1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-29 16:23:09 +00:00
BadFish/src/search.cpp
Disservin 1dfbde2d10 Move perft out of search
This splits the logic of search and perft. Before, threads were started,
which then constructed a search object, which then started perft and
returned immediately. All of this is unnecessary, instead uci should
start perft right away.

closes https://github.com/official-stockfish/Stockfish/pull/5008

No functional change
2024-01-26 20:52:26 +01:00

1912 lines
76 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "search.h"
#include <algorithm>
#include <array>
#include <atomic>
#include <cassert>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <initializer_list>
#include <iostream>
#include <utility>
#include "evaluate.h"
#include "misc.h"
#include "movegen.h"
#include "movepick.h"
#include "nnue/evaluate_nnue.h"
#include "nnue/nnue_common.h"
#include "position.h"
#include "syzygy/tbprobe.h"
#include "thread.h"
#include "timeman.h"
#include "tt.h"
#include "uci.h"
#include "ucioption.h"
namespace Stockfish {
namespace TB = Tablebases;
using Eval::evaluate;
using namespace Search;
namespace {
// Futility margin
Value futility_margin(Depth d, bool noTtCutNode, bool improving) {
Value futilityMult = 114 - 47 * noTtCutNode;
return (futilityMult * d - 3 * futilityMult / 2 * improving);
}
constexpr int futility_move_count(bool improving, Depth depth) {
return improving ? (3 + depth * depth) : (3 + depth * depth) / 2;
}
// Add correctionHistory value to raw staticEval and guarantee evaluation does not hit the tablebase range
Value to_corrected_static_eval(Value v, const Worker& w, const Position& pos) {
auto cv = w.correctionHistory[pos.side_to_move()][pawn_structure_index<Correction>(pos)];
v += cv * std::abs(cv) / 14095;
return std::clamp(int(v), VALUE_TB_LOSS_IN_MAX_PLY + 1, VALUE_TB_WIN_IN_MAX_PLY - 1);
}
// History and stats update bonus, based on depth
int stat_bonus(Depth d) { return std::min(265 * d - 349, 1112); }
// History and stats update malus, based on depth
int stat_malus(Depth d) { return std::min(482 * d - 326, 1172); }
// Add a small random component to draw evaluations to avoid 3-fold blindness
Value value_draw(size_t nodes) { return VALUE_DRAW - 1 + Value(nodes & 0x2); }
// Skill structure is used to implement strength limit. If we have a UCI_Elo,
// we convert it to an appropriate skill level, anchored to the Stash engine.
// This method is based on a fit of the Elo results for games played between
// Stockfish at various skill levels and various versions of the Stash engine.
// Skill 0 .. 19 now covers CCRL Blitz Elo from 1320 to 3190, approximately
// Reference: https://github.com/vondele/Stockfish/commit/a08b8d4e9711c2
struct Skill {
Skill(int skill_level, int uci_elo) {
if (uci_elo)
{
double e = double(uci_elo - 1320) / (3190 - 1320);
level = std::clamp((((37.2473 * e - 40.8525) * e + 22.2943) * e - 0.311438), 0.0, 19.0);
}
else
level = double(skill_level);
}
bool enabled() const { return level < 20.0; }
bool time_to_pick(Depth depth) const { return depth == 1 + int(level); }
Move pick_best(const RootMoves&, size_t multiPV);
double level;
Move best = Move::none();
};
Value value_to_tt(Value v, int ply);
Value value_from_tt(Value v, int ply, int r50c);
void update_pv(Move* pv, Move move, const Move* childPv);
void update_continuation_histories(Stack* ss, Piece pc, Square to, int bonus);
void update_quiet_stats(
const Position& pos, Stack* ss, Search::Worker& workerThread, Move move, int bonus);
void update_all_stats(const Position& pos,
Stack* ss,
Search::Worker& workerThread,
Move bestMove,
Value bestValue,
Value beta,
Square prevSq,
Move* quietsSearched,
int quietCount,
Move* capturesSearched,
int captureCount,
Depth depth);
} // namespace
Search::Worker::Worker(SharedState& sharedState,
std::unique_ptr<ISearchManager> sm,
size_t thread_id) :
// Unpack the SharedState struct into member variables
thread_idx(thread_id),
manager(std::move(sm)),
options(sharedState.options),
threads(sharedState.threads),
tt(sharedState.tt) {
clear();
}
void Search::Worker::start_searching() {
// Non-main threads go directly to iterative_deepening()
if (!is_mainthread())
{
iterative_deepening();
return;
}
main_manager()->tm.init(limits, rootPos.side_to_move(), rootPos.game_ply(), options);
tt.new_search();
if (rootMoves.empty())
{
rootMoves.emplace_back(Move::none());
sync_cout << "info depth 0 score "
<< UCI::value(rootPos.checkers() ? -VALUE_MATE : VALUE_DRAW) << sync_endl;
}
else
{
threads.start_searching(); // start non-main threads
iterative_deepening(); // main thread start searching
}
// When we reach the maximum depth, we can arrive here without a raise of
// threads.stop. However, if we are pondering or in an infinite search,
// the UCI protocol states that we shouldn't print the best move before the
// GUI sends a "stop" or "ponderhit" command. We therefore simply wait here
// until the GUI sends one of those commands.
while (!threads.stop && (main_manager()->ponder || limits.infinite))
{} // Busy wait for a stop or a ponder reset
// Stop the threads if not already stopped (also raise the stop if
// "ponderhit" just reset threads.ponder).
threads.stop = true;
// Wait until all threads have finished
threads.wait_for_search_finished();
// When playing in 'nodes as time' mode, subtract the searched nodes from
// the available ones before exiting.
if (limits.npmsec)
main_manager()->tm.advance_nodes_time(limits.inc[rootPos.side_to_move()]
- threads.nodes_searched());
Worker* bestThread = this;
Skill skill =
Skill(options["Skill Level"], options["UCI_LimitStrength"] ? int(options["UCI_Elo"]) : 0);
if (int(options["MultiPV"]) == 1 && !limits.depth && !skill.enabled()
&& rootMoves[0].pv[0] != Move::none())
bestThread = threads.get_best_thread()->worker.get();
main_manager()->bestPreviousScore = bestThread->rootMoves[0].score;
main_manager()->bestPreviousAverageScore = bestThread->rootMoves[0].averageScore;
// Send again PV info if we have a new best thread
if (bestThread != this)
sync_cout << UCI::pv(*bestThread, main_manager()->tm.elapsed(threads.nodes_searched()),
threads.nodes_searched(), threads.tb_hits(), tt.hashfull(),
tbConfig.rootInTB)
<< sync_endl;
sync_cout << "bestmove " << UCI::move(bestThread->rootMoves[0].pv[0], rootPos.is_chess960());
if (bestThread->rootMoves[0].pv.size() > 1
|| bestThread->rootMoves[0].extract_ponder_from_tt(tt, rootPos))
std::cout << " ponder " << UCI::move(bestThread->rootMoves[0].pv[1], rootPos.is_chess960());
std::cout << sync_endl;
}
// Main iterative deepening loop. It calls search()
// repeatedly with increasing depth until the allocated thinking time has been
// consumed, the user stops the search, or the maximum search depth is reached.
void Search::Worker::iterative_deepening() {
// Allocate stack with extra size to allow access from (ss - 7) to (ss + 2):
// (ss - 7) is needed for update_continuation_histories(ss - 1) which accesses (ss - 6),
// (ss + 2) is needed for initialization of cutOffCnt and killers.
