1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-29 16:23:09 +00:00
BadFish/src/bitboard.cpp
mstembera 76923bb6fe Optimize magics
Reduce the size of the Magics table by half on modern cpu's and lay it
out to match our access pattern. Namely we typically access the magics
for the same square for both bishop and rook back to back so we want
those to be in the same cache line.

https://tests.stockfishchess.org/tests/view/6701c9b386d5ee47d953bcf4
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 121664 W: 31931 L: 31497 D: 58236
Ptnml(0-2): 395, 13658, 32322, 14032, 425

A similar patch minus the size reduction finished yellow
https://tests.stockfishchess.org/tests/view/6695f03f4ff211be9d4ec16c
LLR: -2.94 (-2.94,2.94) <0.00,2.00>
Total: 310688 W: 80940 L: 80746 D: 149002
Ptnml(0-2): 1119, 35032, 82846, 35230, 1117

closes https://github.com/official-stockfish/Stockfish/pull/5623

No functional change
2024-10-12 16:30:44 +02:00

228 lines
7.8 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "bitboard.h"
#include <algorithm>
#include <bitset>
#include <initializer_list>
#include "misc.h"
namespace Stockfish {
uint8_t PopCnt16[1 << 16];
uint8_t SquareDistance[SQUARE_NB][SQUARE_NB];
Bitboard LineBB[SQUARE_NB][SQUARE_NB];
Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
alignas(64) Magic Magics[SQUARE_NB][2];
namespace {
Bitboard RookTable[0x19000]; // To store rook attacks
Bitboard BishopTable[0x1480]; // To store bishop attacks
void init_magics(PieceType pt, Bitboard table[], Magic magics[][2]);
// Returns the bitboard of target square for the given step
// from the given square. If the step is off the board, returns empty bitboard.
Bitboard safe_destination(Square s, int step) {
Square to = Square(s + step);
return is_ok(to) && distance(s, to) <= 2 ? square_bb(to) : Bitboard(0);
}
}
// Returns an ASCII representation of a bitboard suitable
// to be printed to standard output. Useful for debugging.
std::string Bitboards::pretty(Bitboard b) {
std::string s = "+---+---+---+---+---+---+---+---+\n";
for (Rank r = RANK_8; r >= RANK_1; --r)
{
for (File f = FILE_A; f <= FILE_H; ++f)
s += b & make_square(f, r) ? "| X " : "| ";
s += "| " + std::to_string(1 + r) + "\n+---+---+---+---+---+---+---+---+\n";
}
s += " a b c d e f g h\n";
return s;
}
// Initializes various bitboard tables. It is called at
// startup and relies on global objects to be already zero-initialized.
void Bitboards::init() {
for (unsigned i = 0; i < (1 << 16); ++i)
PopCnt16[i] = uint8_t(std::bitset<16>(i).count());
for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
SquareDistance[s1][s2] = std::max(distance<File>(s1, s2), distance<Rank>(s1, s2));
init_magics(ROOK, RookTable, Magics);
init_magics(BISHOP, BishopTable, Magics);
for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
{
PawnAttacks[WHITE][s1] = pawn_attacks_bb<WHITE>(square_bb(s1));
PawnAttacks[BLACK][s1] = pawn_attacks_bb<BLACK>(square_bb(s1));
for (int step : {-9, -8, -7, -1, 1, 7, 8, 9})
PseudoAttacks[KING][s1] |= safe_destination(s1, step);
for (int step : {-17, -15, -10, -6, 6, 10, 15, 17})
PseudoAttacks[KNIGHT][s1] |= safe_destination(s1, step);
PseudoAttacks[QUEEN][s1] = PseudoAttacks[BISHOP][s1] = attacks_bb<BISHOP>(s1, 0);
PseudoAttacks[QUEEN][s1] |= PseudoAttacks[ROOK][s1] = attacks_bb<ROOK>(s1, 0);
for (PieceType pt : {BISHOP, ROOK})
for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
{
if (PseudoAttacks[pt][s1] & s2)
{
LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2;
BetweenBB[s1][s2] =
(attacks_bb(pt, s1, square_bb(s2)) & attacks_bb(pt, s2, square_bb(s1)));
}
BetweenBB[s1][s2] |= s2;
}
}
}
namespace {
Bitboard sliding_attack(PieceType pt, Square sq, Bitboard occupied) {
Bitboard attacks = 0;
Direction RookDirections[4] = {NORTH, SOUTH, EAST, WEST};
Direction BishopDirections[4] = {NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_WEST};
for (Direction d : (pt == ROOK ? RookDirections : BishopDirections))
{
Square s = sq;
while (safe_destination(s, d))
{
attacks |= (s += d);
if (occupied & s)
{
break;
}
}
}
return attacks;
}
// Computes all rook and bishop attacks at startup. Magic
// bitboards are used to look up attacks of sliding pieces. As a reference see
// https://www.chessprogramming.org/Magic_Bitboards. In particular, here we use
// the so called "fancy" approach.
void init_magics(PieceType pt, Bitboard table[], Magic magics[][2]) {
#ifndef USE_PEXT
// Optimal PRNG seeds to pick the correct magics in the shortest time
int seeds[][RANK_NB] = {{8977, 44560, 54343, 38998, 5731, 95205, 104912, 17020},
{728, 10316, 55013, 32803, 12281, 15100, 16645, 255}};
Bitboard occupancy[4096];
int epoch[4096] = {}, cnt = 0;
#endif
Bitboard reference[4096];
int size = 0;
for (Square s = SQ_A1; s <= SQ_H8; ++s)
{
// Board edges are not considered in the relevant occupancies
Bitboard edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s));
// Given a square 's', the mask is the bitboard of sliding attacks from
// 's' computed on an empty board. The index must be big enough to contain
// all the attacks for each possible subset of the mask and so is 2 power
// the number of 1s of the mask. Hence we deduce the size of the shift to
// apply to the 64 or 32 bits word to get the index.
Magic& m = magics[s][pt - BISHOP];
m.mask = sliding_attack(pt, s, 0) & ~edges;
#ifndef USE_PEXT
m.shift = (Is64Bit ? 64 : 32) - popcount(m.mask);
#endif
// Set the offset for the attacks table of the square. We have individual
// table sizes for each square with "Fancy Magic Bitboards".
m.attacks = s == SQ_A1 ? table : magics[s - 1][pt - BISHOP].attacks + size;
size = 0;
// Use Carry-Rippler trick to enumerate all subsets of masks[s] and
// store the corresponding sliding attack bitboard in reference[].
Bitboard b = 0;
do
{
#ifndef USE_PEXT
occupancy[size] = b;
#endif
reference[size] = sliding_attack(pt, s, b);
if (HasPext)
m.attacks[pext(b, m.mask)] = reference[size];
size++;
b = (b - m.mask) & m.mask;
} while (b);
#ifndef USE_PEXT
PRNG rng(seeds[Is64Bit][rank_of(s)]);
// Find a magic for square 's' picking up an (almost) random number
// until we find the one that passes the verification test.
for (int i = 0; i < size;)
{
for (m.magic = 0; popcount((m.magic * m.mask) >> 56) < 6;)
m.magic = rng.sparse_rand<Bitboard>();
// A good magic must map every possible occupancy to an index that
// looks up the correct sliding attack in the attacks[s] database.
// Note that we build up the database for square 's' as a side
// effect of verifying the magic. Keep track of the attempt count
// and save it in epoch[], little speed-up trick to avoid resetting
// m.attacks[] after every failed attempt.
for (++cnt, i = 0; i < size; ++i)
{
unsigned idx = m.index(occupancy[i]);
if (epoch[idx] < cnt)
{
epoch[idx] = cnt;
m.attacks[idx] = reference[i];
}
else if (m.attacks[idx] != reference[i])
break;
}
}
#endif
}
}
}
} // namespace Stockfish