1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-05-01 09:13:08 +00:00
BadFish/src/tt.h
Brian Sheppard ca7d4e9ac7 Eliminate ONE_PLY
Simplification that eliminates ONE_PLY, based on a suggestion in the forum that
support for fractional plies has never been used, and @mcostalba's openness to
the idea of eliminating it. We lose a little bit of type safety by making Depth
an integer, but in return we simplify the code in search.cpp quite significantly.

No functional change

------------------------------------------

The argument favoring eliminating ONE_PLY:

* The term “ONE_PLY” comes up in a lot of forum posts (474 to date)
https://groups.google.com/forum/?fromgroups=#!searchin/fishcooking/ONE_PLY%7Csort:relevance

* There is occasionally a commit that breaks invariance of the code
with respect to ONE_PLY
https://groups.google.com/forum/?fromgroups=#!searchin/fishcooking/ONE_PLY%7Csort:date/fishcooking/ZIPdYj6k0fk/KdNGcPWeBgAJ

* To prevent such commits, there is a Travis CI hack that doubles ONE_PLY
and rechecks bench

* Sustaining ONE_PLY has, alas, not resulted in any improvements to the
  engine, despite many individuals testing many experiments over 5 years.

The strongest argument in favor of preserving ONE_PLY comes from @locutus:
“If we use par example ONE_PLY=256 the parameter space is increases by the
factor 256. So it seems very unlikely that the optimal setting is in the
subspace of ONE_PLY=1.”

There is a strong theoretical impediment to fractional depth systems: the
transposition table uses depth to determine when a stored result is good
enough to supply an answer for a current search. If you have fractional
depths, then different pathways to the position can be at fractionally
different depths.

In the end, there are three separate times when a proposal to remove ONE_PLY
was defeated by the suggestion to “give it a few more months.” So… it seems
like time to remove this distraction from the community.

See the pull request here:
https://github.com/official-stockfish/Stockfish/pull/2289
2019-10-06 00:57:00 +02:00

103 lines
3.2 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef TT_H_INCLUDED
#define TT_H_INCLUDED
#include "misc.h"
#include "types.h"
/// TTEntry struct is the 10 bytes transposition table entry, defined as below:
///
/// key 16 bit
/// move 16 bit
/// value 16 bit
/// eval value 16 bit
/// generation 5 bit
/// pv node 1 bit
/// bound type 2 bit
/// depth 8 bit
struct TTEntry {
Move move() const { return (Move )move16; }
Value value() const { return (Value)value16; }
Value eval() const { return (Value)eval16; }
Depth depth() const { return (Depth)depth8 + DEPTH_OFFSET; }
bool is_pv() const { return (bool)(genBound8 & 0x4); }
Bound bound() const { return (Bound)(genBound8 & 0x3); }
void save(Key k, Value v, bool pv, Bound b, Depth d, Move m, Value ev);
private:
friend class TranspositionTable;
uint16_t key16;
uint16_t move16;
int16_t value16;
int16_t eval16;
uint8_t genBound8;
uint8_t depth8;
};
/// A TranspositionTable consists of a power of 2 number of clusters and each
/// cluster consists of ClusterSize number of TTEntry. Each non-empty entry
/// contains information of exactly one position. The size of a cluster should
/// divide the size of a cache line size, to ensure that clusters never cross
/// cache lines. This ensures best cache performance, as the cacheline is
/// prefetched, as soon as possible.
class TranspositionTable {
static constexpr int CacheLineSize = 64;
static constexpr int ClusterSize = 3;
struct Cluster {
TTEntry entry[ClusterSize];
char padding[2]; // Align to a divisor of the cache line size
};
static_assert(CacheLineSize % sizeof(Cluster) == 0, "Cluster size incorrect");
public:
~TranspositionTable() { free(mem); }
void new_search() { generation8 += 8; } // Lower 3 bits are used by PV flag and Bound
TTEntry* probe(const Key key, bool& found) const;
int hashfull() const;
void resize(size_t mbSize);
void clear();
// The 32 lowest order bits of the key are used to get the index of the cluster
TTEntry* first_entry(const Key key) const {
return &table[(uint32_t(key) * uint64_t(clusterCount)) >> 32].entry[0];
}
private:
friend struct TTEntry;
size_t clusterCount;
Cluster* table;
void* mem;
uint8_t generation8; // Size must be not bigger than TTEntry::genBound8
};
extern TranspositionTable TT;
#endif // #ifndef TT_H_INCLUDED