Stack stack[MAX_PLY + 10], *ss = stack + 7;
Move pv[MAX_PLY + 1];
Value alpha, beta;
Value lastBestScore = -VALUE_INFINITE;
std::vector<Move> lastBestPV = {Move::none()};
Depth lastBestMoveDepth = 0;
SearchManager* mainThread = (thread_idx == 0 ? main_manager() : nullptr);
double timeReduction = 1, totBestMoveChanges = 0;
Color us = rootPos.side_to_move();
int delta, iterIdx = 0;
std::memset(ss - 7, 0, 10 * sizeof(Stack));
for (int i = 7; i > 0; --i)
{
(ss - i)->continuationHistory =
&this->continuationHistory[0][0][NO_PIECE][0]; // Use as a sentinel
(ss - i)->staticEval = VALUE_NONE;
}
for (int i = 0; i <= MAX_PLY + 2; ++i)
(ss + i)->ply = i;
ss->pv = pv;
Value bestValue = -VALUE_INFINITE;
if (mainThread)
{
if (mainThread->bestPreviousScore == VALUE_INFINITE)
for (int i = 0; i < 4; ++i)
mainThread->iterValue[i] = VALUE_ZERO;
else
for (int i = 0; i < 4; ++i)
mainThread->iterValue[i] = mainThread->bestPreviousScore;
}
size_t multiPV = size_t(options["MultiPV"]);
Skill skill(options["Skill Level"], options["UCI_LimitStrength"] ? int(options["UCI_Elo"]) : 0);
// When playing with strength handicap enable MultiPV search that we will
// use behind-the-scenes to retrieve a set of possible moves.
if (skill.enabled())
multiPV = std::max(multiPV, size_t(4));
multiPV = std::min(multiPV, rootMoves.size());
int searchAgainCounter = 0;
// Iterative deepening loop until requested to stop or the target depth is reached
while (++rootDepth < MAX_PLY && !threads.stop
&& !(limits.depth && mainThread && rootDepth > limits.depth))
{
// Age out PV variability metric
if (mainThread)
totBestMoveChanges /= 2;
// Save the last iteration's scores before the first PV line is searched and
// all the move scores except the (new) PV are set to -VALUE_INFINITE.
for (RootMove& rm : rootMoves)
rm.previousScore = rm.score;
size_t pvFirst = 0;
pvLast = 0;
if (!threads.increaseDepth)
searchAgainCounter++;
// MultiPV loop. We perform a full root search for each PV line
for (pvIdx = 0; pvIdx < multiPV && !threads.stop; ++pvIdx)
{
if (pvIdx == pvLast)
{
pvFirst = pvLast;
for (pvLast++; pvLast < rootMoves.size(); pvLast++)
if (rootMoves[pvLast].tbRank != rootMoves[pvFirst].tbRank)
break;
}
// Reset UCI info selDepth for each depth and each PV line
selDepth = 0;
// Reset aspiration window starting size
Value avg = rootMoves[pvIdx].averageScore;
delta = Value(9) + int(avg) * avg / 13181;
alpha = std::max(avg - delta, -VALUE_INFINITE);
beta = std::min(avg + delta, int(VALUE_INFINITE));
// Adjust optimism based on root move's averageScore (~4 Elo)
optimism[us] = 132 * avg / (std::abs(avg) + 98);
optimism[~us] = -optimism[us];
// Start with a small aspiration window and, in the case of a fail
// high/low, re-search with a bigger window until we don't fail
// high/low anymore.
int failedHighCnt = 0;
while (true)
{
// Adjust the effective depth searched, but ensure at least one effective increment
// for every four searchAgain steps (see issue #2717).
Depth adjustedDepth =
std::max(1, rootDepth - failedHighCnt - 3 * (searchAgainCounter + 1) / 4);
bestValue = search<Root>(rootPos, ss, alpha, beta, adjustedDepth, false);
// Bring the best move to the front. It is critical that sorting
// is done with a stable algorithm because all the values but the
// first and eventually the new best one is set to -VALUE_INFINITE
// and we want to keep the same order for all the moves except the
// new PV that goes to the front. Note that in the case of MultiPV
// search the already searched PV lines are preserved.
std::stable_sort(rootMoves.begin() + pvIdx, rootMoves.begin() + pvLast);
// If search has been stopped, we break immediately. Sorting is
// safe because RootMoves is still valid, although it refers to
// the previous iteration.
if (threads.stop)
break;
// When failing high/low give some update (without cluttering
// the UI) before a re-search.
if (mainThread && multiPV == 1 && (bestValue <= alpha || bestValue >= beta)
&& mainThread->tm.elapsed(threads.nodes_searched()) > 3000)
sync_cout << UCI::pv(*this, mainThread->tm.elapsed(threads.nodes_searched()),
threads.nodes_searched(), threads.tb_hits(), tt.hashfull(),
tbConfig.rootInTB)
<< sync_endl;
// In case of failing low/high increase aspiration window and
// re-search, otherwise exit the loop.
if (bestValue <= alpha)
{
beta = (alpha + beta) / 2;
alpha = std::max(bestValue - delta, -VALUE_INFINITE);
failedHighCnt = 0;
if (mainThread)
mainThread->stopOnPonderhit = false;
}
else if (bestValue >= beta)
{
beta = std::min(bestValue + delta, int(VALUE_INFINITE));
++failedHighCnt;
}
else
break;
delta += delta / 3;
assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
}
// Sort the PV lines searched so far and update the GUI
std::stable_sort(rootMoves.begin() + pvFirst, rootMoves.begin() + pvIdx + 1);
if (mainThread
&& (threads.stop || pvIdx + 1 == multiPV
|| mainThread->tm.elapsed(threads.nodes_searched()) > 3000)
// A thread that aborted search can have mated-in/TB-loss PV and score
// that cannot be trusted, i.e. it can be delayed or refuted if we would have
// had time to fully search other root-moves. Thus we suppress this output and
// below pick a proven score/PV for this thread (from the previous iteration).
&& !(threads.abortedSearch && rootMoves[0].uciScore <= VALUE_TB_LOSS_IN_MAX_PLY))
sync_cout << UCI::pv(*this, mainThread->tm.elapsed(threads.nodes_searched()),
threads.nodes_searched(), threads.tb_hits(), tt.hashfull(),
tbConfig.rootInTB)
<< sync_endl;
}
if (!threads.stop)
completedDepth = rootDepth;
// We make sure not to pick an unproven mated-in score,
// in case this thread prematurely stopped search (aborted-search).
if (threads.abortedSearch && rootMoves[0].score != -VALUE_INFINITE
&& rootMoves[0].score <= VALUE_TB_LOSS_IN_MAX_PLY)
{
// Bring the last best move to the front for best thread selection.
Utility::move_to_front(rootMoves, [&lastBestPV = std::as_const(lastBestPV)](
const auto& rm) { return rm == lastBestPV[0]; });
rootMoves[0].pv = lastBestPV;
rootMoves[0].score = rootMoves[0].uciScore = lastBestScore;
}
else if (rootMoves[0].pv[0] != lastBestPV[0])
{
lastBestPV = rootMoves[0].pv;
lastBestScore = rootMoves[0].score;
lastBestMoveDepth = rootDepth;
}
// Have we found a "mate in x"?
if (limits.mate && bestValue >= VALUE_MATE_IN_MAX_PLY
&& VALUE_MATE - bestValue <= 2 * limits.mate)
threads.stop = true;
if (!mainThread)
continue;
// If the skill level is enabled and time is up, pick a sub-optimal best move
if (skill.enabled() && skill.time_to_pick(rootDepth))
skill.pick_best(rootMoves, multiPV);
// Use part of the gained time from a previous stable move for the current move
for (Thread* th : threads)
{
totBestMoveChanges += th->worker->bestMoveChanges;
th->worker->bestMoveChanges = 0;
}
// Do we have time for the next iteration? Can we stop searching now?
if (limits.use_time_management() && !threads.stop && !mainThread->stopOnPonderhit)
{
double fallingEval = (66 + 14 * (mainThread->bestPreviousAverageScore - bestValue)
+ 6 * (mainThread->iterValue[iterIdx] - bestValue))
/ 616.6;
fallingEval = std::clamp(fallingEval, 0.51, 1.51);
// If the bestMove is stable over several iterations, reduce time accordingly
timeReduction = lastBestMoveDepth + 8 < completedDepth ? 1.56 : 0.69;
double reduction = (1.4 + mainThread->previousTimeReduction) / (2.17 * timeReduction);
double bestMoveInstability = 1 + 1.79 * totBestMoveChanges / threads.size();
double totalTime =
mainThread->tm.optimum() * fallingEval * reduction * bestMoveInstability;
// Cap used time in case of a single legal move for a better viewer experience
if (rootMoves.size() == 1)
totalTime = std::min(500.0, totalTime);
// Stop the search if we have exceeded the totalTime
if (mainThread->tm.elapsed(threads.nodes_searched()) > totalTime)
{
// If we are allowed to ponder do not stop the search now but
// keep pondering until the GUI sends "ponderhit" or "stop".
if (mainThread->ponder)
mainThread->stopOnPonderhit = true;
else
threads.stop = true;
}
else if (!mainThread->ponder
&& mainThread->tm.elapsed(threads.nodes_searched()) > totalTime * 0.50)
threads.increaseDepth = false;
else
threads.increaseDepth = true;
}
mainThread->iterValue[iterIdx] = bestValue;
iterIdx = (iterIdx + 1) & 3;
}
if (!mainThread)
return;
mainThread->previousTimeReduction = timeReduction;
// If the skill level is enabled, swap the best PV line with the sub-optimal one
if (skill.enabled())
std::swap(rootMoves[0],
*std::find(rootMoves.begin(), rootMoves.end(),
skill.best ? skill.best : skill.pick_best(rootMoves, multiPV)));
}
void Search::Worker::clear() {
counterMoves.fill(Move::none());
mainHistory.fill(0);
captureHistory.fill(0);
pawnHistory.fill(0);
correctionHistory.fill(0);
for (bool inCheck : {false, true})
for (StatsType c : {NoCaptures, Captures})
for (auto& to : continuationHistory[inCheck][c])
for (auto& h : to)
h->fill(-71);
for (int i = 1; i < MAX_MOVES; ++i)
reductions[i] = int((20.37 + std::log(size_t(options["Threads"])) / 2) * std::log(i));
}
// Main search function for both PV and non-PV nodes.
