adjust = 0; for (int j = 0; j < next; ++j) adjust += squares[i] > squares[j]; s += Binomial[i - next + 1][squares[i] - adjust - (remainingPawns ? 8 : 0)]; } remainingPawns = 0; idx += s * precomp->groupSize[next]; next = end; } // Now that we have the index, decompress the pair and get the score return map_score(entry, tbFile, decompress_pairs(precomp, idx), wdl); } // Group together pieces that will be encoded together. For instance in // KRKN the encoder will default on '111', so the groups will be (3,1) // and for easy of parsing the resulting groupLen[] will be (3, 0, 0, 1). // In case of pawns, they will be encoded as first, starting with the // leading ones, then the remaining pieces. Then calculate the size, in // number of possible combinations, needed to store them in the TB file. template uint64_t set_groups(T& e, PairsData* d, int order[], File f) { for (int i = 0; i < e.pieceCount; ++i) // Broken MSVC zero-init d->groupLen[i] = 0; // Set leading pawns or pieces int len = d->groupLen[0] = e.hasPawns ? e.pawn.pawnCount[0] : e.hasUniquePieces ? 3 : 2; // Set remaining pawns, if any if (e.hasPawns) len += d->groupLen[len] = e.pawn.pawnCount[1]; // Set remaining pieces. If 2 pieces are equal, they are grouped together. // They are ensured to be consecutive in pieces[]. for (int k = len ; k < e.pieceCount; k += d->groupLen[k]) for (int j = k; j < e.pieceCount && d->pieces[j] == d->pieces[k]; ++j) ++d->groupLen[k]; // Now calculate the size needed for each group, according to the order // given by order[]. In general the order is a per-table value and could // not follow the canonical leading pawns -> remainig pawns -> pieces. int freeSquares = 64 - len; uint64_t size = 1; for (int k = 0; len < e.pieceCount || k == order[0] || k == order[1]; ++k) if (k == order[0]) // Leading pawns or pieces { d->groupSize[0] = size; size *= e.hasPawns ? LeadPawnsGroupSize[d->groupLen[0] - 1][f] : e.hasUniquePieces ? 31332 : 462; } else if (k == order[1]) // Remaining pawns { d->groupSize[d->groupLen[0]] = size; size *= Binomial[d->groupLen[d->groupLen[0]]][48 - d->groupLen[0]]; } else // Remainig pieces { d->groupSize[len] = size; size *= Binomial[d->groupLen[len]][freeSquares]; freeSquares -= d->groupLen[len]; len += d->groupLen[len]; } return size; } uint8_t set_symlen(PairsData* d, Sym s, std::vector& visited) { visited[s] = true; // We can set it now because tree is acyclic Sym sr = d->btree[s].get(); if (sr == 0xFFF) return 0; Sym sl = d->btree[s].get(); if (!visited[sl]) d->symlen[sl] = set_symlen(d, sl, visited); if (!visited[sr]) d->symlen[sr] = set_symlen(d, sr, visited); return d->symlen[sl] + d->symlen[sr] + 1; } uint8_t* set_sizes(PairsData* d, uint8_t* data, uint64_t tb_size) { d->flags = *data++; if (d->flags & TBFlag::SingleValue) { d->blocksNum = d->span = d->blockLengthSize = d->sparseIndexSize = 0; // Broken MSVC zero-init d->minSymLen = *data++; // Here we store the single value return data; } d->sizeofBlock = 1ULL << *data++; d->span = 1ULL << *data++; d->sparseIndexSize = (tb_size + d->span - 1) / d->span; // Round up int padding = number(data++); d->blocksNum = number(data); data += sizeof(uint32_t); d->blockLengthSize = d->blocksNum + padding; // Padded to ensure SparseIndex[] // does not point out of range. d->maxSymLen = *data++; d->minSymLen = *data++; d->lowestSym = (Sym*)data; d->base64.resize(d->maxSymLen - d->minSymLen + 1); // The canonical code is ordered such that longer symbols (in terms of // the number of bits of