1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-30 00:33:09 +00:00
BadFish/src/evaluate.cpp
Linmiao Xu 025da6a0d1 Give positional output more weight in nnue eval
This effectively reverts the removal of delta in:
https://github.com/official-stockfish/Stockfish/pull/5373

Passed STC:
https://tests.stockfishchess.org/tests/view/6664d41922234461cef58e6b
LLR: 2.95 (-2.94,2.94) <0.00,2.00>
Total: 56448 W: 14849 L: 14500 D: 27099
Ptnml(0-2): 227, 6481, 14457, 6834, 225

Passed LTC:
https://tests.stockfishchess.org/tests/view/666587a1996b40829f4ee007
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 91686 W: 23402 L: 22963 D: 45321
Ptnml(0-2): 78, 10205, 24840, 10640, 80

closes https://github.com/official-stockfish/Stockfish/pull/5382

bench 1160467
2024-06-12 09:17:04 +02:00

128 lines
4.7 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "evaluate.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <memory>
#include <sstream>
#include <tuple>
#include "nnue/network.h"
#include "nnue/nnue_misc.h"
#include "position.h"
#include "types.h"
#include "uci.h"
#include "nnue/nnue_accumulator.h"
namespace Stockfish {
// Returns a static, purely materialistic evaluation of the position from
// the point of view of the given color. It can be divided by PawnValue to get
// an approximation of the material advantage on the board in terms of pawns.
int Eval::simple_eval(const Position& pos, Color c) {
return PawnValue * (pos.count<PAWN>(c) - pos.count<PAWN>(~c))
+ (pos.non_pawn_material(c) - pos.non_pawn_material(~c));
}
bool Eval::use_smallnet(const Position& pos) {
int simpleEval = simple_eval(pos, pos.side_to_move());
return std::abs(simpleEval) > 962;
}
// Evaluate is the evaluator for the outer world. It returns a static evaluation
// of the position from the point of view of the side to move.
Value Eval::evaluate(const Eval::NNUE::Networks& networks,
const Position& pos,
Eval::NNUE::AccumulatorCaches& caches,
int optimism) {
assert(!pos.checkers());
int simpleEval = simple_eval(pos, pos.side_to_move());
bool smallNet = use_smallnet(pos);
int v;
auto [psqt, positional] = smallNet ? networks.small.evaluate(pos, &caches.small)
: networks.big.evaluate(pos, &caches.big);
Value nnue = (125 * psqt + 131 * positional) / 128;
int nnueComplexity = std::abs(psqt - positional);
// Re-evaluate the position when higher eval accuracy is worth the time spent
if (smallNet && (nnue * simpleEval < 0 || std::abs(nnue) < 227))
{
std::tie(psqt, positional) = networks.big.evaluate(pos, &caches.big);
nnue = (125 * psqt + 131 * positional) / 128;
nnueComplexity = std::abs(psqt - positional);
smallNet = false;
}
// Blend optimism and eval with nnue complexity
optimism += optimism * nnueComplexity / 457;
nnue -= nnue * nnueComplexity / 19157;
int material = 554 * pos.count<PAWN>() + pos.non_pawn_material();
v = (nnue * (73921 + material) + optimism * (8112 + material)) / 73260;
// Damp down the evaluation linearly when shuffling
v -= v * pos.rule50_count() / 212;
// Guarantee evaluation does not hit the tablebase range
v = std::clamp(v, VALUE_TB_LOSS_IN_MAX_PLY + 1, VALUE_TB_WIN_IN_MAX_PLY - 1);
return v;
}
// Like evaluate(), but instead of returning a value, it returns
// a string (suitable for outputting to stdout) that contains the detailed
// descriptions and values of each evaluation term. Useful for debugging.
// Trace scores are from white's point of view
std::string Eval::trace(Position& pos, const Eval::NNUE::Networks& networks) {
if (pos.checkers())
return "Final evaluation: none (in check)";
auto caches = std::make_unique<Eval::NNUE::AccumulatorCaches>(networks);
std::stringstream ss;
ss << std::showpoint << std::noshowpos << std::fixed << std::setprecision(2);
ss << '\n' << NNUE::trace(pos, networks, *caches) << '\n';
ss << std::showpoint << std::showpos << std::fixed << std::setprecision(2) << std::setw(15);
auto [psqt, positional] = networks.big.evaluate(pos, &caches->big);
Value v = psqt + positional;
v = pos.side_to_move() == WHITE ? v : -v;
ss << "NNUE evaluation " << 0.01 * UCIEngine::to_cp(v, pos) << " (white side)\n";
v = evaluate(networks, pos, *caches, VALUE_ZERO);
v = pos.side_to_move() == WHITE ? v : -v;
ss << "Final evaluation " << 0.01 * UCIEngine::to_cp(v, pos) << " (white side)";
ss << " [with scaled NNUE, ...]";
ss << "\n";
return ss.str();
}
} // namespace Stockfish