mirror of
https://github.com/sockspls/badfish
synced 2025-05-02 09:39:36 +00:00
2041 lines
71 KiB
C++
2041 lines
71 KiB
C++
/*
|
||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||
Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
|
||
Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
|
||
|
||
Stockfish is free software: you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation, either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
Stockfish is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
*/
|
||
|
||
#include <algorithm>
|
||
#include <cassert>
|
||
#include <cmath>
|
||
#include <cstring> // For std::memset
|
||
#include <iostream>
|
||
#include <sstream>
|
||
|
||
#include "evaluate.h"
|
||
#include "misc.h"
|
||
#include "movegen.h"
|
||
#include "movepick.h"
|
||
#include "position.h"
|
||
#include "search.h"
|
||
#include "thread.h"
|
||
#include "timeman.h"
|
||
#include "tt.h"
|
||
#include "uci.h"
|
||
#include "syzygy/tbprobe.h"
|
||
|
||
namespace Search {
|
||
|
||
LimitsType Limits;
|
||
}
|
||
|
||
namespace Tablebases {
|
||
|
||
int Cardinality;
|
||
bool RootInTB;
|
||
bool UseRule50;
|
||
Depth ProbeDepth;
|
||
}
|
||
|
||
namespace TB = Tablebases;
|
||
|
||
using std::string;
|
||
using Eval::evaluate;
|
||
using namespace Search;
|
||
|
||
namespace {
|
||
|
||
// Different node types, used as a template parameter
|
||
enum NodeType { NonPV, PV };
|
||
|
||
// Razor and futility margins
|
||
constexpr int RazorMargin = 600;
|
||
Value futility_margin(Depth d, bool improving) {
|
||
return Value((175 - 50 * improving) * d / ONE_PLY);
|
||
}
|
||
|
||
// Reductions lookup table, initialized at startup
|
||
int Reductions[MAX_MOVES]; // [depth or moveNumber]
|
||
|
||
Depth reduction(bool i, Depth d, int mn) {
|
||
int r = Reductions[d / ONE_PLY] * Reductions[mn];
|
||
return ((r + 512) / 1024 + (!i && r > 1024)) * ONE_PLY;
|
||
}
|
||
|
||
constexpr int futility_move_count(bool improving, int depth) {
|
||
return (5 + depth * depth) * (1 + improving) / 2;
|
||
}
|
||
|
||
// History and stats update bonus, based on depth
|
||
int stat_bonus(Depth depth) {
|
||
int d = depth / ONE_PLY;
|
||
return d > 17 ? 0 : 29 * d * d + 138 * d - 134;
|
||
}
|
||
|
||
// Add a small random component to draw evaluations to avoid 3fold-blindness
|
||
Value value_draw(Depth depth, Thread* thisThread) {
|
||
return depth < 4 * ONE_PLY ? VALUE_DRAW
|
||
: VALUE_DRAW + Value(2 * (thisThread->nodes & 1) - 1);
|
||
}
|
||
|
||
// Skill structure is used to implement strength limit
|
||
struct Skill {
|
||
explicit Skill(int l) : level(l) {}
|
||
bool enabled() const { return level < 20; }
|
||
bool time_to_pick(Depth depth) const { return depth / ONE_PLY == 1 + level; }
|
||
Move pick_best(size_t multiPV);
|
||
|
||
int level;
|
||
Move best = MOVE_NONE;
|
||
};
|
||
|
||
template <NodeType NT>
|
||
Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode);
|
||
|
||
template <NodeType NT>
|
||
Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth = DEPTH_ZERO);
|
||
|
||
Value value_to_tt(Value v, int ply);
|
||
Value value_from_tt(Value v, int ply);
|
||
void update_pv(Move* pv, Move move, Move* childPv);
|
||
void update_continuation_histories(Stack* ss, Piece pc, Square to, int bonus);
|
||
void update_quiet_stats(const Position& pos, Stack* ss, Move move, Move* quiets, int quietCount, int bonus);
|
||
void update_capture_stats(const Position& pos, Move move, Move* captures, int captureCount, int bonus);
|
||
|
||
// perft() is our utility to verify move generation. All the leaf nodes up
|
||
// to the given depth are generated and counted, and the sum is returned.
|
||
template<bool Root>
|
||
uint64_t perft(Position& pos, Depth depth) {
|
||
|
||
StateInfo st;
|
||
uint64_t cnt, nodes = 0;
|
||
const bool leaf = (depth == 2 * ONE_PLY);
|
||
|
||
for (const auto& m : MoveList<LEGAL>(pos))
|
||
{
|
||
if (Root && depth <= ONE_PLY)
|
||
cnt = 1, nodes++;
|
||
else
|
||
{
|
||
pos.do_move(m, st);
|
||
cnt = leaf ? MoveList<LEGAL>(pos).size() : perft<false>(pos, depth - ONE_PLY);
|
||
nodes += cnt;
|
||
pos.undo_move(m);
|
||
}
|
||
if (Root)
|
||
sync_cout << UCI::move(m, pos.is_chess960()) << ": " << cnt << sync_endl;
|
||
}
|
||
return nodes;
|
||
}
|
||
|
||
} // namespace
|
||
|
||
|
||
/// Search::init() is called at startup to initialize various lookup tables
|
||
|
||
void Search::init() {
|
||
|
||
for (int i = 1; i < MAX_MOVES; ++i)
|
||
Reductions[i] = int(22.9 * std::log(i));
|
||
}
|
||
|
||
|
||
/// Search::clear() resets search state to its initial value
|
||
|
||
void Search::clear() {
|
||
|
||
Threads.main()->wait_for_search_finished();
|
||
|
||
Time.availableNodes = 0;
|
||
TT.clear();
|
||
Threads.clear();
|
||
Tablebases::init(Options["SyzygyPath"]); // Free mapped files
|
||
}
|
||
|
||
|
||
/// MainThread::search() is started when the program receives the UCI 'go'
|
||
/// command. It searches from the root position and outputs the "bestmove".
|
||
|
||
void MainThread::search() {
|
||
|
||
if (Limits.perft)
|
||
{
|
||
nodes = perft<true>(rootPos, Limits.perft * ONE_PLY);
|
||
sync_cout << "\nNodes searched: " << nodes << "\n" << sync_endl;
|
||
return;
|
||
}
|
||
|
||
Color us = rootPos.side_to_move();
|
||
Time.init(Limits, us, rootPos.game_ply());
|
||
TT.new_search();
|
||
|
||
if (rootMoves.empty())
|
||
{
|
||
rootMoves.emplace_back(MOVE_NONE);
|
||
sync_cout << "info depth 0 score "
|
||
<< UCI::value(rootPos.checkers() ? -VALUE_MATE : VALUE_DRAW)
|
||
<< sync_endl;
|
||
}
|
||
else
|
||
{
|
||
for (Thread* th : Threads)
|
||
{
|
||
th->bestMoveChanges = 0;
|
||
if (th != this)
|
||
th->start_searching();
|
||
}
|
||
|
||
Thread::search(); // Let's start searching!
|
||
}
|
||
|
||
// When we reach the maximum depth, we can arrive here without a raise of
|
||
// Threads.stop. However, if we are pondering or in an infinite search,
|
||
// the UCI protocol states that we shouldn't print the best move before the
|
||
// GUI sends a "stop" or "ponderhit" command. We therefore simply wait here
|
||
// until the GUI sends one of those commands.
|
||
|
||
while (!Threads.stop && (ponder || Limits.infinite))
|
||
{} // Busy wait for a stop or a ponder reset
|
||
|
||
// Stop the threads if not already stopped (also raise the stop if
|
||
// "ponderhit" just reset Threads.ponder).
|
||
Threads.stop = true;
|
||
|
||
// Wait until all threads have finished
|
||
for (Thread* th : Threads)
|
||
if (th != this)
|
||
th->wait_for_search_finished();
|
||
|
||
// When playing in 'nodes as time' mode, subtract the searched nodes from
|
||
// the available ones before exiting.