their Huffman code) have lower numeric value, // so that d->lowestSym[i] >= d->lowestSym[i+1] (when read as LittleEndian). // Starting from this we compute a base64[] table indexed by symbol length // and containing 64 bit values so that d->base64[i] >= d->base64[i+1] for (int i = d->base64.size() - 2; i >= 0; --i) { d->base64[i] = (d->base64[i + 1] + number(&d->lowestSym[i]) - number(&d->lowestSym[i + 1])) / 2; assert(d->base64[i] * 2 >= d->base64[i+1]); } // Now left-shift by an amount so that d->base64[i] gets shifted 1 bit more // than d->base64[i+1] and given the above assert condition, we ensure that // d->base64[i] >= d->base64[i+1]. Moreover for any symbol s64 of length i // and right-padded to 64 bits holds d->base64[i-1] >= s64 >= d->base64[i]. for (size_t i = 0; i < d->base64.size(); ++i) d->base64[i] <<= 64 - i - d->minSymLen; // Right-padding to 64 bits data += d->base64.size() * sizeof(Sym); d->symlen.resize(number(data)); data += sizeof(uint16_t); d->btree = (LR*)data; std::vector visited(d->symlen.size()); for (Sym sym = 0; sym < d->symlen.size(); ++sym) if (!visited[sym]) d->symlen[sym] = set_symlen(d, sym, visited); return data + d->symlen.size() * sizeof(LR) + (d->symlen.size() & 1); } template uint8_t* set_dtz_map(WDLEntry&, T&, uint8_t*, File) { return nullptr; } template uint8_t* set_dtz_map(DTZEntry&, T& p, uint8_t* data, File maxFile) { p.map = data; for (File f = FILE_A; f <= maxFile; ++f) { if (item(p, 0, f).precomp->flags & TBFlag::Mapped) for (int i = 0; i < 4; ++i) { // Sequence like 3,x,x,x,1,x,0,2,x,x item(p, 0, f).map_idx[i] = (uint16_t)(data - p.map + 1); data += *data + 1; } } return data += (uintptr_t)data & 1; // Word alignment } template void do_init(Entry& e, T& p, uint8_t* data) { const bool IsWDL = std::is_same::value; PairsData* d; uint64_t tb_size[8]; enum { Split = 1, HasPawns = 2 }; uint8_t flags = *data++; assert(e.hasPawns == !!(flags & HasPawns)); assert((e.key != e.key2) == !!(flags & Split)); const int Sides = IsWDL && (e.key != e.key2) ? 2 : 1; const File MaxFile = e.hasPawns ? FILE_D : FILE_A; bool pp = e.hasPawns && e.pawn.pawnCount[1]; // Pawns on both sides assert(!pp || e.pawn.pawnCount[0]); for (File f = FILE_A; f <= MaxFile; ++f) { for (int i = 0; i < Sides; i++) item(p, i, f).precomp = new PairsData(); int order[][2] = { { *data & 0xF, pp ? *(data + 1) & 0xF : 0xF }, { *data >> 4, pp ? *(data + 1) >> 4 : 0xF } }; data += 1 + pp; for (int k = 0; k < e.pieceCount; ++k, ++data) for (int i = 0; i < Sides; i++) item(p, i, f).precomp->pieces[k] = Piece(i ? *data >> 4 : *data & 0xF); for (int i = 0; i < Sides; ++i) tb_size[Sides * f + i] = set_groups(e, item(p, i, f).precomp, order[i], f); } data += (uintptr_t)data & 1; // Word alignment for (File f = FILE_A; f <= MaxFile; ++f) for (int i = 0; i < Sides; i++) data = set_sizes(item(p, i, f).precomp, data, tb_size[Sides * f + i]); if (!IsWDL) data = set_dtz_map(e, p, data, MaxFile); for (File f = FILE_A; f <= MaxFile; ++f) for (int i = 0; i < Sides; i++) { (d = item(p, i, f).precomp)->sparseIndex = (SparseEntry*)data; data += d->sparseIndexSize * sizeof(SparseEntry) ; } for (File f = FILE_A; f <= MaxFile; ++f) for (int i = 0; i < Sides; i++) { (d = item(p, i, f).precomp)->blockLength = (uint16_t*)data; data += d->blockLengthSize * sizeof(uint16_t); } for (File f = FILE_A; f <= MaxFile; ++f) for (int i = 0; i < Sides; i++) { data = (uint8_t*)(((uintptr_t)data + 0x3F) & ~0x3F); // 64 byte alignment (d = item(p, i, f).precomp)->data = data; data += d->blocksNum * d->sizeofBlock; } } template bool init(Entry& e, const Position& pos) { const bool IsWDL = std::is_same::value; const uint8_t* MAGIC = IsWDL ? WDL_MAGIC : DTZ_MAGIC; // Avoid a thread reads 'ready' == true while another is still in do_init(), // this could happen due to compiler reordering. if (e.ready.load(std::memory_order_acquire)) return true; std::unique_lock lk(TB_mutex); if (e.ready.load(std::memory_order_relaxed)) // Recheck under lock return true; std::string fname, w, b; // Position pieces in decreasing order for each color, like ("KPP","KR") for (PieceType pt = KING; pt >= PAWN; --pt) { w += std::string(popcount(pos.pieces(WHITE, pt)), PieceToChar[pt]); b += std::string(popcount(pos.pieces(BLACK, pt)), PieceToChar[pt]); } fname = (e.key == pos.material_key() ? w + 'v' + b : b + 'v' + w) + (IsWDL ? ".rtbw" : ".rtbz"); uint8_t* data = TBFile(fname).map(&e.baseAddress, &e.mapping, MAGIC); if (!data) return false; e.hasPawns ? do_init(e, e.pawn, data) : do_init(e, e.piece, data); e.ready.store(true, std::memory_order_release); return true; } WDLScore probe_wdl_table(Position& pos, ProbeState* result) { Key key = pos.material_key(); if (!(pos.pieces() ^ pos.pieces(KING))) return WDLDraw; // KvK WDLEntry* entry = WDLHash[key]; if (!entry) { *result = FAIL; return WDLDraw; } // Init table at first access attempt, init() is thread safe if (!init(*entry, pos)) { *result = FAIL; return WDLDraw; } return (WDLScore)probe_table(pos, entry); } int probe_dtz_table(const Position& pos, WDLScore wdl, ProbeState* result) { Key key = pos.material_key(); if (DTZTable.front().key != key && DTZTable.front().key2 != key) { // Enforce "Most Recently Used" (MRU) order for DTZ list for (auto it = DTZTable.begin(); it != DTZTable.end(); ++it) if (it->key == key || it->key2 == key) { // Move to front without deleting the element DTZTable.splice(DTZTable.begin(), DTZTable, it); break; } // If still not found, add a new one if (DTZTable.front().key != key && DTZTable.front().key2 != key) { WDLEntry* wdlEntry = WDLHash[key]; if (!wdlEntry) { *result = FAIL; return 0; } DTZTable.push_front(DTZEntry(*wdlEntry)); if (!init(DTZTable.front(), pos)) { // In case file is not found init() fails, but we leave // the entry so to avoid rechecking at every probe (same // functionality as WDL case). // FIXME: This is different form original functionality! /* DTZTable.pop_front(); */ *result = FAIL; return 0; } // Keep list size within 64 entries to avoid huge mapped memory. // DTZ are huge and probed only at root, so normally we have only // few of them mapped in real games. if (DTZTable.size() > 64) DTZTable.pop_back(); } } if (!DTZTable.front().baseAddress) { *result = FAIL; return 0; } return probe_table(pos, &DTZTable.front(), wdl, result); } // For a position where the side to move has a winning capture it is not necessary // to store a winning value so the generator treats such positions as "don't cares" // and tries to assign to it a value that improves the compression ratio. Similarly, // if the side to move has a drawing capture, then the position is at least drawn. // If the position is won, then the TB needs to store a win value. But if the // position is drawn, the TB may store a loss value if that is better for compression. // All of this means that during probing, the engine must look at captures and probe // their results and must probe the position itself. The "best" result of these // probes is the correct result for the position. // DTZ table don't store values when a following move is a zeroing winning move // (winning capture or winning pawn move). Also DTZ store wrong values for positions // where the best move is an ep-move (even if losing). So in all these cases set // the state to ZEROING_MOVE. template WDLScore search(Position& pos, WDLScore alpha, WDLScore beta, ProbeState* result) { WDLScore value; StateInfo st; CheckInfo ci(pos); auto moveList = MoveList(pos); size_t totalCount = moveList.size(); size_t moveCount = 0; for (const Move& move : moveList) { if ( !pos.capture(move) && (!CheckZeroingMoves || type_of(pos.moved_piece(move)) != PAWN)) continue; moveCount++; pos.do_move(move, st, pos.gives_check(move, ci)); value = -search(pos, -beta, -alpha, result); pos.undo_move(move); if (*result == FAIL) return WDLDraw; if (value >= beta) { *result = ZEROING_BEST_MOVE; // Winning DTZ-zeroing move return value; } if (value > alpha) alpha = value; } // In case we have already searched all the legal moves we don't have to probe // the TB because the stored score could be wrong. For instance TB tables // do not contain information on position with ep rights, so in this case // the result of probe_wdl_table is wrong. Also in case of only capture // moves, for instance here 4K3/4q3/6p1/2k5/6p1/8/8/8 w - - 0 7, we have to // return with ZEROING_BEST_MOVE set. bool noMoreMoves = (moveCount && moveCount == totalCount); if (noMoreMoves) value = alpha; else { value = probe_wdl_table(pos, result); if (*result == FAIL) return WDLDraw; } // Here alpha stores the best value of the ply-1 search, note that in case // we have already searched all the possible moves alpha == value. if (alpha >= value) return *result = (alpha > WDLDraw || noMoreMoves ? ZEROING_BEST_MOVE : OK), alpha; return *result = OK, value; } } // namespace void Tablebases::init(const std::string& paths) { DTZTable.clear(); WDLTable.clear(); WDLHash.clear(); MaxCardinality = 0; TBPaths = paths; if (TBPaths.empty() || TBPaths == "") return; // MapB1H1H7[] encodes a square below a1-h8 diagonal to 0..27 int code = 0; for (Square s = SQ_A1; s <= SQ_H8; ++s) if (off_A1H8(s) < 0) MapB1H1H7[s] = code++; // MapA1D1D4[] encodes a square in the a1-d1-d4 triangle to 0..9 std::vector diagonal; code = 0; for (Square s = SQ_A1; s <= SQ_D4; ++s) if (off_A1H8(s) < 0 && file_of(s) <= FILE_D) MapA1D1D4[s] = code++; else if (!off_A1H8(s) && file_of(s) <= FILE_D) diagonal.push_back(s); // Diagonal squares are encoded as last ones for (auto s : diagonal) MapA1D1D4[s] = code++; // MapKK[] encodes all the 461 possible legal positions of two kings where // the first is in the a1-d1-d4 triangle. If the first king is on the a1-d4 // diagonal, the other one shall not to be above the a1-h8 diagonal. std::vector> bothOnDiagonal; code = 0; for (int idx = 0; idx < 10; idx++) for (Square s1 = SQ_A1; s1 <= SQ_D4; ++s1) if (MapA1D1D4[s1] == idx && (idx || s1 == SQ_B1)) // SQ_B1 is mapped to 0 for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) if ((StepAttacksBB[KING][s1] | s1) & s2) continue; // Illegal position else if (!off_A1H8(s1) && off_A1H8(s2) > 0) continue; // First on diagonal, second above else if (!off_A1H8(s1) && !off_A1H8(s2)) bothOnDiagonal.push_back(std::make_pair(idx, s2)); else MapKK[idx][s2] = code++; // Legal positions with both kings on diagonal are encoded as last ones for (auto p : bothOnDiagonal) MapKK[p.first][p.second] = code++; // Binomial[] stores the Binomial Coefficents using Pascal rule. There // are Binomial[k][n] ways