template<NodeType nodeType>
Value Search::Worker::search(
Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode) {
constexpr bool PvNode = nodeType != NonPV;
constexpr bool rootNode = nodeType == Root;
// Dive into quiescence search when the depth reaches zero
if (depth <= 0)
return qsearch < PvNode ? PV : NonPV > (pos, ss, alpha, beta);
// Check if we have an upcoming move that draws by repetition, or
// if the opponent had an alternative move earlier to this position.
if (!rootNode && alpha < VALUE_DRAW && pos.has_game_cycle(ss->ply))
{
alpha = value_draw(this->nodes);
if (alpha >= beta)
return alpha;
}
assert(-VALUE_INFINITE <= alpha && alpha < beta && beta <= VALUE_INFINITE);
assert(PvNode || (alpha == beta - 1));
assert(0 < depth && depth < MAX_PLY);
assert(!(PvNode && cutNode));
Move pv[MAX_PLY + 1], capturesSearched[32], quietsSearched[32];
StateInfo st;
ASSERT_ALIGNED(&st, Eval::NNUE::CacheLineSize);
TTEntry* tte;
Key posKey;
Move ttMove, move, excludedMove, bestMove;
Depth extension, newDepth;
Value bestValue, value, ttValue, eval, maxValue, probCutBeta;
bool givesCheck, improving, priorCapture, singularQuietLMR;
bool capture, moveCountPruning, ttCapture;
Piece movedPiece;
int moveCount, captureCount, quietCount;
// Step 1. Initialize node
Worker* thisThread = this;
ss->inCheck = pos.checkers();
priorCapture = pos.captured_piece();
Color us = pos.side_to_move();
moveCount = captureCount = quietCount = ss->moveCount = 0;
bestValue = -VALUE_INFINITE;
maxValue = VALUE_INFINITE;
// Check for the available remaining time
if (is_mainthread())
main_manager()->check_time(*this);
// Used to send selDepth info to GUI (selDepth counts from 1, ply from 0)
if (PvNode && thisThread->selDepth < ss->ply + 1)
thisThread->selDepth = ss->ply + 1;
if (!rootNode)
{
// Step 2. Check for aborted search and immediate draw
if (threads.stop.load(std::memory_order_relaxed) || pos.is_draw(ss->ply)
|| ss->ply >= MAX_PLY)
return (ss->ply >= MAX_PLY && !ss->inCheck) ? evaluate(pos, thisThread->optimism[us])
: value_draw(thisThread->nodes);
// Step 3. Mate distance pruning. Even if we mate at the next move our score
// would be at best mate_in(ss->ply + 1), but if alpha is already bigger because
// a shorter mate was found upward in the tree then there is no need to search
// because we will never beat the current alpha. Same logic but with reversed
// signs apply also in the opposite condition of being mated instead of giving
// mate. In this case, return a fail-high score.
alpha = std::max(mated_in(ss->ply), alpha);
beta = std::min(mate_in(ss->ply + 1), beta);
if (alpha >= beta)
return alpha;
}
else
thisThread->rootDelta = beta - alpha;
assert(0 <= ss->ply && ss->ply < MAX_PLY);
(ss + 1)->excludedMove = bestMove = Move::none();
(ss + 2)->killers[0] = (ss + 2)->killers[1] = Move::none();
(ss + 2)->cutoffCnt = 0;
ss->doubleExtensions = (ss - 1)->doubleExtensions;
Square prevSq = ((ss - 1)->currentMove).is_ok() ? ((ss - 1)->currentMove).to_sq() : SQ_NONE;
ss->statScore = 0;
// Step 4. Transposition table lookup.
excludedMove = ss->excludedMove;
posKey = pos.key();
tte = tt.probe(posKey, ss->ttHit);
ttValue = ss->ttHit ? value_from_tt(tte->value(), ss->ply, pos.rule50_count()) : VALUE_NONE;
ttMove = rootNode ? thisThread->rootMoves[thisThread->pvIdx].pv[0]
: ss->ttHit ? tte->move()
: Move::none();
ttCapture = ttMove && pos.capture_stage(ttMove);
// At this point, if excluded, skip straight to step 6, static eval. However,
// to save indentation, we list the condition in all code between here and there.
if (!excludedMove)
ss->ttPv = PvNode || (ss->ttHit && tte->is_pv());
// At non-PV nodes we check for an early TT cutoff
if (!PvNode && !excludedMove && tte->depth() > depth
&& ttValue != VALUE_NONE // Possible in case of TT access race or if !ttHit
&& (tte->bound() & (ttValue >= beta ? BOUND_LOWER : BOUND_UPPER)))
{
// If ttMove is quiet, update move sorting heuristics on TT hit (~2 Elo)
if (ttMove)
{
if (ttValue >= beta)
{
// Bonus for a quiet ttMove that fails high (~2 Elo)
if (!ttCapture)
update_quiet_stats(pos, ss, *this, ttMove, stat_bonus(depth));
// Extra penalty for early quiet moves of
// the previous ply (~0 Elo on STC, ~2 Elo on LTC).
if (prevSq != SQ_NONE && (ss - 1)->moveCount <= 2 && !priorCapture)
update_continuation_histories(ss - 1, pos.piece_on(prevSq), prevSq,
-stat_malus(depth + 1));
}
// Penalty for a quiet ttMove that fails low (~1 Elo)
else if (!ttCapture)
{
int penalty = -stat_malus(depth);
thisThread->mainHistory[us][ttMove.from_to()] << penalty;
update_continuation_histories(ss, pos.moved_piece(ttMove), ttMove.to_sq(), penalty);
}
}
// Partial workaround for the graph history interaction problem
// For high rule50 counts don't produce transposition table cutoffs.
if (pos.rule50_count() < 90)
return ttValue >= beta && std::abs(ttValue) < VALUE_TB_WIN_IN_MAX_PLY
? (ttValue * 3 + beta) / 4
: ttValue;
}
// Step 5. Tablebases probe
if (!rootNode && !excludedMove && tbConfig.cardinality)
{
int piecesCount = pos.count<ALL_PIECES>();
if (piecesCount <= tbConfig.cardinality
&& (piecesCount < tbConfig.cardinality || depth >= tbConfig.probeDepth)
&& pos.rule50_count() == 0 && !pos.can_castle(ANY_CASTLING))
{
TB::ProbeState err;
TB::WDLScore wdl = Tablebases::probe_wdl(pos, &err);
// Force check of time on the next occasion
if (is_mainthread())
main_manager()->callsCnt = 0;
if (err != TB::ProbeState::FAIL)
{
thisThread->tbHits.fetch_add(1, std::memory_order_relaxed);
int drawScore = tbConfig.useRule50 ? 1 : 0;
Value tbValue = VALUE_TB - ss->ply;
// use the range VALUE_TB to VALUE_TB_WIN_IN_MAX_PLY to score
value = wdl < -drawScore ? -tbValue
: wdl > drawScore ? tbValue
: VALUE_DRAW + 2 * wdl * drawScore;
Bound b = wdl < -drawScore ? BOUND_UPPER
: wdl > drawScore ? BOUND_LOWER
: BOUND_EXACT;
if (b == BOUND_EXACT || (b == BOUND_LOWER ? value >= beta : value <= alpha))
{
tte->save(posKey, value_to_tt(value, ss->ply), ss->ttPv, b,
std::min(MAX_PLY - 1, depth + 6), Move::none(), VALUE_NONE,
tt.generation());
return value;
}
if (PvNode)
{
if (b == BOUND_LOWER)
bestValue = value, alpha = std::max(alpha, bestValue);
else
maxValue = value;
}
}
}
}
Value unadjustedStaticEval = VALUE_NONE;
// Step 6. Static evaluation of the position
if (ss->inCheck)
{
// Skip early pruning when in check
ss->staticEval = eval = VALUE_NONE;
improving = false;
goto moves_loop;
}
else if (excludedMove)
{
// Providing the hint that this node's accumulator will be used often
// brings significant Elo gain (~13 Elo).
