1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-05-02 01:29:36 +00:00
BadFish/src/thread.cpp
Stéphane Nicolet b25d68f6ee Introduce simple_eval() for lazy evaluations
This patch implements the pure materialistic evaluation called simple_eval()
to gain a speed-up during Stockfish search.

We use the so-called lazy evaluation trick: replace the accurate but slow
NNUE network evaluation by the super-fast simple_eval() if the position
seems to be already won (high material advantage). To guard against some
of the most obvious blunders introduced by this idea, this patch uses the
following features which will raise the lazy evaluation threshold in some
situations:

- avoid lazy evals on shuffling branches in the search tree
- avoid lazy evals if the position at root already has a material imbalance
- avoid lazy evals if the search value at root is already winning/losing.

Moreover, we add a small random noise to the simple_eval() term. This idea
(stochastic mobility in the minimax tree) was worth about 200 Elo in the pure
simple_eval() player on Lichess.

Overall, the current implementation in this patch evaluates about 2% of the
leaves in the search tree lazily.

--------------------------------------------

STC:
LLR: 2.94 (-2.94,2.94) <0.00,2.00>
Total: 60352 W: 15585 L: 15234 D: 29533
Ptnml(0-2): 216, 6906, 15578, 7263, 213
https://tests.stockfishchess.org/tests/view/64f1d9bcbd9967ffae366209

LTC:
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 35106 W: 8990 L: 8678 D: 17438
Ptnml(0-2): 14, 3668, 9887, 3960, 24
https://tests.stockfishchess.org/tests/view/64f25204f5b0c54e3f04c0e7

verification run at VLTC:
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 74362 W: 19088 L: 18716 D: 36558
Ptnml(0-2): 6, 7226, 22348, 7592, 9
https://tests.stockfishchess.org/tests/view/64f2ecdbf5b0c54e3f04d3ae

All three tests above were run with adjudication off, we also verified that
there was no regression on matetracker (thanks Disservin!).