|
||
if (Limits.npmsec)
|
||
Time.availableNodes += Limits.inc[us] - Threads.nodes_searched();
|
||
|
||
Thread* bestThread = this;
|
||
|
||
// Check if there are threads with a better score than main thread
|
||
if ( Options["MultiPV"] == 1
|
||
&& !Limits.depth
|
||
&& !Skill(Options["Skill Level"]).enabled()
|
||
&& rootMoves[0].pv[0] != MOVE_NONE)
|
||
{
|
||
std::map<Move, int64_t> votes;
|
||
Value minScore = this->rootMoves[0].score;
|
||
|
||
// Find out minimum score and reset votes for moves which can be voted
|
||
for (Thread* th: Threads)
|
||
minScore = std::min(minScore, th->rootMoves[0].score);
|
||
|
||
// Vote according to score and depth, and select the best thread
|
||
int64_t bestVote = 0;
|
||
for (Thread* th : Threads)
|
||
{
|
||
votes[th->rootMoves[0].pv[0]] +=
|
||
(th->rootMoves[0].score - minScore + 14) * int(th->completedDepth);
|
||
|
||
if (votes[th->rootMoves[0].pv[0]] > bestVote)
|
||
{
|
||
bestVote = votes[th->rootMoves[0].pv[0]];
|
||
bestThread = th;
|
||
}
|
||
}
|
||
}
|
||
|
||
previousScore = bestThread->rootMoves[0].score;
|
||
|
||
// Send again PV info if we have a new best thread
|
||
if (bestThread != this)
|
||
sync_cout << UCI::pv(bestThread->rootPos, bestThread->completedDepth, -VALUE_INFINITE, VALUE_INFINITE) << sync_endl;
|
||
|
||
sync_cout << "bestmove " << UCI::move(bestThread->rootMoves[0].pv[0], rootPos.is_chess960());
|
||
|
||
if (bestThread->rootMoves[0].pv.size() > 1 || bestThread->rootMoves[0].extract_ponder_from_tt(rootPos))
|
||
std::cout << " ponder " << UCI::move(bestThread->rootMoves[0].pv[1], rootPos.is_chess960());
|
||
|
||
std::cout << sync_endl;
|
||
}
|
||
|
||
|
||
/// Thread::search() is the main iterative deepening loop. It calls search()
|
||
/// repeatedly with increasing depth until the allocated thinking time has been
|
||
/// consumed, the user stops the search, or the maximum search depth is reached.
|
||
|
||
void Thread::search() {
|
||
|
||
// To allow access to (ss-7) up to (ss+2), the stack must be oversized.
|
||
// The former is needed to allow update_continuation_histories(ss-1, ...),
|
||
// which accesses its argument at ss-6, also near the root.
|
||
// The latter is needed for statScores and killer initialization.
|
||
Stack stack[MAX_PLY+10], *ss = stack+7;
|
||
Move pv[MAX_PLY+1];
|
||
Value bestValue, alpha, beta, delta;
|
||
Move lastBestMove = MOVE_NONE;
|
||
Depth lastBestMoveDepth = DEPTH_ZERO;
|
||
MainThread* mainThread = (this == Threads.main() ? Threads.main() : nullptr);
|
||
double timeReduction = 1, totBestMoveChanges = 0;
|
||
Color us = rootPos.side_to_move();
|
||
|
||
std::memset(ss-7, 0, 10 * sizeof(Stack));
|
||
for (int i = 7; i > 0; i--)
|
||
(ss-i)->continuationHistory = &this->continuationHistory[NO_PIECE][0]; // Use as sentinel
|
||
ss->pv = pv;
|
||
|
||
bestValue = delta = alpha = -VALUE_INFINITE;
|
||
beta = VALUE_INFINITE;
|
||
|
||
size_t multiPV = Options["MultiPV"];
|
||
Skill skill(Options["Skill Level"]);
|
||
|
||
// When playing with strength handicap enable MultiPV search that we will
|
||
// use behind the scenes to retrieve a set of possible moves.
|
||
if (skill.enabled())
|
||
multiPV = std::max(multiPV, (size_t)4);
|
||
|
||
multiPV = std::min(multiPV, rootMoves.size());
|
||
|
||
int ct = int(Options["Contempt"]) * PawnValueEg / 100; // From centipawns
|
||
|
||
// In analysis mode, adjust contempt in accordance with user preference
|
||
if (Limits.infinite || Options["UCI_AnalyseMode"])
|
||
ct = Options["Analysis Contempt"] == "Off" ? 0
|
||
: Options["Analysis Contempt"] == "Both" ? ct
|
||
: Options["Analysis Contempt"] == "White" && us == BLACK ? -ct
|
||
: Options["Analysis Contempt"] == "Black" && us == WHITE ? -ct
|
||
: ct;
|
||
|
||
// Evaluation score is from the white point of view
|
||
contempt = (us == WHITE ? make_score(ct, ct / 2)
|
||
: -make_score(ct, ct / 2));
|
||
|
||
// Iterative deepening loop until requested to stop or the target depth is reached
|
||
while ( (rootDepth += ONE_PLY) < DEPTH_MAX
|
||
&& !Threads.stop
|
||
&& !(Limits.depth && mainThread && rootDepth / ONE_PLY > Limits.depth))
|
||
{
|
||
// Age out PV variability metric
|
||
if (mainThread)
|
||
totBestMoveChanges /= 2;
|
||
|
||
// Save the last iteration's scores before first PV line is searched and
|
||
// all the move scores except the (new) PV are set to -VALUE_INFINITE.
|
||
for (RootMove& rm : rootMoves)
|
||
rm.previousScore = rm.score;
|
||
|
||
size_t pvFirst = 0;
|
||
pvLast = 0;
|
||
|
||
// MultiPV loop. We perform a full root search for each PV line
|
||
for (pvIdx = 0; pvIdx < multiPV && !Threads.stop; ++pvIdx)
|
||
{
|
||
if (pvIdx == pvLast)
|
||
{
|
||
pvFirst = pvLast;
|
||
for (pvLast++; pvLast < rootMoves.size(); pvLast++)
|
||
if (rootMoves[pvLast].tbRank != rootMoves[pvFirst].tbRank)
|
||
break;
|
||
}
|
||
|
||
// Reset UCI info selDepth for each depth and each PV line
|
||
selDepth = 0;
|
||
|
||
// Reset aspiration window starting size
|
||
if (rootDepth >= 5 * ONE_PLY)
|
||
{
|
||
Value previousScore = rootMoves[pvIdx].previousScore;
|
||
delta = Value(20);
|
||
alpha = std::max(previousScore - delta,-VALUE_INFINITE);
|
||
beta = std::min(previousScore + delta, VALUE_INFINITE);
|
||
|
||
// Adjust contempt based on root move's previousScore (dynamic contempt)
|
||
int dct = ct + 88 * previousScore / (abs(previousScore) + 200);
|
||
|
||
contempt = (us == WHITE ? make_score(dct, dct / 2)
|
||
: -make_score(dct, dct / 2));
|
||
}
|
||
|
||
// Start with a small aspiration window and, in the case of a fail
|
||
// high/low, re-search with a bigger window until we don't fail
|
||
// high/low anymore.
|
||
int failedHighCnt = 0;
|
||
while (true)
|
||
{
|
||
Depth adjustedDepth = std::max(ONE_PLY, rootDepth - failedHighCnt * ONE_PLY);
|
||
bestValue = ::search<PV>(rootPos, ss, alpha, beta, adjustedDepth, false);
|
||
|
||
// Bring the best move to the front. It is critical that sorting
|
||
// is done with a stable algorithm because all the values but the
|
||
// first and eventually the new best one are set to -VALUE_INFINITE
|
||
// and we want to keep the same order for all the moves except the
|
||
// new PV that goes to the front. Note that in case of MultiPV
|
||
// search the already searched PV lines are preserved.
|
||
std::stable_sort(rootMoves.begin() + pvIdx, rootMoves.begin() + pvLast);
|
||
|
||
// If search has been stopped, we break immediately. Sorting is
|
||
// safe because RootMoves is still valid, although it refers to
|
||
// the previous iteration.
|
||
if (Threads.stop)
|
||
break;
|
||
|
||
// When failing high/low give some update (without cluttering
|
||
// the UI) before a re-search.
|
||
if ( mainThread
|
||
&& multiPV == 1
|
||
&& (bestValue <= alpha || bestValue >= beta)
|
||
&& Time.elapsed() > 3000)
|
||
sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl;
|
||
|
||
// In case of failing low/high increase aspiration window and
|
||
// re-search, otherwise exit the loop.