Eval::NNUE::hint_common_parent_position(pos);
unadjustedStaticEval = eval = ss->staticEval;
}
else if (ss->ttHit)
{
// Never assume anything about values stored in TT
unadjustedStaticEval = ss->staticEval = eval = tte->eval();
if (eval == VALUE_NONE)
unadjustedStaticEval = ss->staticEval = eval = evaluate(pos, thisThread->optimism[us]);
else if (PvNode)
Eval::NNUE::hint_common_parent_position(pos);
ss->staticEval = eval = to_corrected_static_eval(unadjustedStaticEval, *thisThread, pos);
// ttValue can be used as a better position evaluation (~7 Elo)
if (ttValue != VALUE_NONE && (tte->bound() & (ttValue > eval ? BOUND_LOWER : BOUND_UPPER)))
eval = ttValue;
}
else
{
unadjustedStaticEval = ss->staticEval = eval = evaluate(pos, thisThread->optimism[us]);
ss->staticEval = eval = to_corrected_static_eval(unadjustedStaticEval, *thisThread, pos);
// Static evaluation is saved as it was before adjustment by correction history
tte->save(posKey, VALUE_NONE, ss->ttPv, BOUND_NONE, DEPTH_NONE, Move::none(),
unadjustedStaticEval, tt.generation());
}
// Use static evaluation difference to improve quiet move ordering (~9 Elo)
if (((ss - 1)->currentMove).is_ok() && !(ss - 1)->inCheck && !priorCapture)
{
int bonus = std::clamp(-13 * int((ss - 1)->staticEval + ss->staticEval), -1680, 1406);
bonus = bonus > 0 ? 2 * bonus : bonus / 2;
thisThread->mainHistory[~us][((ss - 1)->currentMove).from_to()] << bonus;
if (type_of(pos.piece_on(prevSq)) != PAWN && ((ss - 1)->currentMove).type_of() != PROMOTION)
thisThread->pawnHistory[pawn_structure_index(pos)][pos.piece_on(prevSq)][prevSq]
<< bonus / 4;
}
// Set up the improving flag, which is true if current static evaluation is
// bigger than the previous static evaluation at our turn (if we were in
// check at our previous move we look at static evaluation at move prior to it
// and if we were in check at move prior to it flag is set to true) and is
// false otherwise. The improving flag is used in various pruning heuristics.
improving = (ss - 2)->staticEval != VALUE_NONE
? ss->staticEval > (ss - 2)->staticEval
: (ss - 4)->staticEval != VALUE_NONE && ss->staticEval > (ss - 4)->staticEval;
// Step 7. Razoring (~1 Elo)
// If eval is really low check with qsearch if it can exceed alpha, if it can't,
// return a fail low.
// Adjust razor margin according to cutoffCnt. (~1 Elo)
if (eval < alpha - 435 - (327 - 167 * ((ss + 1)->cutoffCnt > 3)) * depth * depth)
{
value = qsearch<NonPV>(pos, ss, alpha - 1, alpha);
if (value < alpha)
return value;
}
// Step 8. Futility pruning: child node (~40 Elo)
// The depth condition is important for mate finding.
if (!ss->ttPv && depth < 11
&& eval - futility_margin(depth, cutNode && !ss->ttHit, improving)
- (ss - 1)->statScore / 327
>= beta
&& eval >= beta && eval < 27734 // smaller than TB wins
&& (!ttMove || ttCapture))
return beta > VALUE_TB_LOSS_IN_MAX_PLY ? (eval + beta) / 2 : eval;
// Step 9. Null move search with verification search (~35 Elo)
if (!PvNode && (ss - 1)->currentMove != Move::null() && (ss - 1)->statScore < 17787
&& eval >= beta && eval >= ss->staticEval && ss->staticEval >= beta - 22 * depth + 313
&& !excludedMove && pos.non_pawn_material(us) && ss->ply >= thisThread->nmpMinPly
&& beta > VALUE_TB_LOSS_IN_MAX_PLY)
{
assert(eval - beta >= 0);
// Null move dynamic reduction based on depth and eval
Depth R = std::min(int(eval - beta) / 144, 6) + depth / 3 + 4;
ss->currentMove = Move::null();
ss->continuationHistory = &thisThread->continuationHistory[0][0][NO_PIECE][0];
pos.do_null_move(st, tt);
Value nullValue = -search<NonPV>(pos, ss + 1, -beta, -beta + 1, depth - R, !cutNode);
pos.undo_null_move();
// Do not return unproven mate or TB scores
if (nullValue >= beta && nullValue < VALUE_TB_WIN_IN_MAX_PLY)
{
if (thisThread->nmpMinPly || depth < 15)
return nullValue;
assert(!thisThread->nmpMinPly); // Recursive verification is not allowed
// Do verification search at high depths, with null move pruning disabled
// until ply exceeds nmpMinPly.
thisThread->nmpMinPly = ss->ply + 3 * (depth - R) / 4;
Value v = search<NonPV>(pos, ss, beta - 1, beta, depth - R, false);
thisThread->nmpMinPly = 0;
if (v >= beta)
return nullValue;
}
}
// Step 10. Internal iterative reductions (~9 Elo)
// For PV nodes without a ttMove, we decrease depth by 2,
// or by 4 if the current position is present in the TT and
// the stored depth is greater than or equal to the current depth.
// Use qsearch if depth <= 0.
if (PvNode && !ttMove)
depth -= 2 + 2 * (ss->ttHit && tte->depth() >= depth);
if (depth <= 0)
return qsearch<PV>(pos, ss, alpha, beta);
// For cutNodes without a ttMove, we decrease depth by 2 if depth is high enough.
if (cutNode && depth >= 8 && !ttMove)
depth -= 2;
probCutBeta = beta + 173 - 73 * improving;
// Step 11. ProbCut (~10 Elo)
// If we have a good enough capture (or queen promotion) and a reduced search returns a value
// much above beta, we can (almost) safely prune the previous move.
if (
!PvNode && depth > 3
&& std::abs(beta) < VALUE_TB_WIN_IN_MAX_PLY
// If value from transposition table is lower than probCutBeta, don't attempt probCut
// there and in further interactions with transposition table cutoff depth is set to depth - 3
// because probCut search has depth set to depth - 4 but we also do a move before it
// So effective depth is equal to depth - 3
&& !(tte->depth() >= depth - 3 && ttValue != VALUE_NONE && ttValue < probCutBeta))
{
assert(probCutBeta < VALUE_INFINITE && probCutBeta > beta);
MovePicker mp(pos, ttMove, probCutBeta - ss->staticEval, &thisThread->captureHistory);
while ((move = mp.next_move()) != Move::none())
if (move != excludedMove && pos.legal(move))
{
assert(pos.capture_stage(move));
// Prefetch the TT entry for the resulting position
prefetch(tt.first_entry(pos.key_after(move)));
ss->currentMove = move;
ss->continuationHistory =
&this
->continuationHistory[ss->inCheck][true][pos.moved_piece(move)][move.to_sq()];
thisThread->nodes.fetch_add(1, std::memory_order_relaxed);
pos.do_move(move, st);
// Perform a preliminary qsearch to verify that the move holds
value = -qsearch<NonPV>(pos, ss + 1, -probCutBeta, -probCutBeta + 1);
// If the qsearch held, perform the regular search
if (value >= probCutBeta)
value = -search<NonPV>(pos, ss + 1, -probCutBeta, -probCutBeta + 1, depth - 4,
!cutNode);
pos.undo_move(move);
if (value >= probCutBeta)
{
// Save ProbCut data into transposition table
tte->save(posKey, value_to_tt(value, ss->ply), ss->ttPv, BOUND_LOWER, depth - 3,
move, unadjustedStaticEval, tt.generation());
return std::abs(value) < VALUE_TB_WIN_IN_MAX_PLY ? value - (probCutBeta - beta)
: value;
}
}
Eval::NNUE::hint_common_parent_position(pos);
}
moves_loop: // When in check, search starts here
// Step 12. A small Probcut idea, when we are in check (~4 Elo)
probCutBeta = beta + 427;
if (ss->inCheck && !PvNode && ttCapture && (tte->bound() & BOUND_LOWER)
&& tte->depth() >= depth - 4 && ttValue >= probCutBeta
&& std::abs(ttValue) < VALUE_TB_WIN_IN_MAX_PLY && std::abs(beta) < VALUE_TB_WIN_IN_MAX_PLY)
return probCutBeta;
const PieceToHistory* contHist[] = {(ss - 1)->continuationHistory,
(ss - 2)->continuationHistory,
(ss - 3)->continuationHistory,
(ss - 4)->continuationHistory,
nullptr,
(ss - 6)->continuationHistory};
Move countermove =
prevSq != SQ_NONE ? thisThread->counterMoves[pos.piece_on(prevSq)][prevSq] : Move::none();
MovePicker mp(pos, ttMove, depth, &thisThread->mainHistory, &thisThread->captureHistory,
contHist, &thisThread->pawnHistory, countermove, ss->killers);
value = bestValue;
moveCountPruning = singularQuietLMR = false;
// Step 13. Loop through all pseudo-legal moves until no moves remain
// or a beta cutoff occurs.
