1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-30 16:53:09 +00:00
BadFish/src/nnue/layers/simd.h
2023-07-19 21:39:51 +02:00

285 lines
8.8 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2023 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef STOCKFISH_SIMD_H_INCLUDED
#define STOCKFISH_SIMD_H_INCLUDED
#if defined(USE_AVX2)
# include <immintrin.h>
#elif defined(USE_SSE41)
# include <smmintrin.h>
#elif defined(USE_SSSE3)
# include <tmmintrin.h>
#elif defined(USE_SSE2)
# include <emmintrin.h>
#elif defined(USE_MMX)
# include <mmintrin.h>
#elif defined(USE_NEON)
# include <arm_neon.h>
#endif
namespace Stockfish::Simd {
#if defined (USE_AVX512)
[[maybe_unused]] static int m512_hadd(__m512i sum, int bias) {
return _mm512_reduce_add_epi32(sum) + bias;
}
/*
Parameters:
sum0 = [zmm0.i128[0], zmm0.i128[1], zmm0.i128[2], zmm0.i128[3]]
sum1 = [zmm1.i128[0], zmm1.i128[1], zmm1.i128[2], zmm1.i128[3]]
sum2 = [zmm2.i128[0], zmm2.i128[1], zmm2.i128[2], zmm2.i128[3]]
sum3 = [zmm3.i128[0], zmm3.i128[1], zmm3.i128[2], zmm3.i128[3]]
Returns:
ret = [
reduce_add_epi32(zmm0.i128[0]), reduce_add_epi32(zmm1.i128[0]), reduce_add_epi32(zmm2.i128[0]), reduce_add_epi32(zmm3.i128[0]),
reduce_add_epi32(zmm0.i128[1]), reduce_add_epi32(zmm1.i128[1]), reduce_add_epi32(zmm2.i128[1]), reduce_add_epi32(zmm3.i128[1]),
reduce_add_epi32(zmm0.i128[2]), reduce_add_epi32(zmm1.i128[2]), reduce_add_epi32(zmm2.i128[2]), reduce_add_epi32(zmm3.i128[2]),
reduce_add_epi32(zmm0.i128[3]), reduce_add_epi32(zmm1.i128[3]), reduce_add_epi32(zmm2.i128[3]), reduce_add_epi32(zmm3.i128[3])
]
*/
[[maybe_unused]] static __m512i m512_hadd128x16_interleave(
__m512i sum0, __m512i sum1, __m512i sum2, __m512i sum3) {
__m512i sum01a = _mm512_unpacklo_epi32(sum0, sum1);
__m512i sum01b = _mm512_unpackhi_epi32(sum0, sum1);
__m512i sum23a = _mm512_unpacklo_epi32(sum2, sum3);
__m512i sum23b = _mm512_unpackhi_epi32(sum2, sum3);
__m512i sum01 = _mm512_add_epi32(sum01a, sum01b);
__m512i sum23 = _mm512_add_epi32(sum23a, sum23b);
__m512i sum0123a = _mm512_unpacklo_epi64(sum01, sum23);
__m512i sum0123b = _mm512_unpackhi_epi64(sum01, sum23);
return _mm512_add_epi32(sum0123a, sum0123b);
}
[[maybe_unused]] static __m128i m512_haddx4(
__m512i sum0, __m512i sum1, __m512i sum2, __m512i sum3,
__m128i bias) {
__m512i sum = m512_hadd128x16_interleave(sum0, sum1, sum2, sum3);
__m256i sum256lo = _mm512_castsi512_si256(sum);
__m256i sum256hi = _mm512_extracti64x4_epi64(sum, 1);
sum256lo = _mm256_add_epi32(sum256lo, sum256hi);
__m128i sum128lo = _mm256_castsi256_si128(sum256lo);
__m128i sum128hi = _mm256_extracti128_si256(sum256lo, 1);
return _mm_add_epi32(_mm_add_epi32(sum128lo, sum128hi), bias);
}
[[maybe_unused]] static void m512_add_dpbusd_epi32(
__m512i& acc,
__m512i a,
__m512i b) {
# if defined (USE_VNNI)
acc = _mm512_dpbusd_epi32(acc, a, b);
# else
__m512i product0 = _mm512_maddubs_epi16(a, b);
product0 = _mm512_madd_epi16(product0, _mm512_set1_epi16(1));
acc = _mm512_add_epi32(acc, product0);
# endif
}
[[maybe_unused]] static void m512_add_dpbusd_epi32x2(
__m512i& acc,
__m512i a0, __m512i b0,
__m512i a1, __m512i b1) {
# if defined (USE_VNNI)
acc = _mm512_dpbusd_epi32(acc, a0, b0);
acc = _mm512_dpbusd_epi32(acc, a1, b1);
# else
__m512i product0 = _mm512_maddubs_epi16(a0, b0);
__m512i product1 = _mm512_maddubs_epi16(a1, b1);
product0 = _mm512_madd_epi16(product0, _mm512_set1_epi16(1));
product1 = _mm512_madd_epi16(product1, _mm512_set1_epi16(1));
acc = _mm512_add_epi32(acc, _mm512_add_epi32(product0, product1));
# endif
}
#endif
#if defined (USE_AVX2)
[[maybe_unused]] static int m256_hadd(__m256i sum, int bias) {
__m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(sum), _mm256_extracti128_si256(sum, 1));
sum128 = _mm_add_epi32(sum128, _mm_shuffle_epi32(sum128, _MM_PERM_BADC));