to choose k elements from a set of n elements. Binomial[0][0] = 1; for (int n = 1; n < 64; n++) // Squares for (int k = 0; k < 6 && k <= n; ++k) // Pieces Binomial[k][n] = (k > 0 ? Binomial[k - 1][n - 1] : 0) + (k < n ? Binomial[k ][n - 1] : 0); // MapPawns[s] encodes squares a2-h7 to 0..47. This is the number of possible // available squares when the leading one is in 's'. Moreover the pawn with // highest MapPawns[] is the leading pawn, the one nearest the edge and, // among pawns with same file, the one with lowest rank. int availableSquares = 47; // Available squares when lead pawn is in a2 // Init the tables for the encoding of leading pawns group: with 6-men TB we // can have up to 4 leading pawns (KPPPPK). for (int leadPawnsCnt = 1; leadPawnsCnt <= 4; ++leadPawnsCnt) for (File f = FILE_A; f <= FILE_D; ++f) { // Restart the index at every file because TB table is splitted // by file, so we can reuse the same index for different files. int idx = 0; // Sum all possible combinations for a given file, starting with // the leading pawn on rank 2 and increasing the rank. for (Rank r = RANK_2; r <= RANK_7; ++r) { Square sq = make_square(f, r); // Compute MapPawns[] at first pass. // If sq is the leading pawn square, any other pawn cannot be // below or more toward the edge of sq. There are 47 available // squares when sq = a2 and reduced by 2 for any rank increase // due to mirroring: sq == a3 -> no a2, h2, so MapPawns[a3] = 45 if (leadPawnsCnt == 1) { MapPawns[sq] = availableSquares--; MapPawns[sq ^ 7] = availableSquares--; // Horizontal flip } LeadPawnIdx[leadPawnsCnt - 1][sq] = idx; idx += Binomial[leadPawnsCnt - 1][MapPawns[sq]]; } // After a file is traversed, store the cumulated per-file index LeadPawnsGroupSize[leadPawnsCnt - 1][f] = idx; } for (PieceType p1 = PAWN; p1 < KING; ++p1) { WDLHash.insert({KING, p1, KING}); for (PieceType p2 = PAWN; p2 <= p1; ++p2) { WDLHash.insert({KING, p1, p2, KING}); WDLHash.insert({KING, p1, KING, p2}); for (PieceType p3 = PAWN; p3 < KING; ++p3) WDLHash.insert({KING, p1, p2, KING, p3}); for (PieceType p3 = PAWN; p3 <= p2; ++p3) { WDLHash.insert({KING, p1, p2, p3, KING}); for (PieceType p4 = PAWN; p4 <= p3; ++p4) WDLHash.insert({KING, p1, p2, p3, p4, KING}); for (PieceType p4 = PAWN; p4 < KING; ++p4) WDLHash.insert({KING, p1, p2, p3, KING, p4}); } for (PieceType p3 = PAWN; p3 <= p1; ++p3) for (PieceType p4 = PAWN; p4 <= (p1 == p3 ? p2 : p3); ++p4) WDLHash.insert({KING, p1, p2, KING, p3, p4}); } } std::cerr << "info string Found " << WDLTable.size() << " tablebases" << std::endl; } // Probe the WDL table for a particular position. // If *result != FAIL, the probe was successful. // The return value is from the point of view of the side to move: // -2 : loss // -1 : loss, but draw under 50-move rule // 0 : draw // 1 : win, but draw under 50-move rule // 2 : win WDLScore Tablebases::probe_wdl(Position& pos, ProbeState* result) { *result = OK; return search(pos, WDLLoss, WDLWin, result); } // Probe the DTZ table for a particular position. // If *result != FAIL, the probe was successful. // The return value is from the point of view of the side to move: // n < -100 : loss, but draw under 50-move rule // -100 <= n < -1 : loss in n ply (assuming 50-move counter == 0) // 0 : draw // 1 < n <= 100 : win in n ply (assuming 50-move counter == 0) // 100 < n : win, but draw under 50-move rule // // The return value n can be off by 1: a return value -n can mean a loss // in n+1 ply and a return value +n can mean