while ((move = mp.next_move(moveCountPruning)) != Move::none())
{
assert(move.is_ok());
if (move == excludedMove)
continue;
// Check for legality
if (!pos.legal(move))
continue;
// At root obey the "searchmoves" option and skip moves not listed in Root
// Move List. In MultiPV mode we also skip PV moves that have been already
// searched and those of lower "TB rank" if we are in a TB root position.
if (rootNode
&& !std::count(thisThread->rootMoves.begin() + thisThread->pvIdx,
thisThread->rootMoves.begin() + thisThread->pvLast, move))
continue;
ss->moveCount = ++moveCount;
if (rootNode && is_mainthread()
&& main_manager()->tm.elapsed(threads.nodes_searched()) > 3000)
sync_cout << "info depth " << depth << " currmove "
<< UCI::move(move, pos.is_chess960()) << " currmovenumber "
<< moveCount + thisThread->pvIdx << sync_endl;
if (PvNode)
(ss + 1)->pv = nullptr;
extension = 0;
capture = pos.capture_stage(move);
movedPiece = pos.moved_piece(move);
givesCheck = pos.gives_check(move);
// Calculate new depth for this move
newDepth = depth - 1;
int delta = beta - alpha;
Depth r = reduction(improving, depth, moveCount, delta);
// Step 14. Pruning at shallow depth (~120 Elo).
// Depth conditions are important for mate finding.
if (!rootNode && pos.non_pawn_material(us) && bestValue > VALUE_TB_LOSS_IN_MAX_PLY)
{
// Skip quiet moves if movecount exceeds our FutilityMoveCount threshold (~8 Elo)
if (!moveCountPruning)
moveCountPruning = moveCount >= futility_move_count(improving, depth);
// Reduced depth of the next LMR search
int lmrDepth = newDepth - r;
if (capture || givesCheck)
{
// Futility pruning for captures (~2 Elo)
if (!givesCheck && lmrDepth < 7 && !ss->inCheck)
{
Piece capturedPiece = pos.piece_on(move.to_sq());
int futilityEval =
ss->staticEval + 277 + 298 * lmrDepth + PieceValue[capturedPiece]
+ thisThread->captureHistory[movedPiece][move.to_sq()][type_of(capturedPiece)]
/ 7;
if (futilityEval < alpha)
continue;
}
// SEE based pruning for captures and checks (~11 Elo)
if (!pos.see_ge(move, -203 * depth))
continue;
}
else
{
int history =
(*contHist[0])[movedPiece][move.to_sq()]
+ (*contHist[1])[movedPiece][move.to_sq()]
+ (*contHist[3])[movedPiece][move.to_sq()]
+ thisThread->pawnHistory[pawn_structure_index(pos)][movedPiece][move.to_sq()];
// Continuation history based pruning (~2 Elo)
if (lmrDepth < 6 && history < -4195 * depth)
continue;
history += 2 * thisThread->mainHistory[us][move.from_to()];
lmrDepth += history / 6992;
// Futility pruning: parent node (~13 Elo)
if (!ss->inCheck && lmrDepth < 15
&& ss->staticEval + (bestValue < ss->staticEval - 63 ? 137 : 64)
+ 111 * lmrDepth
<= alpha)
continue;
lmrDepth = std::max(lmrDepth, 0);
// Prune moves with negative SEE (~4 Elo)
if (!pos.see_ge(move, -26 * lmrDepth * lmrDepth))
continue;
}
}
// Step 15. Extensions (~100 Elo)
// We take care to not overdo to avoid search getting stuck.
if (ss->ply < thisThread->rootDepth * 2)
{
// Singular extension search (~94 Elo). If all moves but one fail low on a
// search of (alpha-s, beta-s), and just one fails high on (alpha, beta),
// then that move is singular and should be extended. To verify this we do
// a reduced search on the position excluding the ttMove and if the result
// is lower than ttValue minus a margin, then we will extend the ttMove.
// Note: the depth margin and singularBeta margin are known for having non-linear
// scaling. Their values are optimized to time controls of 180+1.8 and longer
// so changing them requires tests at these types of time controls.
// Recursive singular search is avoided.
if (!rootNode && move == ttMove && !excludedMove
&& depth >= 4 - (thisThread->completedDepth > 31) + 2 * (PvNode && tte->is_pv())
&& std::abs(ttValue) < VALUE_TB_WIN_IN_MAX_PLY && (tte->bound() & BOUND_LOWER)
&& tte->depth() >= depth - 3)
{
Value singularBeta = ttValue - (58 + 52 * (ss->ttPv && !PvNode)) * depth / 64;
Depth singularDepth = newDepth / 2;
ss->excludedMove = move;
value =
search<NonPV>(pos, ss, singularBeta - 1, singularBeta, singularDepth, cutNode);
ss->excludedMove = Move::none();
if (value < singularBeta)
{
extension = 1;
singularQuietLMR = !ttCapture;
// Avoid search explosion by limiting the number of double extensions
if (!PvNode && value < singularBeta - 16 && ss->doubleExtensions <= 12)
{
extension = 2;
depth += depth < 15;
}
}
// Multi-cut pruning
// Our ttMove is assumed to fail high based on the bound of the TT entry,
// and if after excluding the ttMove with a reduced search we fail high over the original beta,
// we assume this expected cut-node is not singular (multiple moves fail high),
// and we can prune the whole subtree by returning a softbound.
else if (singularBeta >= beta)
return singularBeta;
// Negative extensions
// If other moves failed high over (ttValue - margin) without the ttMove on a reduced search,
// but we cannot do multi-cut because (ttValue - margin) is lower than the original beta,
// we do not know if the ttMove is singular or can do a multi-cut,
// so we reduce the ttMove in favor of other moves based on some conditions:
// If the ttMove is assumed to fail high over current beta (~7 Elo)
else if (ttValue >= beta)
extension = -2 - !PvNode;
// If we are on a cutNode but the ttMove is not assumed to fail high over current beta (~1 Elo)
else if (cutNode)
extension = depth < 20 ? -2 : -1;
// If the ttMove is assumed to fail low over the value of the reduced search (~1 Elo)
else if (ttValue <= value)
extension = -1;
}
// Check extensions (~1 Elo)
else if (givesCheck && depth > 10)
extension = 1;
// Quiet ttMove extensions (~1 Elo)
else if (PvNode && move == ttMove && move == ss->killers[0]
&& (*contHist[0])[movedPiece][move.to_sq()] >= 4111)
extension = 1;
// Recapture extensions (~1 Elo)
else if (PvNode && move == ttMove && move.to_sq() == prevSq
&& thisThread->captureHistory[movedPiece][move.to_sq()]
[type_of(pos.piece_on(move.to_sq()))]
> 4484)
extension = 1;
}
// Add extension to new depth
newDepth += extension;
ss->doubleExtensions = (ss - 1)->doubleExtensions + (extension == 2);
// Speculative prefetch as early as possible
prefetch(tt.first_entry(pos.key_after(move)));
// Update the current move (this must be done after singular extension search)
ss->currentMove = move;
ss->continuationHistory =
&thisThread->continuationHistory[ss->inCheck][capture][movedPiece][move.to_sq()];
// Step 16. Make the move
thisThread->nodes.fetch_add(1, std::memory_order_relaxed);
pos.do_move(move, st, givesCheck);
// Decrease reduction if position is or has been on the PV (~5 Elo)
if (ss->ttPv)
r -= 1 + (ttValue > alpha) + (ttValue > beta && tte->depth() >= depth);
// Decrease reduction if opponent's move count is high (~1 Elo)
if ((ss - 1)->moveCount > 7)
r--;
// Increase reduction for cut nodes (~4 Elo)
if (cutNode)
r += 2 - (tte->depth() >= depth && ss->ttPv);
// Increase reduction if ttMove is a capture (~3 Elo)
if (ttCapture)
r++;
// Decrease reduction for PvNodes (~3 Elo)
if (PvNode && tte->bound() != BOUND_UPPER)
r--;
// Decrease reduction if a quiet ttMove has been singularly extended (~1 Elo)
if (singularQuietLMR)
r--;
// Increase reduction on repetition (~1 Elo)
if (move == (ss - 4)->currentMove && pos.has_repeated())
r += 2;
// Increase reduction if next ply has a lot of fail high (~5 Elo)
if ((ss + 1)->cutoffCnt > 3)
r++;
// Set reduction to 0 for first picked move (ttMove) (~2 Elo)
// Nullifies all previous reduction adjustments to ttMove and leaves only history to do them
else if (move == ttMove)
r = 0;
ss->statScore = 2 * thisThread->mainHistory[us][move.from_to()]
+ (*contHist[0])[movedPiece][move.to_sq()]
+ (*contHist[1])[movedPiece][move.to_sq()]
+ (*contHist[3])[movedPiece][move.to_sq()] - 4119;
// Decrease/increase reduction for moves with a good/bad history (~25 Elo)
r -= ss->statScore / 15373;
// Step 17. Late moves reduction / extension (LMR, ~117 Elo)
// We use various heuristics for the sons of a node after the first son has
// been searched. In general, we would like to reduce them, but there are many
// cases where we extend a son if it has good chances to be "interesting".
if (depth >= 2 && moveCount > 1 + rootNode
&& (!ss->ttPv || !capture || (cutNode && (ss - 1)->moveCount > 1)))
{
// In general we want to cap the LMR depth search at newDepth, but when
// reduction is negative, we allow this move a limited search extension
// beyond the first move depth. This may lead to hidden double extensions.