sum128 = _mm_add_epi32(sum128, _mm_shuffle_epi32(sum128, _MM_PERM_CDAB));
return _mm_cvtsi128_si32(sum128) + bias;
}
[[maybe_unused]] static __m128i m256_haddx4(
__m256i sum0, __m256i sum1, __m256i sum2, __m256i sum3,
__m128i bias) {
sum0 = _mm256_hadd_epi32(sum0, sum1);
sum2 = _mm256_hadd_epi32(sum2, sum3);
sum0 = _mm256_hadd_epi32(sum0, sum2);
__m128i sum128lo = _mm256_castsi256_si128(sum0);
__m128i sum128hi = _mm256_extracti128_si256(sum0, 1);
return _mm_add_epi32(_mm_add_epi32(sum128lo, sum128hi), bias);
}
[[maybe_unused]] static void m256_add_dpbusd_epi32(
__m256i& acc,
__m256i a,
__m256i b) {
# if defined (USE_VNNI)
acc = _mm256_dpbusd_epi32(acc, a, b);
# else
__m256i product0 = _mm256_maddubs_epi16(a, b);
product0 = _mm256_madd_epi16(product0, _mm256_set1_epi16(1));
acc = _mm256_add_epi32(acc, product0);
# endif
}
[[maybe_unused]] static void m256_add_dpbusd_epi32x2(
__m256i& acc,
__m256i a0, __m256i b0,
__m256i a1, __m256i b1) {
# if defined (USE_VNNI)
acc = _mm256_dpbusd_epi32(acc, a0, b0);
acc = _mm256_dpbusd_epi32(acc, a1, b1);
# else
__m256i product0 = _mm256_maddubs_epi16(a0, b0);
__m256i product1 = _mm256_maddubs_epi16(a1, b1);
product0 = _mm256_madd_epi16(product0, _mm256_set1_epi16(1));
product1 = _mm256_madd_epi16(product1, _mm256_set1_epi16(1));
acc = _mm256_add_epi32(acc, _mm256_add_epi32(product0, product1));
# endif
}
#endif
#if defined (USE_SSSE3)
[[maybe_unused]] static int m128_hadd(__m128i sum, int bias) {
sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0x4E)); //_MM_PERM_BADC
sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0xB1)); //_MM_PERM_CDAB
return _mm_cvtsi128_si32(sum) + bias;
}
[[maybe_unused]] static __m128i m128_haddx4(
__m128i sum0, __m128i sum1, __m128i sum2, __m128i sum3,
__m128i bias) {
sum0 = _mm_hadd_epi32(sum0, sum1);
sum2 = _mm_hadd_epi32(sum2, sum3);
sum0 = _mm_hadd_epi32(sum0, sum2);
return _mm_add_epi32(sum0, bias);
}
[[maybe_unused]] static void m128_add_dpbusd_epi32(
__m128i& acc,
__m128i a,
__m128i b) {
__m128i product0 = _mm_maddubs_epi16(a, b);
product0 = _mm_madd_epi16(product0, _mm_set1_epi16(1));
acc = _mm_add_epi32(acc, product0);
}
[[maybe_unused]] static void m128_add_dpbusd_epi32x2(
__m128i& acc,
__m128i a0, __m128i b0,
__m128i a1, __m128i b1) {
__m128i product0 = _mm_maddubs_epi16(a0, b0);
__m128i product1 = _mm_maddubs_epi16(a1, b1);
product0 = _mm_madd_epi16(product0, _mm_set1_epi16(1));
product1 = _mm_madd_epi16(product1, _mm_set1_epi16(1));
acc = _mm_add_epi32(acc, _mm_add_epi32(product0, product1));
}
#endif
#if defined (USE_NEON_DOTPROD)
[[maybe_unused]] static void dotprod_m128_add_dpbusd_epi32x2(
int32x4_t& acc,
int8x16_t a0, int8x16_t b0,
int8x16_t a1, int8x16_t b1) {
acc = vdotq_s32(acc, a0, b0);
acc = vdotq_s32(acc, a1, b1);
}
#endif
#if defined (USE_NEON)
[[maybe_unused]] static int neon_m128_reduce_add_epi32(int32x4_t s) {
# if USE_NEON >= 8
return vaddvq_s32(s);
# else
return s[0] + s[1] + s[2] + s[3];
# endif
}
[[maybe_unused]] static int neon_m128_hadd(int32x4_t sum, int bias) {
return neon_m128_reduce_add_epi32(sum) + bias;
}
[[maybe_unused]] static int32x4_t neon_m128_haddx4(
int32x4_t sum0, int32x4_t sum1, int32x4_t sum2, int32x4_t sum3,
int32x4_t bias) {
int32x4_t hsums {
neon_m128_reduce_add_epi32(sum0),
neon_m128_reduce_add_epi32(sum1),
neon_m128_reduce_add_epi32(sum2),
neon_m128_reduce_add_epi32(sum3)
};
return vaddq_s32(hsums, bias);
}
[[maybe_unused]] static void neon_m128_add_dpbusd_epi32x2(
int32x4_t& acc,
int8x8_t a0, int8x8_t b0,
int8x8_t a1, int8x8_t b1) {
int16x8_t product = vmull_s8(a0, b0);
product = vmlal_s8(product, a1, b1);
acc = vpadalq_s16(acc, product);
}
#endif
}
#endif // STOCKFISH_SIMD_H_INCLUDED