|
||
if (bestValue <= alpha)
|
||
{
|
||
beta = (alpha + beta) / 2;
|
||
alpha = std::max(bestValue - delta, -VALUE_INFINITE);
|
||
|
||
failedHighCnt = 0;
|
||
if (mainThread)
|
||
mainThread->stopOnPonderhit = false;
|
||
}
|
||
else if (bestValue >= beta)
|
||
{
|
||
beta = std::min(bestValue + delta, VALUE_INFINITE);
|
||
++failedHighCnt;
|
||
}
|
||
else
|
||
break;
|
||
|
||
delta += delta / 4 + 5;
|
||
|
||
assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
|
||
}
|
||
|
||
// Sort the PV lines searched so far and update the GUI
|
||
std::stable_sort(rootMoves.begin() + pvFirst, rootMoves.begin() + pvIdx + 1);
|
||
|
||
if ( mainThread
|
||
&& (Threads.stop || pvIdx + 1 == multiPV || Time.elapsed() > 3000))
|
||
sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl;
|
||
}
|
||
|
||
if (!Threads.stop)
|
||
completedDepth = rootDepth;
|
||
|
||
if (rootMoves[0].pv[0] != lastBestMove) {
|
||
lastBestMove = rootMoves[0].pv[0];
|
||
lastBestMoveDepth = rootDepth;
|
||
}
|
||
|
||
// Have we found a "mate in x"?
|
||
if ( Limits.mate
|
||
&& bestValue >= VALUE_MATE_IN_MAX_PLY
|
||
&& VALUE_MATE - bestValue <= 2 * Limits.mate)
|
||
Threads.stop = true;
|
||
|
||
if (!mainThread)
|
||
continue;
|
||
|
||
// If skill level is enabled and time is up, pick a sub-optimal best move
|
||
if (skill.enabled() && skill.time_to_pick(rootDepth))
|
||
skill.pick_best(multiPV);
|
||
|
||
// Do we have time for the next iteration? Can we stop searching now?
|
||
if ( Limits.use_time_management()
|
||
&& !Threads.stop
|
||
&& !mainThread->stopOnPonderhit)
|
||
{
|
||
double fallingEval = (314 + 9 * (mainThread->previousScore - bestValue)) / 581.0;
|
||
fallingEval = clamp(fallingEval, 0.5, 1.5);
|
||
|
||
// If the bestMove is stable over several iterations, reduce time accordingly
|
||
timeReduction = lastBestMoveDepth + 10 * ONE_PLY < completedDepth ? 1.95 : 1.0;
|
||
double reduction = std::pow(mainThread->previousTimeReduction, 0.528) / timeReduction;
|
||
|
||
// Use part of the gained time from a previous stable move for the current move
|
||
for (Thread* th : Threads)
|
||
{
|
||
totBestMoveChanges += th->bestMoveChanges;
|
||
th->bestMoveChanges = 0;
|
||
}
|
||
double bestMoveInstability = 1 + totBestMoveChanges / Threads.size();
|
||
|
||
// Stop the search if we have only one legal move, or if available time elapsed
|
||
if ( rootMoves.size() == 1
|
||
|| Time.elapsed() > Time.optimum() * fallingEval * reduction * bestMoveInstability)
|
||
{
|
||
// If we are allowed to ponder do not stop the search now but
|
||
// keep pondering until the GUI sends "ponderhit" or "stop".
|
||
if (mainThread->ponder)
|
||
mainThread->stopOnPonderhit = true;
|
||
else
|
||
Threads.stop = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!mainThread)
|
||
return;
|
||
|
||
mainThread->previousTimeReduction = timeReduction;
|
||
|
||
// If skill level is enabled, swap best PV line with the sub-optimal one
|
||
if (skill.enabled())
|
||
std::swap(rootMoves[0], *std::find(rootMoves.begin(), rootMoves.end(),
|
||
skill.best ? skill.best : skill.pick_best(multiPV)));
|
||
}
|
||
|
||
|
||
namespace {
|
||
|
||
// search<>() is the main search function for both PV and non-PV nodes
|
||
|
||
template <NodeType NT>
|
||
Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode) {
|
||
|
||
constexpr bool PvNode = NT == PV;
|
||
const bool rootNode = PvNode && ss->ply == 0;
|
||
|
||
// Check if we have an upcoming move which draws by repetition, or
|
||
// if the opponent had an alternative move earlier to this position.
|
||
if ( pos.rule50_count() >= 3
|
||
&& alpha < VALUE_DRAW
|
||
&& !rootNode
|
||
&& pos.has_game_cycle(ss->ply))
|
||
{
|
||
alpha = value_draw(depth, pos.this_thread());
|
||
if (alpha >= beta)
|
||
return alpha;
|
||
}
|
||
|
||
// Dive into quiescence search when the depth reaches zero
|
||
if (depth < ONE_PLY)
|
||
return qsearch<NT>(pos, ss, alpha, beta);
|
||
|
||
assert(-VALUE_INFINITE <= alpha && alpha < beta && beta <= VALUE_INFINITE);
|
||
assert(PvNode || (alpha == beta - 1));
|
||
assert(DEPTH_ZERO < depth && depth < DEPTH_MAX);
|
||
assert(!(PvNode && cutNode));
|
||
assert(depth / ONE_PLY * ONE_PLY == depth);
|
||
|
||
Move pv[MAX_PLY+1], capturesSearched[32], quietsSearched[64];
|
||
StateInfo st;
|
||
TTEntry* tte;
|
||
Key posKey;
|
||
Move ttMove, move, excludedMove, bestMove;
|
||
Depth extension, newDepth;
|
||
Value bestValue, value, ttValue, eval, maxValue;
|
||
bool ttHit, ttPv, inCheck, givesCheck, improving;
|
||
bool captureOrPromotion, doFullDepthSearch, moveCountPruning, ttCapture;
|
||
Piece movedPiece;
|
||
int moveCount, captureCount, quietCount;
|
||
|
||
// Step 1. Initialize node
|
||
Thread* thisThread = pos.this_thread();
|
||
inCheck = pos.checkers();
|
||
Color us = pos.side_to_move();
|
||
moveCount = captureCount = quietCount = ss->moveCount = 0;
|
||
bestValue = -VALUE_INFINITE;
|
||
maxValue = VALUE_INFINITE;
|
||
|
||
// Check for the available remaining time
|
||
if (thisThread == Threads.main())
|
||
static_cast<MainThread*>(thisThread)->check_time();
|
||
|
||
// Used to send selDepth info to GUI (selDepth counts from 1, ply from 0)
|
||
if (PvNode && thisThread->selDepth < ss->ply + 1)
|
||
thisThread->selDepth = ss->ply + 1;
|
||
|
||
if (!rootNode)
|
||
{
|
||
// Step 2. Check for aborted search and immediate draw
|
||
if ( Threads.stop.load(std::memory_order_relaxed)
|
||
|| pos.is_draw(ss->ply)
|
||
|| ss->ply >= MAX_PLY)
|
||
return (ss->ply >= MAX_PLY && !inCheck) ? evaluate(pos)
|
||
: value_draw(depth, pos.this_thread());
|
||
|
||
// Step 3. Mate distance pruning. Even if we mate at the next move our score
|
||
// would be at best mate_in(ss->ply+1), but if alpha is already bigger because
|
||
// a shorter mate was found upward in the tree then there is no need to search
|
||
// because we will never beat the current alpha. Same logic but with reversed
|
||
// signs applies also in the opposite condition of being mated instead of giving
|
||
// mate. In this case return a fail-high score.
|
||
alpha = std::max(mated_in(ss->ply), alpha);
|
||
beta = std::min(mate_in(ss->ply+1), beta);
|
||
if (alpha >= beta)
|
||
return alpha;
|
||
}
|
||
|
||
assert(0 <= ss->ply && ss->ply < MAX_PLY);
|
||
|
||
(ss+1)->ply = ss->ply + 1;
|
||
(ss+1)->excludedMove = bestMove = MOVE_NONE;
|
||
(ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE;
|
||
Square prevSq = to_sq((ss-1)->currentMove);
|
||
|
||
// Initialize statScore to zero for the grandchildren of the current position.