// To prevent problems when the max value is less than the min value,
// std::clamp has been replaced by a more robust implementation.
Depth d = std::max(1, std::min(newDepth - r, newDepth + 1));
value = -search<NonPV>(pos, ss + 1, -(alpha + 1), -alpha, d, true);
// Do a full-depth search when reduced LMR search fails high
if (value > alpha && d < newDepth)
{
// Adjust full-depth search based on LMR results - if the result
// was good enough search deeper, if it was bad enough search shallower.
const bool doDeeperSearch = value > (bestValue + 51 + 2 * newDepth); // (~1 Elo)
const bool doShallowerSearch = value < bestValue + newDepth; // (~2 Elo)
newDepth += doDeeperSearch - doShallowerSearch;
if (newDepth > d)
value = -search<NonPV>(pos, ss + 1, -(alpha + 1), -alpha, newDepth, !cutNode);
// Post LMR continuation history updates (~1 Elo)
int bonus = value <= alpha ? -stat_malus(newDepth)
: value >= beta ? stat_bonus(newDepth)
: 0;
update_continuation_histories(ss, movedPiece, move.to_sq(), bonus);
}
}
// Step 18. Full-depth search when LMR is skipped
else if (!PvNode || moveCount > 1)
{
// Increase reduction if ttMove is not present (~1 Elo)
if (!ttMove)
r += 2;
// Note that if expected reduction is high, we reduce search depth by 1 here (~9 Elo)
value = -search<NonPV>(pos, ss + 1, -(alpha + 1), -alpha, newDepth - (r > 3), !cutNode);
}
// For PV nodes only, do a full PV search on the first move or after a fail high,
// otherwise let the parent node fail low with value <= alpha and try another move.
if (PvNode && (moveCount == 1 || value > alpha))
{
(ss + 1)->pv = pv;
(ss + 1)->pv[0] = Move::none();
value = -search<PV>(pos, ss + 1, -beta, -alpha, newDepth, false);
}
// Step 19. Undo move
pos.undo_move(move);
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
// Step 20. Check for a new best move
// Finished searching the move. If a stop occurred, the return value of
// the search cannot be trusted, and we return immediately without
// updating best move, PV and TT.
if (threads.stop.load(std::memory_order_relaxed))
return VALUE_ZERO;
if (rootNode)
{
RootMove& rm =
*std::find(thisThread->rootMoves.begin(), thisThread->rootMoves.end(), move);
rm.averageScore =
rm.averageScore != -VALUE_INFINITE ? (2 * value + rm.averageScore) / 3 : value;
// PV move or new best move?
if (moveCount == 1 || value > alpha)
{
rm.score = rm.uciScore = value;
rm.selDepth = thisThread->selDepth;
rm.scoreLowerbound = rm.scoreUpperbound = false;
if (value >= beta)
{
rm.scoreLowerbound = true;
rm.uciScore = beta;
}
else if (value <= alpha)
{
rm.scoreUpperbound = true;
rm.uciScore = alpha;
}
rm.pv.resize(1);
assert((ss + 1)->pv);
for (Move* m = (ss + 1)->pv; *m != Move::none(); ++m)
rm.pv.push_back(*m);
// We record how often the best move has been changed in each iteration.
// This information is used for time management. In MultiPV mode,
// we must take care to only do this for the first PV line.
if (moveCount > 1 && !thisThread->pvIdx)
++thisThread->bestMoveChanges;
}
else
// All other moves but the PV, are set to the lowest value: this
// is not a problem when sorting because the sort is stable and the
// move position in the list is preserved - just the PV is pushed up.
rm.score = -VALUE_INFINITE;
}
if (value > bestValue)
{
bestValue = value;
if (value > alpha)
{
bestMove = move;
if (PvNode && !rootNode) // Update pv even in fail-high case
update_pv(ss->pv, move, (ss + 1)->pv);
if (value >= beta)
{
ss->cutoffCnt += 1 + !ttMove;
assert(value >= beta); // Fail high
break;
}
else
{
// Reduce other moves if we have found at least one score improvement (~2 Elo)
if (depth > 2 && depth < 12 && beta < 13195 && value > -12346)
depth -= 2;
assert(depth > 0);
alpha = value; // Update alpha! Always alpha < beta
}
}
}
// If the move is worse than some previously searched move,
// remember it, to update its stats later.
if (move != bestMove && moveCount <= 32)
{
if (capture)
capturesSearched[captureCount++] = move;
else
quietsSearched[quietCount++] = move;
}
}
// Step 21. Check for mate and stalemate
// All legal moves have been searched and if there are no legal moves, it
// must be a mate or a stalemate. If we are in a singular extension search then
// return a fail low score.
assert(moveCount || !ss->inCheck || excludedMove || !MoveList<LEGAL>(pos).size());
if (!moveCount)
bestValue = excludedMove ? alpha : ss->inCheck ? mated_in(ss->ply) : VALUE_DRAW;
// If there is a move that produces search value greater than alpha we update the stats of searched moves
else if (bestMove)
update_all_stats(pos, ss, *this, bestMove, bestValue, beta, prevSq, quietsSearched,
quietCount, capturesSearched, captureCount, depth);
// Bonus for prior countermove that caused the fail low
else if (!priorCapture && prevSq != SQ_NONE)
{
int bonus = (depth > 5) + (PvNode || cutNode) + ((ss - 1)->statScore < -16797)
+ ((ss - 1)->moveCount > 10);
update_continuation_histories(ss - 1, pos.piece_on(prevSq), prevSq,
stat_bonus(depth) * bonus);
thisThread->mainHistory[~us][((ss - 1)->currentMove).from_to()]
<< stat_bonus(depth) * bonus / 2;
}
if (PvNode)
bestValue = std::min(bestValue, maxValue);
// If no good move is found and the previous position was ttPv, then the previous
// opponent move is probably good and the new position is added to the search tree. (~7 Elo)
if (bestValue <= alpha)
ss->ttPv = ss->ttPv || ((ss - 1)->ttPv && depth > 3);
// Write gathered information in transposition table
// Static evaluation is saved as it was before correction history
if (!excludedMove && !(rootNode && thisThread->pvIdx))
tte->save(posKey, value_to_tt(bestValue, ss->ply), ss->ttPv,
bestValue >= beta ? BOUND_LOWER
: PvNode && bestMove ? BOUND_EXACT
: BOUND_UPPER,
depth, bestMove, unadjustedStaticEval, tt.generation());
// Adjust correction history
if (!ss->inCheck && (!bestMove || !pos.capture(bestMove))
&& !(bestValue >= beta && bestValue <= ss->staticEval)
&& !(!bestMove && bestValue >= ss->staticEval))
{
auto bonus = std::clamp(int(bestValue - ss->staticEval) * depth / 8,
-CORRECTION_HISTORY_LIMIT / 4, CORRECTION_HISTORY_LIMIT / 4);
thisThread->correctionHistory[us][pawn_structure_index<Correction>(pos)] << bonus;
}
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
return bestValue;
}
// Quiescence search function, which is called by the main search
// function with zero depth, or recursively with further decreasing depth per call.