----------------------------------------------

closes https://github.com/official-stockfish/Stockfish/pull/4771

Bench: 1393714
2023-09-03 09:28:16 +02:00

278 lines
8.2 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2023 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "thread.h"
#include <algorithm>
#include <cassert>
#include <cstdlib>
#include <deque>
#include <initializer_list>
#include <map>
#include <memory>
#include <utility>
#include "evaluate.h"
#include "misc.h"
#include "movegen.h"
#include "search.h"
#include "syzygy/tbprobe.h"
#include "tt.h"
#include "uci.h"
namespace Stockfish {
ThreadPool Threads; // Global object
/// Thread constructor launches the thread and waits until it goes to sleep
/// in idle_loop(). Note that 'searching' and 'exit' should be already set.
Thread::Thread(size_t n) : idx(n), stdThread(&Thread::idle_loop, this) {
wait_for_search_finished();
}
/// Thread destructor wakes up the thread in idle_loop() and waits
/// for its termination. Thread should be already waiting.
Thread::~Thread() {
assert(!searching);
exit = true;
start_searching();
stdThread.join();
}
/// Thread::clear() reset histories, usually before a new game
void Thread::clear() {
counterMoves.fill(MOVE_NONE);
mainHistory.fill(0);
captureHistory.fill(0);
for (bool inCheck : { false, true })
for (StatsType c : { NoCaptures, Captures })
for (auto& to : continuationHistory[inCheck][c])
for (auto& h : to)
h->fill(-71);
}
/// Thread::start_searching() wakes up the thread that will start the search
void Thread::start_searching() {
mutex.lock();
searching = true;
mutex.unlock(); // Unlock before notifying saves a few CPU-cycles
cv.notify_one(); // Wake up the thread in idle_loop()
}
/// Thread::wait_for_search_finished() blocks on the condition variable
/// until the thread has finished searching.
void Thread::wait_for_search_finished() {
std::unique_lock<std::mutex> lk(mutex);
cv.wait(lk, [&]{ return !searching; });
}
/// Thread::idle_loop() is where the thread is parked, blocked on the
/// condition variable, when it has no work to do.
void Thread::idle_loop() {
// If OS already scheduled us on a different group than 0 then don't overwrite
// the choice, eventually we are one of many one-threaded processes running on
// some Windows NUMA hardware, for instance in fishtest. To make it simple,
// just check if running threads are below a threshold, in this case all this
// NUMA machinery is not needed.
if (Options["Threads"] > 8)
WinProcGroup::bindThisThread(idx);
while (true)
{
std::unique_lock<std::mutex> lk(mutex);
searching = false;
cv.notify_one(); // Wake up anyone waiting for search finished
cv.wait(lk, [&]{ return searching; });
if (exit)
return;
lk.unlock();
search();
}
}
/// ThreadPool::set() creates/destroys threads to match the requested number.
/// Created and launched threads will immediately go to sleep in idle_loop.
/// Upon resizing, threads are recreated to allow for binding if necessary.
void ThreadPool::set(size_t requested) {
if (threads.size() > 0) // destroy any existing thread(s)
{
main()->wait_for_search_finished();
while (threads.size() > 0)
delete threads.back(), threads.pop_back();
}
if (requested > 0) // create new thread(s)
{
threads.push_back(new MainThread(0));
while (threads.size() < requested)
threads.push_back(new Thread(threads.size()));
clear();
// Reallocate the hash with the new threadpool size
TT.resize(size_t(Options["Hash"]));
// Init thread number dependent search params.
Search::init();
}
}
/// ThreadPool::clear() sets threadPool data to initial values
void ThreadPool::clear() {
for (Thread* th : threads)
th->clear();
main()->callsCnt = 0;
main()->bestPreviousScore = VALUE_INFINITE;
main()->bestPreviousAverageScore = VALUE_INFINITE;
main()->previousTimeReduction = 1.0;
}
/// ThreadPool::start_thinking() wakes up main thread waiting in idle_loop() and
/// returns immediately. Main thread will wake up other threads and start the search.
void ThreadPool::start_thinking(Position& pos, StateListPtr& states,
const Search::LimitsType& limits, bool ponderMode) {
main()->wait_for_search_finished();
main()->stopOnPonderhit = stop = false;
increaseDepth = true;
main()->ponder = ponderMode;
Search::Limits = limits;
Search::RootMoves rootMoves;
for (const auto& m : MoveList<LEGAL>(pos))
if ( limits.searchmoves.empty()
|| std::count(limits.searchmoves.begin(), limits.searchmoves.end(), m))
rootMoves.emplace_back(m);
if (!rootMoves.empty())
Tablebases::rank_root_moves(pos, rootMoves);
// After ownership transfer 'states' becomes empty, so if we stop the search
// and call 'go' again without setting a new position states.get() == nullptr.
assert(states.get() || setupStates.get());
if (states.get())
setupStates = std::move(states); // Ownership transfer, states is now empty
// We use Position::set() to set root position across threads. But there are
// some StateInfo fields (previous, pliesFromNull, capturedPiece) that cannot
// be deduced from a fen string, so set() clears them and they are set from
// setupStates->back() later. The rootState is per thread, earlier states are shared
// since they are read-only.
for (Thread* th : threads)
{
th->nodes = th->tbHits = th->nmpMinPly = th->bestMoveChanges = 0;
th->rootDepth = th->completedDepth = 0;
th->rootMoves = rootMoves;
th->rootPos.set(pos.fen(), pos.is_chess960(), &th->rootState, th);
th->rootState = setupStates->back();
th->rootSimpleEval = Eval::simple_eval(pos, pos.side_to_move());
}
main()->start_searching();
}
Thread* ThreadPool::get_best_thread() const {
Thread* bestThread = threads.front();
std::map<Move, int64_t> votes;
Value minScore = VALUE_NONE;
// Find minimum score of all threads
for (Thread* th: threads)
minScore = std::min(minScore, th->rootMoves[0].score);
// Vote according to score and depth, and select the best thread
auto thread_value = [minScore](Thread* th) {
return (th->rootMoves[0].score - minScore + 14) * int(th->completedDepth);
};
for (Thread* th : threads)
votes[th->rootMoves[0].pv[0]] += thread_value(th);
for (Thread* th : threads)
if (abs(bestThread->rootMoves[0].score) >= VALUE_TB_WIN_IN_MAX_PLY)
{
// Make sure we pick the shortest mate / TB conversion or stave off mate the longest
if (th->rootMoves[0].score > bestThread->rootMoves[0].score)
bestThread = th;
}
else if ( th->rootMoves[0].score >= VALUE_TB_WIN_IN_MAX_PLY
|| ( th->rootMoves[0].score > VALUE_TB_LOSS_IN_MAX_PLY
&& ( votes[th->rootMoves[0].pv[0]] > votes[bestThread->rootMoves[0].pv[0]]
|| ( votes[th->rootMoves[0].pv[0]] == votes[bestThread->rootMoves[0].pv[0]]
&& thread_value(th) * int(th->rootMoves[0].pv.size() > 2)
> thread_value(bestThread) * int(bestThread->rootMoves[0].pv.size() > 2)))))
bestThread = th;
return bestThread;
}
/// Start non-main threads
void ThreadPool::start_searching() {
for (Thread* th : threads)
if (th != threads.front())
th->start_searching();
}
/// Wait for non-main threads
void ThreadPool::wait_for_search_finished() const {
for (Thread* th : threads)
if (th != threads.front())
th->wait_for_search_finished();
}
} // namespace Stockfish