a win in n+1 ply. This // cannot happen for tables with positions exactly on the "edge" of // the 50-move rule. // // This implies that if dtz > 0 is returned, the position is certainly // a win if dtz + 50-move-counter <= 99. Care must be taken that the engine // picks moves that preserve dtz + 50-move-counter <= 99. // // If n = 100 immediately after a capture or pawn move, then the position // is also certainly a win, and during the whole phase until the next // capture or pawn move, the inequality to be preserved is // dtz + 50-movecounter <= 100. // // In short, if a move is available resulting in dtz + 50-move-counter <= 99, // then do not accept moves leading to dtz + 50-move-counter == 100. int Tablebases::probe_dtz(Position& pos, ProbeState* result) { *result = OK; WDLScore wdl = search(pos, WDLLoss, WDLWin, result); if (*result == FAIL) return 0; if (wdl == WDLDraw) // DTZ tables don't store draws return 0; // DTZ table stores a 'don't care' value in this case, or even a plain wrong // one as in case the best move is a losing ep, so it cannot be probed. if (*result == ZEROING_BEST_MOVE) return zeroing_move_dtz(wdl); int dtz = probe_dtz_table(pos, wdl, result); // Probe the table! if (*result != CHANGE_STM) return (dtz + 100 * (wdl == WDLCursedLoss || wdl == WDLCursedWin)) * sign_of(wdl); // DTZ stores results for the other side, so we need to do a 1-ply search and // find the winning move that minimizes DTZ. StateInfo st; CheckInfo ci(pos); int minDTZ = 0xFFFF; for (const Move& move : MoveList(pos)) { bool zeroing = pos.capture(move) || type_of(pos.moved_piece(move)) == PAWN; pos.do_move(move, st, pos.gives_check(move, ci)); // For zeroing moves we want the dtz of the move _before_ doing it, // otherwise we will get the dtz of the next move sequence. Search the // position after the move to get the score sign (because even in a // winning position we could make a losing capture or going for a draw). dtz = zeroing ? -zeroing_move_dtz(search(pos, WDLLoss, WDLWin, result)) : -probe_dtz(pos, result); pos.undo_move(move); if (*result == FAIL) return 0; // Skip the draws and if we are winning only pick positive dtz if (dtz < minDTZ && sign_of(dtz) == sign_of(wdl)) minDTZ = dtz; } // Convert result from 1-ply search. Special handle a mate position, when // there are no legal moves. Return value is somewhat arbitrary, so stick // to the original TB code that returns -1 in this case. return minDTZ == 0xFFFF ? - 1 : minDTZ + sign_of(minDTZ); } // Check whether there has been at least one repetition of positions // since the last capture or pawn move. static int has_repeated(StateInfo *st) { while (1) { int i = 4, e = std::min(st->rule50, st->pliesFromNull); if (e < i) return 0; StateInfo *stp = st->previous->previous; do { stp = stp->previous->previous; if (stp->key == st->key) return 1; i += 2; } while (i <= e); st = st->previous; } } // Use the DTZ tables to filter out moves that don't preserve the win or draw. // If the position is lost, but DTZ is fairly high, only keep moves that // maximise DTZ. // // A return value false indicates that not all probes were successful and that // no moves were filtered out. bool Tablebases::root_probe(Position& pos, Search::RootMoves& rootMoves, Value& score) { ProbeState result; int dtz = probe_dtz(pos, &result); if (result == FAIL) return false; StateInfo st; CheckInfo ci(pos); // Probe each move for (size_t i = 0; i < rootMoves.size(); ++i) { Move move = rootMoves[i].pv[0]; pos.do_move(move, st, pos.gives_check(move, ci)); int