// (~155 Elo)
template<NodeType nodeType>
Value Search::Worker::qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) {
static_assert(nodeType != Root);
constexpr bool PvNode = nodeType == PV;
assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE);
assert(PvNode || (alpha == beta - 1));
assert(depth <= 0);
// Check if we have an upcoming move that draws by repetition, or
// if the opponent had an alternative move earlier to this position.
if (alpha < VALUE_DRAW && pos.has_game_cycle(ss->ply))
{
alpha = value_draw(this->nodes);
if (alpha >= beta)
return alpha;
}
Move pv[MAX_PLY + 1];
StateInfo st;
ASSERT_ALIGNED(&st, Eval::NNUE::CacheLineSize);
TTEntry* tte;
Key posKey;
Move ttMove, move, bestMove;
Depth ttDepth;
Value bestValue, value, ttValue, futilityValue, futilityBase;
bool pvHit, givesCheck, capture;
int moveCount;
Color us = pos.side_to_move();
// Step 1. Initialize node
if (PvNode)
{
(ss + 1)->pv = pv;
ss->pv[0] = Move::none();
}
Worker* thisThread = this;
bestMove = Move::none();
ss->inCheck = pos.checkers();
moveCount = 0;
// Used to send selDepth info to GUI (selDepth counts from 1, ply from 0)
if (PvNode && thisThread->selDepth < ss->ply + 1)
thisThread->selDepth = ss->ply + 1;
// Step 2. Check for an immediate draw or maximum ply reached
if (pos.is_draw(ss->ply) || ss->ply >= MAX_PLY)
return (ss->ply >= MAX_PLY && !ss->inCheck) ? evaluate(pos, thisThread->optimism[us])
: VALUE_DRAW;
assert(0 <= ss->ply && ss->ply < MAX_PLY);
// Decide the replacement and cutoff priority of the qsearch TT entries
ttDepth = ss->inCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS : DEPTH_QS_NO_CHECKS;
// Step 3. Transposition table lookup
posKey = pos.key();
tte = tt.probe(posKey, ss->ttHit);
ttValue = ss->ttHit ? value_from_tt(tte->value(), ss->ply, pos.rule50_count()) : VALUE_NONE;
ttMove = ss->ttHit ? tte->move() : Move::none();
pvHit = ss->ttHit && tte->is_pv();
// At non-PV nodes we check for an early TT cutoff
if (!PvNode && tte->depth() >= ttDepth
&& ttValue != VALUE_NONE // Only in case of TT access race or if !ttHit
&& (tte->bound() & (ttValue >= beta ? BOUND_LOWER : BOUND_UPPER)))
return ttValue;
Value unadjustedStaticEval = VALUE_NONE;
// Step 4. Static evaluation of the position
if (ss->inCheck)
bestValue = futilityBase = -VALUE_INFINITE;
else
{
if (ss->ttHit)
{
// Never assume anything about values stored in TT
if ((unadjustedStaticEval = ss->staticEval = bestValue = tte->eval()) == VALUE_NONE)
unadjustedStaticEval = ss->staticEval = bestValue =
evaluate(pos, thisThread->optimism[us]);
ss->staticEval = bestValue =
to_corrected_static_eval(unadjustedStaticEval, *thisThread, pos);
// ttValue can be used as a better position evaluation (~13 Elo)
if (ttValue != VALUE_NONE
&& (tte->bound() & (ttValue > bestValue ? BOUND_LOWER : BOUND_UPPER)))
bestValue = ttValue;
}
else
{
// In case of null move search, use previous static eval with a different sign
unadjustedStaticEval = ss->staticEval = bestValue =
(ss - 1)->currentMove != Move::null() ? evaluate(pos, thisThread->optimism[us])
: -(ss - 1)->staticEval;
ss->staticEval = bestValue =
to_corrected_static_eval(unadjustedStaticEval, *thisThread, pos);
}
// Stand pat. Return immediately if static value is at least beta
if (bestValue >= beta)
{
if (!ss->ttHit)
tte->save(posKey, value_to_tt(bestValue, ss->ply), false, BOUND_LOWER, DEPTH_NONE,
Move::none(), unadjustedStaticEval, tt.generation());
return bestValue;
}
if (bestValue > alpha)
alpha = bestValue;
futilityBase = ss->staticEval + 186;
}
const PieceToHistory* contHist[] = {(ss - 1)->continuationHistory,
(ss - 2)->continuationHistory};
// Initialize a MovePicker object for the current position, and prepare
// to search the moves. Because the depth is <= 0 here, only captures,
// queen promotions, and other checks (only if depth >= DEPTH_QS_CHECKS)
// will be generated.
Square prevSq = ((ss - 1)->currentMove).is_ok() ? ((ss - 1)->currentMove).to_sq() : SQ_NONE;
MovePicker mp(pos, ttMove, depth, &thisThread->mainHistory, &thisThread->captureHistory,
contHist, &thisThread->pawnHistory);
int quietCheckEvasions = 0;
// Step 5. Loop through all pseudo-legal moves until no moves remain
// or a beta cutoff occurs.
while ((move = mp.next_move()) != Move::none())
{
assert(move.is_ok());
// Check for legality
if (!pos.legal(move))
continue;
givesCheck = pos.gives_check(move);
capture = pos.capture_stage(move);
moveCount++;
// Step 6. Pruning
if (bestValue > VALUE_TB_LOSS_IN_MAX_PLY && pos.non_pawn_material(us))
{
// Futility pruning and moveCount pruning (~10 Elo)
if (!givesCheck && move.to_sq() != prevSq && futilityBase > VALUE_TB_LOSS_IN_MAX_PLY
&& move.type_of() != PROMOTION)
{
if (moveCount > 2)
continue;
futilityValue = futilityBase + PieceValue[pos.piece_on(move.to_sq())];
// If static eval + value of piece we are going to capture is much lower
// than alpha we can prune this move.
if (futilityValue <= alpha)
{
bestValue = std::max(bestValue, futilityValue);
continue;
}
// If static eval is much lower than alpha and move is not winning material
// we can prune this move.
if (futilityBase <= alpha && !pos.see_ge(move, VALUE_ZERO + 1))
{
bestValue = std::max(bestValue, futilityBase);
continue;
}
// If static exchange evaluation is much worse than what is needed to not
// fall below alpha we can prune this move.
if (futilityBase > alpha && !pos.see_ge(move, (alpha - futilityBase) * 4))
{
bestValue = alpha;
continue;
}
}
// We prune after the second quiet check evasion move, where being 'in check' is
// implicitly checked through the counter, and being a 'quiet move' apart from
// being a tt move is assumed after an increment because captures are pushed ahead.
if (quietCheckEvasions > 1)
break;
// Continuation history based pruning (~3 Elo)
if (!capture && (*contHist[0])[pos.moved_piece(move)][move.to_sq()] < 0
&& (*contHist[1])[pos.moved_piece(move)][move.to_sq()] < 0)
continue;
// Do not search moves with bad enough SEE values (~5 Elo)
if (!pos.see_ge(move, -76))
continue;
}
// Speculative prefetch as early as possible
prefetch(tt.first_entry(pos.key_after(move)));
// Update the current move
ss->currentMove = move;
ss->continuationHistory =
&thisThread
->continuationHistory[ss->inCheck][capture][pos.moved_piece(move)][move.to_sq()];
quietCheckEvasions += !capture && ss->inCheck;
// Step 7. Make and search the move
thisThread->nodes.fetch_add(1, std::memory_order_relaxed);
pos.do_move(move, st, givesCheck);
value = -qsearch<nodeType>(pos, ss + 1, -beta, -alpha, depth - 1);
pos.undo_move(move);
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
// Step 8. Check for a new best move
if (value > bestValue)
{
bestValue = value;
if (value > alpha)
{
bestMove = move;
if (PvNode) // Update pv even in fail-high case
update_pv(ss->pv, move, (ss + 1)->pv);
if (value < beta) // Update alpha here!
alpha = value;
else
break; // Fail high
}
}
}
// Step 9. Check for mate
// All legal moves have been searched. A special case: if we're in check
// and no legal moves were found, it is checkmate.
if (ss->inCheck && bestValue == -VALUE_INFINITE)
{
assert(!MoveList<LEGAL>(pos).size());
return mated_in(ss->ply); // Plies to mate from the root
}
if (std::abs(bestValue) < VALUE_TB_WIN_IN_MAX_PLY && bestValue >= beta)
bestValue = (3 * bestValue + beta) / 4;
// Save gathered info in transposition table
// Static evaluation is saved as it was before adjustment by correction history
tte->save(posKey, value_to_tt(bestValue, ss->ply), pvHit,
bestValue >= beta ? BOUND_LOWER : BOUND_UPPER, ttDepth, bestMove,
unadjustedStaticEval, tt.generation());
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
return bestValue;
}
namespace {
// Adjusts a mate or TB score from "plies to mate from the root"
// to "plies to mate from the current position". Standard scores are unchanged.
// The function is called before storing a value in the transposition table.
Value value_to_tt(Value v, int ply) {
assert(v != VALUE_NONE);
return v >= VALUE_TB_WIN_IN_MAX_PLY ? v + ply : v <= VALUE_TB_LOSS_IN_MAX_PLY ? v - ply : v;
}
// Inverse of value_to_tt(): it adjusts a mate or TB score
// from the transposition table (which refers to the plies to mate/be mated from
// current position) to "plies to mate/be mated (TB win/loss) from the root".