|
||
// So statScore is shared between all grandchildren and only the first grandchild
|
||
// starts with statScore = 0. Later grandchildren start with the last calculated
|
||
// statScore of the previous grandchild. This influences the reduction rules in
|
||
// LMR which are based on the statScore of parent position.
|
||
if (rootNode)
|
||
(ss + 4)->statScore = 0;
|
||
else
|
||
(ss + 2)->statScore = 0;
|
||
|
||
// Step 4. Transposition table lookup. We don't want the score of a partial
|
||
// search to overwrite a previous full search TT value, so we use a different
|
||
// position key in case of an excluded move.
|
||
excludedMove = ss->excludedMove;
|
||
posKey = pos.key() ^ Key(excludedMove << 16); // Isn't a very good hash
|
||
tte = TT.probe(posKey, ttHit);
|
||
ttValue = ttHit ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE;
|
||
ttMove = rootNode ? thisThread->rootMoves[thisThread->pvIdx].pv[0]
|
||
: ttHit ? tte->move() : MOVE_NONE;
|
||
ttPv = (ttHit && tte->is_pv()) || (PvNode && depth > 4 * ONE_PLY);
|
||
|
||
// At non-PV nodes we check for an early TT cutoff
|
||
if ( !PvNode
|
||
&& ttHit
|
||
&& tte->depth() >= depth
|
||
&& ttValue != VALUE_NONE // Possible in case of TT access race
|
||
&& (ttValue >= beta ? (tte->bound() & BOUND_LOWER)
|
||
: (tte->bound() & BOUND_UPPER)))
|
||
{
|
||
// If ttMove is quiet, update move sorting heuristics on TT hit
|
||
if (ttMove)
|
||
{
|
||
if (ttValue >= beta)
|
||
{
|
||
if (!pos.capture_or_promotion(ttMove))
|
||
update_quiet_stats(pos, ss, ttMove, nullptr, 0, stat_bonus(depth));
|
||
|
||
// Extra penalty for early quiet moves of the previous ply
|
||
if ((ss-1)->moveCount <= 2 && !pos.captured_piece())
|
||
update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, -stat_bonus(depth + ONE_PLY));
|
||
}
|
||
// Penalty for a quiet ttMove that fails low
|
||
else if (!pos.capture_or_promotion(ttMove))
|
||
{
|
||
int penalty = -stat_bonus(depth);
|
||
thisThread->mainHistory[us][from_to(ttMove)] << penalty;
|
||
update_continuation_histories(ss, pos.moved_piece(ttMove), to_sq(ttMove), penalty);
|
||
}
|
||
}
|
||
return ttValue;
|
||
}
|
||
|
||
// Step 5. Tablebases probe
|
||
if (!rootNode && TB::Cardinality)
|
||
{
|
||
int piecesCount = pos.count<ALL_PIECES>();
|
||
|
||
if ( piecesCount <= TB::Cardinality
|
||
&& (piecesCount < TB::Cardinality || depth >= TB::ProbeDepth)
|
||
&& pos.rule50_count() == 0
|
||
&& !pos.can_castle(ANY_CASTLING))
|
||
{
|
||
TB::ProbeState err;
|
||
TB::WDLScore wdl = Tablebases::probe_wdl(pos, &err);
|
||
|
||
// Force check of time on the next occasion
|
||
if (thisThread == Threads.main())
|
||
static_cast<MainThread*>(thisThread)->callsCnt = 0;
|
||
|
||
if (err != TB::ProbeState::FAIL)
|
||
{
|
||
thisThread->tbHits.fetch_add(1, std::memory_order_relaxed);
|
||
|
||
int drawScore = TB::UseRule50 ? 1 : 0;
|
||
|
||
value = wdl < -drawScore ? -VALUE_MATE + MAX_PLY + ss->ply + 1
|
||
: wdl > drawScore ? VALUE_MATE - MAX_PLY - ss->ply - 1
|
||
: VALUE_DRAW + 2 * wdl * drawScore;
|
||
|
||
Bound b = wdl < -drawScore ? BOUND_UPPER
|
||
: wdl > drawScore ? BOUND_LOWER : BOUND_EXACT;
|
||
|
||
if ( b == BOUND_EXACT
|
||
|| (b == BOUND_LOWER ? value >= beta : value <= alpha))
|
||
{
|
||
tte->save(posKey, value_to_tt(value, ss->ply), ttPv, b,
|
||
std::min(DEPTH_MAX - ONE_PLY, depth + 6 * ONE_PLY),
|
||
MOVE_NONE, VALUE_NONE);
|
||
|
||
return value;
|
||
}
|
||
|
||
if (PvNode)
|
||
{
|
||
if (b == BOUND_LOWER)
|
||
bestValue = value, alpha = std::max(alpha, bestValue);
|
||
else
|
||
maxValue = value;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// Step 6. Static evaluation of the position
|
||
if (inCheck)
|
||
{
|
||
ss->staticEval = eval = VALUE_NONE;
|
||
improving = false;
|
||
goto moves_loop; // Skip early pruning when in check
|
||
}
|
||
else if (ttHit)
|
||
{
|
||
// Never assume anything on values stored in TT
|
||
ss->staticEval = eval = tte->eval();
|
||
if (eval == VALUE_NONE)
|
||
ss->staticEval = eval = evaluate(pos);
|
||
|
||
// Can ttValue be used as a better position evaluation?
|
||
if ( ttValue != VALUE_NONE
|
||
&& (tte->bound() & (ttValue > eval ? BOUND_LOWER : BOUND_UPPER)))
|
||
eval = ttValue;
|
||
}
|
||
else
|
||
{
|
||
if ((ss-1)->currentMove != MOVE_NULL)
|
||
{
|
||
int bonus = -(ss-1)->statScore / 512;
|
||
|
||
ss->staticEval = eval = evaluate(pos) + bonus;
|
||
}
|
||
else
|
||
ss->staticEval = eval = -(ss-1)->staticEval + 2 * Eval::Tempo;
|
||
|
||
tte->save(posKey, VALUE_NONE, ttPv, BOUND_NONE, DEPTH_NONE, MOVE_NONE, eval);
|
||
}
|
||
|
||
// Step 7. Razoring (~2 Elo)
|
||
if ( !rootNode // The required rootNode PV handling is not available in qsearch
|
||
&& depth < 2 * ONE_PLY
|
||
&& eval <= alpha - RazorMargin)
|
||
return qsearch<NT>(pos, ss, alpha, beta);
|
||
|
||
improving = ss->staticEval >= (ss-2)->staticEval
|
||
|| (ss-2)->staticEval == VALUE_NONE;
|
||
|
||
// Step 8. Futility pruning: child node (~30 Elo)
|
||
if ( !PvNode
|
||
&& depth < 7 * ONE_PLY
|
||
&& eval - futility_margin(depth, improving) >= beta
|
||
&& eval < VALUE_KNOWN_WIN) // Do not return unproven wins
|
||
return eval;
|
||
|
||
// Step 9. Null move search with verification search (~40 Elo)
|
||
if ( !PvNode
|
||
&& (ss-1)->currentMove != MOVE_NULL
|
||
&& (ss-1)->statScore < 23200
|
||
&& eval >= beta
|
||
&& ss->staticEval >= beta - 36 * depth / ONE_PLY + 225
|
||
&& !excludedMove
|
||
&& pos.non_pawn_material(us)
|
||
&& (ss->ply >= thisThread->nmpMinPly || us != thisThread->nmpColor))
|
||
{
|
||
assert(eval - beta >= 0);
|
||
|
||
// Null move dynamic reduction based on depth and value
|
||
Depth R = ((823 + 67 * depth / ONE_PLY) / 256 + std::min(int(eval - beta) / 200, 3)) * ONE_PLY;
|
||
|
||
ss->currentMove = MOVE_NULL;
|
||
ss->continuationHistory = &thisThread->continuationHistory[NO_PIECE][0];
|
||
|
||
pos.do_null_move(st);
|
||
|
||
Value nullValue = -search<NonPV>(pos, ss+1, -beta, -beta+1, depth-R, !cutNode);
|
||
|
||
pos.undo_null_move();
|
||
|
||
if (nullValue >= beta)
|
||
{
|
||
// Do not return unproven mate scores
|
||
if (nullValue >= VALUE_MATE_IN_MAX_PLY)
|
||
nullValue = beta;
|
||
|
||
if (thisThread->nmpMinPly || (abs(beta) < VALUE_KNOWN_WIN && depth < 12 * ONE_PLY))
|
||
return nullValue;
|
||
|
||
assert(!thisThread->nmpMinPly); // Recursive verification is not allowed
|
||
|
||
// Do verification search at high depths, with null move pruning disabled
|
||
// for us, until ply exceeds nmpMinPly.