v = 0; if (pos.checkers() && dtz > 0) { ExtMove s[MAX_MOVES]; if (generate(pos, s) == s) v = 1; } if (!v) { if (st.rule50 != 0) { v = -probe_dtz(pos, &result); if (v > 0) ++v; else if (v < 0) --v; } else { v = -probe_wdl(pos, &result); v = zeroing_move_dtz(WDLScore(v)); } } pos.undo_move(move); if (result == FAIL) return false; rootMoves[i].score = (Value)v; } // Obtain 50-move counter for the root position. // In Stockfish there seems to be no clean way, so we do it like this: int cnt50 = st.previous->rule50; // Use 50-move counter to determine whether the root position is // won, lost or drawn. int wdl = 0; if (dtz > 0) wdl = (dtz + cnt50 <= 100) ? 2 : 1; else if (dtz < 0) wdl = (-dtz + cnt50 <= 100) ? -2 : -1; // Determine the score to report to the user. score = WDL_to_value[wdl + 2]; // If the position is winning or losing, but too few moves left, adjust the // score to show how close it is to winning or losing. // NOTE: int(PawnValueEg) is used as scaling factor in score_to_uci(). if (wdl == 1 && dtz <= 100) score = (Value)(((200 - dtz - cnt50) * int(PawnValueEg)) / 200); else if (wdl == -1 && dtz >= -100) score = -(Value)(((200 + dtz - cnt50) * int(PawnValueEg)) / 200); // Now be a bit smart about filtering out moves. size_t j = 0; if (dtz > 0) { // winning (or 50-move rule draw) int best = 0xffff; for (size_t i = 0; i < rootMoves.size(); ++i) { int v = rootMoves[i].score; if (v > 0 && v < best) best = v; } int max = best; // If the current phase has not seen repetitions, then try all moves // that stay safely within the 50-move budget, if there are any. if (!has_repeated(st.previous) && best + cnt50 <= 99) max = 99 - cnt50; for (size_t i = 0; i < rootMoves.size(); ++i) { int v = rootMoves[i].score; if (v > 0 && v <= max) rootMoves[j++] = rootMoves[i]; } } else if (dtz < 0) { // losing (or 50-move rule draw) int best = 0; for (size_t i = 0; i < rootMoves.size(); ++i) { int v = rootMoves[i].score; if (v < best) best = v; } // Try all moves, unless we approach or have a 50-move rule draw. if (-best * 2 + cnt50 < 100) return true; for (size_t i = 0; i < rootMoves.size(); ++i) { if (rootMoves[i].score == best) rootMoves[j++] = rootMoves[i]; } } else { // drawing // Try all moves that preserve the draw. for (size_t i = 0; i < rootMoves.size(); ++i) { if (rootMoves[i].score == 0) rootMoves[j++] = rootMoves[i]; } } rootMoves.resize(j, Search::RootMove(MOVE_NONE)); return true; } // Use the WDL tables to filter out moves that don't preserve the win or draw. // This is a fallback for the case that some or all DTZ tables are missing. // // A return value false indicates that not all probes were successful and that // no moves were filtered out. bool Tablebases::root_probe_wdl(Position& pos, Search::RootMoves& rootMoves, Value& score) { ProbeState result; WDLScore wdl = Tablebases::probe_wdl(pos, &result); if (result == FAIL) return false; score = WDL_to_value[wdl + 2]; StateInfo st; CheckInfo ci(pos); int best = WDLLoss; // Probe each move for (size_t i = 0; i < rootMoves.size(); ++i) { Move move = rootMoves[i].pv[0]; pos.do_move(move, st, pos.gives_check(move, ci)); WDLScore v = -Tablebases::probe_wdl(pos, &result); pos.undo_move(move); if (result == FAIL) return false; rootMoves[i].score = (Value)v; if (v > best) best = v; } size_t j = 0; for (size_t i = 0; i < rootMoves.size(); ++i) { if (rootMoves[i].score == best) rootMoves[j++] = rootMoves[i]; } rootMoves.resize(j, Search::RootMove(MOVE_NONE)); return true; }