// However, to avoid potentially false mate or TB scores related to the 50 moves rule
// and the graph history interaction, we return the highest non-TB score instead.
Value value_from_tt(Value v, int ply, int r50c) {
if (v == VALUE_NONE)
return VALUE_NONE;
// handle TB win or better
if (v >= VALUE_TB_WIN_IN_MAX_PLY)
{
// Downgrade a potentially false mate score
if (v >= VALUE_MATE_IN_MAX_PLY && VALUE_MATE - v > 100 - r50c)
return VALUE_TB_WIN_IN_MAX_PLY - 1;
// Downgrade a potentially false TB score.
if (VALUE_TB - v > 100 - r50c)
return VALUE_TB_WIN_IN_MAX_PLY - 1;
return v - ply;
}
// handle TB loss or worse
if (v <= VALUE_TB_LOSS_IN_MAX_PLY)
{
// Downgrade a potentially false mate score.
if (v <= VALUE_MATED_IN_MAX_PLY && VALUE_MATE + v > 100 - r50c)
return VALUE_TB_LOSS_IN_MAX_PLY + 1;
// Downgrade a potentially false TB score.
if (VALUE_TB + v > 100 - r50c)
return VALUE_TB_LOSS_IN_MAX_PLY + 1;
return v + ply;
}
return v;
}
// Adds current move and appends child pv[]
void update_pv(Move* pv, Move move, const Move* childPv) {
for (*pv++ = move; childPv && *childPv != Move::none();)
*pv++ = *childPv++;
*pv = Move::none();
}
// Updates stats at the end of search() when a bestMove is found
void update_all_stats(const Position& pos,
Stack* ss,
Search::Worker& workerThread,
Move bestMove,
Value bestValue,
Value beta,
Square prevSq,
Move* quietsSearched,
int quietCount,
Move* capturesSearched,
int captureCount,
Depth depth) {
Color us = pos.side_to_move();
CapturePieceToHistory& captureHistory = workerThread.captureHistory;
Piece moved_piece = pos.moved_piece(bestMove);
PieceType captured;
int quietMoveBonus = stat_bonus(depth + 1);
int quietMoveMalus = stat_malus(depth);
if (!pos.capture_stage(bestMove))
{
int bestMoveBonus = bestValue > beta + 177 ? quietMoveBonus // larger bonus
: stat_bonus(depth); // smaller bonus
// Increase stats for the best move in case it was a quiet move
update_quiet_stats(pos, ss, workerThread, bestMove, bestMoveBonus);
int pIndex = pawn_structure_index(pos);
workerThread.pawnHistory[pIndex][moved_piece][bestMove.to_sq()] << quietMoveBonus;
// Decrease stats for all non-best quiet moves
for (int i = 0; i < quietCount; ++i)
{
workerThread
.pawnHistory[pIndex][pos.moved_piece(quietsSearched[i])][quietsSearched[i].to_sq()]
<< -quietMoveMalus;
workerThread.mainHistory[us][quietsSearched[i].from_to()] << -quietMoveMalus;
update_continuation_histories(ss, pos.moved_piece(quietsSearched[i]),
quietsSearched[i].to_sq(), -quietMoveMalus);
}
}
else
{
// Increase stats for the best move in case it was a capture move
captured = type_of(pos.piece_on(bestMove.to_sq()));
captureHistory[moved_piece][bestMove.to_sq()][captured] << quietMoveBonus;
}
// Extra penalty for a quiet early move that was not a TT move or
// main killer move in previous ply when it gets refuted.
if (prevSq != SQ_NONE
&& ((ss - 1)->moveCount == 1 + (ss - 1)->ttHit
|| ((ss - 1)->currentMove == (ss - 1)->killers[0]))
&& !pos.captured_piece())
update_continuation_histories(ss - 1, pos.piece_on(prevSq), prevSq, -quietMoveMalus);
// Decrease stats for all non-best capture moves
for (int i = 0; i < captureCount; ++i)
{
moved_piece = pos.moved_piece(capturesSearched[i]);
captured = type_of(pos.piece_on(capturesSearched[i].to_sq()));
captureHistory[moved_piece][capturesSearched[i].to_sq()][captured] << -quietMoveMalus;
}
}
// Updates histories of the move pairs formed
// by moves at ply -1, -2, -3, -4, and -6 with current move.
void update_continuation_histories(Stack* ss, Piece pc, Square to, int bonus) {
for (int i : {1, 2, 3, 4, 6})
{
// Only update the first 2 continuation histories if we are in check
if (ss->inCheck && i > 2)
break;
if (((ss - i)->currentMove).is_ok())
(*(ss - i)->continuationHistory)[pc][to] << bonus / (1 + 3 * (i == 3));
}
}
// Updates move sorting heuristics
void update_quiet_stats(
const Position& pos, Stack* ss, Search::Worker& workerThread, Move move, int bonus) {
// Update killers
if (ss->killers[0] != move)
{
ss->killers[1] = ss->killers[0];
ss->killers[0] = move;
}
Color us = pos.side_to_move();
workerThread.mainHistory[us][move.from_to()] << bonus;
update_continuation_histories(ss, pos.moved_piece(move), move.to_sq(), bonus);
// Update countermove history
if (((ss - 1)->currentMove).is_ok())
{
Square prevSq = ((ss - 1)->currentMove).to_sq();
workerThread.counterMoves[pos.piece_on(prevSq)][prevSq] = move;
}
}
}
// When playing with strength handicap, choose the best move among a set of RootMoves
// using a statistical rule dependent on 'level'. Idea by Heinz van Saanen.
Move Skill::pick_best(const RootMoves& rootMoves, size_t multiPV) {
static PRNG rng(now()); // PRNG sequence should be non-deterministic
// RootMoves are already sorted by score in descending order
Value topScore = rootMoves[0].score;
int delta = std::min(topScore - rootMoves[multiPV - 1].score, int(PawnValue));
int maxScore = -VALUE_INFINITE;
double weakness = 120 - 2 * level;
// Choose best move. For each move score we add two terms, both dependent on
// weakness. One is deterministic and bigger for weaker levels, and one is
// random. Then we choose the move with the resulting highest score.
for (size_t i = 0; i < multiPV; ++i)
{
// This is our magic formula
int push = int((weakness * int(topScore - rootMoves[i].score)
+ delta * (rng.rand<unsigned>() % int(weakness)))
/ 128);
if (rootMoves[i].score + push >= maxScore)
{
maxScore = rootMoves[i].score + push;
best = rootMoves[i].pv[0];
}
}
return best;
}
// Used to print debug info and, more importantly,
// to detect when we are out of available time and thus stop the search.
void SearchManager::check_time(Search::Worker& worker) {
if (--callsCnt > 0)
return;
// When using nodes, ensure checking rate is not lower than 0.1% of nodes
callsCnt = worker.limits.nodes ? std::min(512, int(worker.limits.nodes / 1024)) : 512;
static TimePoint lastInfoTime = now();
TimePoint elapsed = tm.elapsed(worker.threads.nodes_searched());
TimePoint tick = worker.limits.startTime + elapsed;
if (tick - lastInfoTime >= 1000)
{
lastInfoTime = tick;
dbg_print();
}
// We should not stop pondering until told so by the GUI
if (ponder)
return;
if (
// Later we rely on the fact that we can at least use the mainthread previous
// root-search score and PV in a multithreaded environment to prove mated-in scores.
worker.completedDepth >= 1
&& ((worker.limits.use_time_management() && (elapsed > tm.maximum() || stopOnPonderhit))
|| (worker.limits.movetime && elapsed >= worker.limits.movetime)
|| (worker.limits.nodes && worker.threads.nodes_searched() >= worker.limits.nodes)))
worker.threads.stop = worker.threads.abortedSearch = true;
}
// Called in case we have no ponder move before exiting the search,
// for instance, in case we stop the search during a fail high at root.
// We try hard to have a ponder move to return to the GUI,
// otherwise in case of 'ponder on' we have nothing to think about.
bool RootMove::extract_ponder_from_tt(const TranspositionTable& tt, Position& pos) {
StateInfo st;
ASSERT_ALIGNED(&st, Eval::NNUE::CacheLineSize);
bool ttHit;
assert(pv.size() == 1);
if (pv[0] == Move::none())
return false;
pos.do_move(pv[0], st);
TTEntry* tte = tt.probe(pos.key(), ttHit);
if (ttHit)
{
Move m = tte->move(); // Local copy to be SMP safe
if (MoveList<LEGAL>(pos).contains(m))
pv.push_back(m);
}
pos.undo_move(pv[0]);
return pv.size() > 1;
}
} // namespace Stockfish