|
||
thisThread->nmpMinPly = ss->ply + 3 * (depth-R) / (4 * ONE_PLY);
|
||
thisThread->nmpColor = us;
|
||
|
||
Value v = search<NonPV>(pos, ss, beta-1, beta, depth-R, false);
|
||
|
||
thisThread->nmpMinPly = 0;
|
||
|
||
if (v >= beta)
|
||
return nullValue;
|
||
}
|
||
}
|
||
|
||
// Step 10. ProbCut (~10 Elo)
|
||
// If we have a good enough capture and a reduced search returns a value
|
||
// much above beta, we can (almost) safely prune the previous move.
|
||
if ( !PvNode
|
||
&& depth >= 5 * ONE_PLY
|
||
&& abs(beta) < VALUE_MATE_IN_MAX_PLY)
|
||
{
|
||
Value raisedBeta = std::min(beta + 216 - 48 * improving, VALUE_INFINITE);
|
||
MovePicker mp(pos, ttMove, raisedBeta - ss->staticEval, &thisThread->captureHistory);
|
||
int probCutCount = 0;
|
||
|
||
while ( (move = mp.next_move()) != MOVE_NONE
|
||
&& probCutCount < 2 + 2 * cutNode)
|
||
if (move != excludedMove && pos.legal(move))
|
||
{
|
||
probCutCount++;
|
||
|
||
ss->currentMove = move;
|
||
ss->continuationHistory = &thisThread->continuationHistory[pos.moved_piece(move)][to_sq(move)];
|
||
|
||
assert(depth >= 5 * ONE_PLY);
|
||
|
||
pos.do_move(move, st);
|
||
|
||
// Perform a preliminary qsearch to verify that the move holds
|
||
value = -qsearch<NonPV>(pos, ss+1, -raisedBeta, -raisedBeta+1);
|
||
|
||
// If the qsearch held, perform the regular search
|
||
if (value >= raisedBeta)
|
||
value = -search<NonPV>(pos, ss+1, -raisedBeta, -raisedBeta+1, depth - 4 * ONE_PLY, !cutNode);
|
||
|
||
pos.undo_move(move);
|
||
|
||
if (value >= raisedBeta)
|
||
return value;
|
||
}
|
||
}
|
||
|
||
// Step 11. Internal iterative deepening (~2 Elo)
|
||
if (depth >= 8 * ONE_PLY && !ttMove)
|
||
{
|
||
search<NT>(pos, ss, alpha, beta, depth - 7 * ONE_PLY, cutNode);
|
||
|
||
tte = TT.probe(posKey, ttHit);
|
||
ttValue = ttHit ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE;
|
||
ttMove = ttHit ? tte->move() : MOVE_NONE;
|
||
}
|
||
|
||
moves_loop: // When in check, search starts from here
|
||
|
||
const PieceToHistory* contHist[] = { (ss-1)->continuationHistory, (ss-2)->continuationHistory,
|
||
nullptr, (ss-4)->continuationHistory,
|
||
nullptr, (ss-6)->continuationHistory };
|
||
|
||
Move countermove = thisThread->counterMoves[pos.piece_on(prevSq)][prevSq];
|
||
|
||
MovePicker mp(pos, ttMove, depth, &thisThread->mainHistory,
|
||
&thisThread->captureHistory,
|
||
contHist,
|
||
countermove,
|
||
ss->killers);
|
||
|
||
value = bestValue; // Workaround a bogus 'uninitialized' warning under gcc
|
||
moveCountPruning = false;
|
||
ttCapture = ttMove && pos.capture_or_promotion(ttMove);
|
||
int singularExtensionLMRmultiplier = 0;
|
||
|
||
// Step 12. Loop through all pseudo-legal moves until no moves remain
|
||
// or a beta cutoff occurs.
|
||
while ((move = mp.next_move(moveCountPruning)) != MOVE_NONE)
|
||
{
|
||
assert(is_ok(move));
|
||
|
||
if (move == excludedMove)
|
||
continue;
|
||
|
||
// At root obey the "searchmoves" option and skip moves not listed in Root
|
||
// Move List. As a consequence any illegal move is also skipped. In MultiPV
|
||
// mode we also skip PV moves which have been already searched and those
|
||
// of lower "TB rank" if we are in a TB root position.
|
||
if (rootNode && !std::count(thisThread->rootMoves.begin() + thisThread->pvIdx,
|
||
thisThread->rootMoves.begin() + thisThread->pvLast, move))
|
||
continue;
|
||
|
||
ss->moveCount = ++moveCount;
|
||
|
||
if (rootNode && thisThread == Threads.main() && Time.elapsed() > 3000 && !Limits.silent)
|
||
sync_cout << "info depth " << depth / ONE_PLY
|
||
<< " currmove " << UCI::move(move, pos.is_chess960())
|
||
<< " currmovenumber " << moveCount + thisThread->pvIdx << sync_endl;
|
||
if (PvNode)
|
||
(ss+1)->pv = nullptr;
|
||
|
||
extension = DEPTH_ZERO;
|
||
captureOrPromotion = pos.capture_or_promotion(move);
|
||
movedPiece = pos.moved_piece(move);
|
||
givesCheck = pos.gives_check(move);
|
||
|
||
// Step 13. Extensions (~70 Elo)
|
||
|
||
// Singular extension search (~60 Elo). If all moves but one fail low on a
|
||
// search of (alpha-s, beta-s), and just one fails high on (alpha, beta),
|
||
// then that move is singular and should be extended. To verify this we do
|
||
// a reduced search on all the other moves but the ttMove and if the
|
||
// result is lower than ttValue minus a margin then we will extend the ttMove.
|
||
if ( depth >= 8 * ONE_PLY
|
||
&& move == ttMove
|
||
&& !rootNode
|
||
&& !excludedMove // Avoid recursive singular search
|
||
/* && ttValue != VALUE_NONE Already implicit in the next condition */
|
||
&& abs(ttValue) < VALUE_KNOWN_WIN
|
||
&& (tte->bound() & BOUND_LOWER)
|
||
&& tte->depth() >= depth - 3 * ONE_PLY
|
||
&& pos.legal(move))
|
||
{
|
||
Value singularBeta = ttValue - 2 * depth / ONE_PLY;
|
||
Depth halfDepth = depth / (2 * ONE_PLY) * ONE_PLY; // ONE_PLY invariant
|
||
ss->excludedMove = move;
|
||
value = search<NonPV>(pos, ss, singularBeta - 1, singularBeta, halfDepth, cutNode);
|
||
ss->excludedMove = MOVE_NONE;
|
||
|
||
if (value < singularBeta)
|
||
{
|
||
extension = ONE_PLY;
|
||
singularExtensionLMRmultiplier++;
|
||
if (value < singularBeta - std::min(3 * depth / ONE_PLY, 39))
|
||
singularExtensionLMRmultiplier++;
|
||
}
|
||
|
||
// Multi-cut pruning
|
||
// Our ttMove is assumed to fail high, and now we failed high also on a reduced
|
||
// search without the ttMove. So we assume this expected Cut-node is not singular,
|
||
// that is multiple moves fail high, and we can prune the whole subtree by returning
|
||
// the hard beta bound.
|
||
else if (cutNode && singularBeta > beta)
|
||
return beta;
|
||
}
|
||
|
||
// Check extension (~2 Elo)
|
||
else if ( givesCheck
|
||
&& (pos.blockers_for_king(~us) & from_sq(move) || pos.see_ge(move)))
|
||
extension = ONE_PLY;
|
||
|
||
// Castling extension
|
||
else if (type_of(move) == CASTLING)
|
||
extension = ONE_PLY;
|
||
|
||
// Shuffle extension
|
||
else if ( PvNode
|
||
&& pos.rule50_count() > 18
|
||
&& depth < 3 * ONE_PLY
|
||
&& ss->ply < 3 * thisThread->rootDepth / ONE_PLY) // To avoid too deep searches
|
||
extension = ONE_PLY;
|
||
|
||
// Passed pawn extension
|
||
else if ( move == ss->killers[0]
|
||
&& pos.advanced_pawn_push(move)
|
||
&& pos.pawn_passed(us, to_sq(move)))
|
||
extension = ONE_PLY;
|
||
|
||
// Calculate new depth for this move
|
||
newDepth = depth - ONE_PLY + extension;
|
||
|
||
// Step 14. Pruning at shallow depth (~170 Elo)
|
||
if ( !rootNode
|
||
&& pos.non_pawn_material(us)
|
||
&& bestValue > VALUE_MATED_IN_MAX_PLY)
|
||
{
|
||
// Skip quiet moves if movecount exceeds our FutilityMoveCount threshold
|
||
moveCountPruning = moveCount >= futility_move_count(improving, depth / ONE_PLY);
|
||
|
||
if ( !captureOrPromotion
|
||
&& !givesCheck
|
||
&& !pos.advanced_pawn_push(move))
|
||
{
|
||
// Move count based pruning (~30 Elo)
|
||
if (moveCountPruning)
|
||
continue;
|
||
|
||
// Reduced depth of the next LMR search
|
||
int lmrDepth = std::max(newDepth - reduction(improving, depth, moveCount), DEPTH_ZERO);
|
||
lmrDepth /= ONE_PLY;
|
||
|
||
// Countermoves based pruning (~20 Elo)
|
||
if ( lmrDepth < 3 + ((ss-1)->statScore > 0 || (ss-1)->moveCount == 1)
|
||
&& (*contHist[0])[movedPiece][to_sq(move)] < CounterMovePruneThreshold
|
||
&& (*contHist[1])[movedPiece][to_sq(move)] < CounterMovePruneThreshold)
|
||
continue;
|
||
|
||
// Futility pruning: parent node (~2 Elo)
|
||
if ( lmrDepth < 7
|
||
&& !inCheck
|
||
&& ss->staticEval + 256 + 200 * lmrDepth <= alpha)
|
||
continue;
|
||
|
||
// Prune moves with negative SEE (~10 Elo)
|
||
if (!pos.see_ge(move, Value(-29 * lmrDepth * lmrDepth)))
|
||
continue;
|
||
}
|
||
else if (!pos.see_ge(move, -PawnValueEg * (depth / ONE_PLY))) // (~20 Elo)
|
||
continue;
|
||
}
|
||
|
||
// Speculative prefetch as early as possible
|
||
prefetch(TT.first_entry(pos.key_after(move)));
|
||
|
||
// Check for legality just before making the move
|
||
if (!rootNode && !pos.legal(move))
|
||
{
|
||
ss->moveCount = --moveCount;
|
||
continue;
|
||
}
|
||
|
||
// Update the current move (this must be done after singular extension search)
|
||
ss->currentMove = move;
|
||
ss->continuationHistory = &thisThread->continuationHistory[movedPiece][to_sq(move)];
|
||
|
||
// Step 15. Make the move
|
||
pos.do_move(move, st, givesCheck);
|
||
|
||
// Step 16. Reduced depth search (LMR). If the move fails high it will be
|
||
// re-searched at full depth.
|
||
if ( depth >= 3 * ONE_PLY
|
||
&& moveCount > 1 + 3 * rootNode
|
||
&& ( !captureOrPromotion
|
||
|| moveCountPruning
|
||
|| ss->staticEval + PieceValue[EG][pos.captured_piece()] <= alpha))
|
||
{
|
||
Depth r = reduction(improving, depth, moveCount);
|
||
|
||
// Decrease reduction if position is or has been on the PV
|
||
if (ttPv)
|
||
r -= 2 * ONE_PLY;
|
||
|
||
// Decrease reduction if opponent's move count is high (~10 Elo)
|
||
if ((ss-1)->moveCount > 15)
|
||
r -= ONE_PLY;
|
||
// Decrease reduction if move has been singularly extended
|
||
r -= singularExtensionLMRmultiplier * ONE_PLY;
|
||
|
||
if (!captureOrPromotion)
|
||
{
|
||
// Increase reduction if ttMove is a capture (~0 Elo)
|
||
if (ttCapture)
|
||
r += ONE_PLY;
|
||
|
||
// Increase reduction for cut nodes (~5 Elo)
|
||
if (cutNode)
|
||
r += 2 * ONE_PLY;
|
||
|
||
// Decrease reduction for moves that escape a capture. Filter out
|
||
// castling moves, because they are coded as "king captures rook" and
|
||
// hence break make_move(). (~5 Elo)
|
||
else if ( type_of(move) == NORMAL
|
||
&& !pos.see_ge(make_move(to_sq(move), from_sq(move))))
|
||
r -= 2 * ONE_PLY;
|
||
|
||
ss->statScore = thisThread->mainHistory[us][from_to(move)]
|
||
+ (*contHist[0])[movedPiece][to_sq(move)]
|
||
+ (*contHist[1])[movedPiece][to_sq(move)]
|
||
+ (*contHist[3])[movedPiece][to_sq(move)]
|
||
- 4000;
|
||
|
||
// Decrease/increase reduction by comparing opponent's stat score (~10 Elo)
|
||
if (ss->statScore >= 0 && (ss-1)->statScore < 0)
|
||
r -= ONE_PLY;
|
||
|
||
else if ((ss-1)->statScore >= 0 && ss->statScore < 0)
|
||
r += ONE_PLY;
|
||
|
||
// Decrease/increase reduction for moves with a good/bad history (~30 Elo)
|
||
r -= ss->statScore / 20000 * ONE_PLY;
|
||
}
|
||
|
||
Depth d = std::max(newDepth - std::max(r, DEPTH_ZERO), ONE_PLY);
|
||
|
||
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d, true);
|
||
|
||
doFullDepthSearch = (value > alpha && d != newDepth);
|
||
}
|
||
else
|
||
doFullDepthSearch = !PvNode || moveCount > 1;
|
||
|
||
// Step 17. Full depth search when LMR is skipped or fails high
|
||
if (doFullDepthSearch)
|
||
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode);
|
||
|
||
// For PV nodes only, do a full PV search on the first move or after a fail
|
||
// high (in the latter case search only if value < beta), otherwise let the
|
||
// parent node fail low with value <= alpha and try another move.
|
||
if (PvNode && (moveCount == 1 || (value > alpha && (rootNode || value < beta))))
|
||
{
|
||
(ss+1)->pv = pv;
|
||
(ss+1)->pv[0] = MOVE_NONE;
|
||
|
||
value = -search<PV>(pos, ss+1, -beta, -alpha, newDepth, false);
|
||
}
|
||
|
||
// Step 18. Undo move
|
||
pos.undo_move(move);
|
||
|
||
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
|
||
|
||
// Step 19. Check for a new best move
|
||
// Finished searching the move. If a stop occurred, the return value of
|
||
// the search cannot be trusted, and we return immediately without
|
||
// updating best move, PV and TT.
|
||
if (Threads.stop.load(std::memory_order_relaxed))
|
||
return VALUE_ZERO;
|
||
|
||
if (rootNode)
|
||
{
|
||
RootMove& rm = *std::find(thisThread->rootMoves.begin(),
|
||
thisThread->rootMoves.end(), move);
|
||
|
||
// PV move or new best move?
|
||
if (moveCount == 1 || value > alpha)
|
||
{
|
||
rm.score = value;
|
||
rm.selDepth = thisThread->selDepth;
|
||
rm.pv.resize(1);
|
||
|
||
assert((ss+1)->pv);
|
||
|
||
for (Move* m = (ss+1)->pv; *m != MOVE_NONE; ++m)
|
||
rm.pv.push_back(*m);
|
||
|
||
// We record how often the best move has been changed in each
|
||
// iteration. This information is used for time management: When
|
||
// the best move changes frequently, we allocate some more time.
|
||
if (moveCount > 1)
|
||
++thisThread->bestMoveChanges;
|
||
}
|
||
else
|
||
// All other moves but the PV are set to the lowest value: this
|
||
// is not a problem when sorting because the sort is stable and the
|
||
// move position in the list is preserved - just the PV is pushed up.
|
||
rm.score = -VALUE_INFINITE;
|
||
}
|
||
|
||
if (value > bestValue)
|
||
{
|
||
bestValue = value;
|
||
|
||
if (value > alpha)
|
||
{
|
||
bestMove = move;
|
||
|
||
if (PvNode && !rootNode) // Update pv even in fail-high case
|
||
update_pv(ss->pv, move, (ss+1)->pv);
|
||
|
||
if (PvNode && value < beta) // Update alpha! Always alpha < beta
|
||
alpha = value;
|
||
else
|
||
{
|
||
assert(value >= beta); // Fail high
|
||
ss->statScore = 0;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (move != bestMove)
|
||
{
|
||
if (captureOrPromotion && captureCount < 32)
|
||
capturesSearched[captureCount++] = move;
|
||
|
||
else if (!captureOrPromotion && quietCount < 64)
|
||
quietsSearched[quietCount++] = move;
|
||
}
|
||
}
|
||
|
||
// The following condition would detect a stop only after move loop has been
|
||
// completed. But in this case bestValue is valid because we have fully
|
||
// searched our subtree, and we can anyhow save the result in TT.
|
||
/*
|
||
if (Threads.stop)
|
||
return VALUE_DRAW;
|
||
*/
|
||
|
||
// Step 20. Check for mate and stalemate
|
||
// All legal moves have been searched and if there are no legal moves, it
|
||
// must be a mate or a stalemate. If we are in a singular extension search then
|
||
// return a fail low score.
|
||
|
||
assert(moveCount || !inCheck || excludedMove || !MoveList<LEGAL>(pos).size());
|
||
|
||
if (!moveCount)
|
||
bestValue = excludedMove ? alpha
|
||
: inCheck ? mated_in(ss->ply) : VALUE_DRAW;
|
||
else if (bestMove)
|
||
{
|
||
// Quiet best move: update move sorting heuristics
|
||
if (!pos.capture_or_promotion(bestMove))
|
||
update_quiet_stats(pos, ss, bestMove, quietsSearched, quietCount,
|
||
stat_bonus(depth + (bestValue > beta + PawnValueMg ? ONE_PLY : DEPTH_ZERO)));
|
||
|
||
update_capture_stats(pos, bestMove, capturesSearched, captureCount, stat_bonus(depth + ONE_PLY));
|
||
|
||
// Extra penalty for a quiet TT or main killer move in previous ply when it gets refuted
|
||
if ( ((ss-1)->moveCount == 1 || ((ss-1)->currentMove == (ss-1)->killers[0]))
|
||
&& !pos.captured_piece())
|
||
update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, -stat_bonus(depth + ONE_PLY));
|
||
|
||
}
|
||
// Bonus for prior countermove that caused the fail low
|
||
else if ( (depth >= 3 * ONE_PLY || PvNode)
|
||
&& !pos.captured_piece())
|
||
update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, stat_bonus(depth));
|
||
|
||
if (PvNode)
|
||
bestValue = std::min(bestValue, maxValue);
|
||
|
||
if (!excludedMove)
|
||
tte->save(posKey, value_to_tt(bestValue, ss->ply), ttPv,
|
||
bestValue >= beta ? BOUND_LOWER :
|
||
PvNode && bestMove ? BOUND_EXACT : BOUND_UPPER,
|
||
depth, bestMove, ss->staticEval);
|
||
|
||
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
|
||
|
||
return bestValue;
|
||
}
|
||
|
||
|
||
// qsearch() is the quiescence search function, which is called by the main search
|
||
// function with zero depth, or recursively with further decreasing depth per call.
|
||
template <NodeType NT>
|
||
Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) {
|
||
|
||
constexpr bool PvNode = NT == PV;
|
||
|
||
assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE);
|
||
assert(PvNode || (alpha == beta - 1));
|
||
assert(depth <= DEPTH_ZERO);
|
||
assert(depth / ONE_PLY * ONE_PLY == depth);
|
||
|
||
Move pv[MAX_PLY+1];
|
||
StateInfo st;
|
||
TTEntry* tte;
|
||
Key posKey;
|
||
Move ttMove, move, bestMove;
|
||
Depth ttDepth;
|
||
Value bestValue, value, ttValue, futilityValue, futilityBase, oldAlpha;
|
||
bool ttHit, pvHit, inCheck, givesCheck, evasionPrunable;
|
||
int moveCount;
|
||
|
||
if (PvNode)
|
||
{
|
||
oldAlpha = alpha; // To flag BOUND_EXACT when eval above alpha and no available moves
|
||
(ss+1)->pv = pv;
|
||
ss->pv[0] = MOVE_NONE;
|
||
}
|
||
|
||
Thread* thisThread = pos.this_thread();
|
||
(ss+1)->ply = ss->ply + 1;
|
||
bestMove = MOVE_NONE;
|
||
inCheck = pos.checkers();
|
||
moveCount = 0;
|
||
|
||
// Check for an immediate draw or maximum ply reached
|
||
if ( pos.is_draw(ss->ply)
|
||
|| ss->ply >= MAX_PLY)
|
||
return (ss->ply >= MAX_PLY && !inCheck) ? evaluate(pos) : VALUE_DRAW;
|
||
|
||
assert(0 <= ss->ply && ss->ply < MAX_PLY);
|
||
|
||
// Decide whether or not to include checks: this fixes also the type of
|
||
// TT entry depth that we are going to use. Note that in qsearch we use
|
||
// only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS.
|
||
ttDepth = inCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS
|
||
: DEPTH_QS_NO_CHECKS;
|
||
// Transposition table lookup
|
||
posKey = pos.key();
|
||
tte = TT.probe(posKey, ttHit);
|
||
ttValue = ttHit ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE;
|
||
ttMove = ttHit ? tte->move() : MOVE_NONE;
|
||
pvHit = ttHit && tte->is_pv();
|
||
|
||
if ( !PvNode
|
||
&& ttHit
|
||
&& tte->depth() >= ttDepth
|
||
&& ttValue != VALUE_NONE // Only in case of TT access race
|
||
&& (ttValue >= beta ? (tte->bound() & BOUND_LOWER)
|
||
: (tte->bound() & BOUND_UPPER)))
|
||
return ttValue;
|
||
|
||
// Evaluate the position statically
|
||
if (inCheck)
|
||
{
|
||
ss->staticEval = VALUE_NONE;
|
||
bestValue = futilityBase = -VALUE_INFINITE;
|
||
}
|
||
else
|
||
{
|
||
if (ttHit)
|
||
{
|
||
// Never assume anything on values stored in TT
|
||
if ((ss->staticEval = bestValue = tte->eval()) == VALUE_NONE)
|
||
ss->staticEval = bestValue = evaluate(pos);
|
||
|
||
// Can ttValue be used as a better position evaluation?
|
||
if ( ttValue != VALUE_NONE
|
||
&& (tte->bound() & (ttValue > bestValue ? BOUND_LOWER : BOUND_UPPER)))
|
||
bestValue = ttValue;
|
||
}
|
||
else
|
||
ss->staticEval = bestValue =
|
||
(ss-1)->currentMove != MOVE_NULL ? evaluate(pos)
|
||
: -(ss-1)->staticEval + 2 * Eval::Tempo;
|
||
|
||
// Stand pat. Return immediately if static value is at least beta
|
||
if (bestValue >= beta)
|
||
{
|
||
if (!ttHit)
|
||
tte->save(posKey, value_to_tt(bestValue, ss->ply), pvHit, BOUND_LOWER,
|
||
DEPTH_NONE, MOVE_NONE, ss->staticEval);
|
||
|
||
return bestValue;
|
||
}
|
||
|
||
if (PvNode && bestValue > alpha)
|
||
alpha = bestValue;
|
||
|
||
futilityBase = bestValue + 128;
|
||
}
|
||
|
||
const PieceToHistory* contHist[] = { (ss-1)->continuationHistory, (ss-2)->continuationHistory,
|
||
nullptr, (ss-4)->continuationHistory,
|
||
nullptr, (ss-6)->continuationHistory };
|
||
|
||
// Initialize a MovePicker object for the current position, and prepare
|
||
// to search the moves. Because the depth is <= 0 here, only captures,
|
||
// queen promotions and checks (only if depth >= DEPTH_QS_CHECKS) will
|
||
// be generated.
|
||
MovePicker mp(pos, ttMove, depth, &thisThread->mainHistory,
|
||
&thisThread->captureHistory,
|
||
contHist,
|
||
to_sq((ss-1)->currentMove));
|
||
|
||
// Loop through the moves until no moves remain or a beta cutoff occurs
|
||
while ((move = mp.next_move()) != MOVE_NONE)
|
||
{
|
||
assert(is_ok(move));
|
||
|
||
givesCheck = pos.gives_check(move);
|
||
|
||
moveCount++;
|
||
|
||
// Futility pruning
|
||
if ( !inCheck
|
||
&& !givesCheck
|
||
&& futilityBase > -VALUE_KNOWN_WIN
|
||
&& !pos.advanced_pawn_push(move))
|
||
{
|
||
assert(type_of(move) != ENPASSANT); // Due to !pos.advanced_pawn_push
|
||
|
||
futilityValue = futilityBase + PieceValue[EG][pos.piece_on(to_sq(move))];
|
||
|
||
if (futilityValue <= alpha)
|
||
{
|
||
bestValue = std::max(bestValue, futilityValue);
|
||
continue;
|
||
}
|
||
|
||
if (futilityBase <= alpha && !pos.see_ge(move, VALUE_ZERO + 1))
|
||
{
|
||
bestValue = std::max(bestValue, futilityBase);
|
||
continue;
|
||
}
|
||
}
|
||
|
||
// Detect non-capture evasions that are candidates to be pruned
|
||
evasionPrunable = inCheck
|
||
&& (depth != DEPTH_ZERO || moveCount > 2)
|
||
&& bestValue > VALUE_MATED_IN_MAX_PLY
|
||
&& !pos.capture(move);
|
||
|
||
// Don't search moves with negative SEE values
|
||
if ( (!inCheck || evasionPrunable)
|
||
&& !pos.see_ge(move))
|
||
continue;
|
||
|
||
// Speculative prefetch as early as possible
|
||
prefetch(TT.first_entry(pos.key_after(move)));
|
||
|
||
// Check for legality just before making the move
|
||
if (
|
||
#if defined(EVAL_LEARN)
|
||
// HACK: pos.piece_on(from_sq(m)) sometimes will be NO_PIECE during machine learning.
|
||
!pos.pseudo_legal(move) ||
|
||
#endif // EVAL_LEARN
|
||
!pos.legal(move)
|
||
)
|
||
{
|
||
moveCount--;
|
||
continue;
|
||
}
|
||
|
||
ss->currentMove = move;
|
||
ss->continuationHistory = &thisThread->continuationHistory[pos.moved_piece(move)][to_sq(move)];
|
||
|
||
// Make and search the move
|
||
pos.do_move(move, st, givesCheck);
|
||
value = -qsearch<NT>(pos, ss+1, -beta, -alpha, depth - ONE_PLY);
|
||
pos.undo_move(move);
|
||
|
||
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
|
||
|
||
// Check for a new best move
|
||
if (value > bestValue)
|
||
{
|
||
bestValue = value;
|
||
|
||
if (value > alpha)
|
||
{
|
||
bestMove = move;
|
||
|
||
if (PvNode) // Update pv even in fail-high case
|
||
update_pv(ss->pv, move, (ss+1)->pv);
|
||
|
||
if (PvNode && value < beta) // Update alpha here!
|
||
alpha = value;
|
||
else
|
||
break; // Fail high
|
||
}
|
||
}
|
||
}
|
||
|
||
// All legal moves have been searched. A special case: If we're in check
|
||
// and no legal moves were found, it is checkmate.
|
||
if (inCheck && bestValue == -VALUE_INFINITE)
|
||
return mated_in(ss->ply); // Plies to mate from the root
|
||
|
||
tte->save(posKey, value_to_tt(bestValue, ss->ply), pvHit,
|
||
bestValue >= beta ? BOUND_LOWER :
|
||
PvNode && bestValue > oldAlpha ? BOUND_EXACT : BOUND_UPPER,
|
||
ttDepth, bestMove, ss->staticEval);
|
||
|
||
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
|
||
|
||
return bestValue;
|
||
}
|
||
|
||
|
||
// value_to_tt() adjusts a mate score from "plies to mate from the root" to
|
||
// "plies to mate from the current position". Non-mate scores are unchanged.
|
||
// The function is called before storing a value in the transposition table.
|
||
|
||
Value value_to_tt(Value v, int ply) {
|
||
|
||
assert(v != VALUE_NONE);
|
||
|
||
return v >= VALUE_MATE_IN_MAX_PLY ? v + ply
|
||
: v <= VALUE_MATED_IN_MAX_PLY ? v - ply : v;
|
||
}
|
||
|
||
|
||
// value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score
|
||
// from the transposition table (which refers to the plies to mate/be mated
|
||
// from current position) to "plies to mate/be mated from the root".
|
||
|
||
Value value_from_tt(Value v, int ply) {
|
||
|
||
return v == VALUE_NONE ? VALUE_NONE
|
||
: v >= VALUE_MATE_IN_MAX_PLY ? v - ply
|
||
: v <= VALUE_MATED_IN_MAX_PLY ? v + ply : v;
|
||
}
|
||
|
||
|
||
// update_pv() adds current move and appends child pv[]
|
||
|
||
void update_pv(Move* pv, Move move, Move* childPv) {
|
||
|
||
for (*pv++ = move; childPv && *childPv != MOVE_NONE; )
|
||
*pv++ = *childPv++;
|
||
*pv = MOVE_NONE;
|
||
}
|
||
|
||
|
||
// update_continuation_histories() updates histories of the move pairs formed
|
||
// by moves at ply -1, -2, and -4 with current move.
|
||
|
||
void update_continuation_histories(Stack* ss, Piece pc, Square to, int bonus) {
|
||
|
||
for (int i : {1, 2, 4, 6})
|
||
if (is_ok((ss-i)->currentMove))
|
||
(*(ss-i)->continuationHistory)[pc][to] << bonus;
|
||
}
|
||
|
||
|
||
// update_capture_stats() updates move sorting heuristics when a new capture best move is found
|
||
|
||
void update_capture_stats(const Position& pos, Move move,
|
||
Move* captures, int captureCount, int bonus) {
|
||
|
||
CapturePieceToHistory& captureHistory = pos.this_thread()->captureHistory;
|
||
Piece moved_piece = pos.moved_piece(move);
|
||
PieceType captured = type_of(pos.piece_on(to_sq(move)));
|
||
|
||
if (pos.capture_or_promotion(move))
|
||
captureHistory[moved_piece][to_sq(move)][captured] << bonus;
|
||
|
||
// Decrease all the other played capture moves
|
||
for (int i = 0; i < captureCount; ++i)
|
||
{
|
||
moved_piece = pos.moved_piece(captures[i]);
|
||
captured = type_of(pos.piece_on(to_sq(captures[i])));
|
||
captureHistory[moved_piece][to_sq(captures[i])][captured] << -bonus;
|
||
}
|
||
}
|
||
|
||
|
||
// update_quiet_stats() updates move sorting heuristics when a new quiet best move is found
|
||
|
||
void update_quiet_stats(const Position& pos, Stack* ss, Move move,
|
||
Move* quiets, int quietCount, int bonus) {
|
||
|
||
if (ss->killers[0] != move)
|
||
{
|
||
ss->killers[1] = ss->killers[0];
|
||
ss->killers[0] = move;
|
||
}
|
||
|
||
Color us = pos.side_to_move();
|
||
Thread* thisThread = pos.this_thread();
|
||
thisThread->mainHistory[us][from_to(move)] << bonus;
|
||
update_continuation_histories(ss, pos.moved_piece(move), to_sq(move), bonus);
|
||
|
||
if (is_ok((ss-1)->currentMove))
|
||
{
|
||
Square prevSq = to_sq((ss-1)->currentMove);
|
||
thisThread->counterMoves[pos.piece_on(prevSq)][prevSq] = move;
|
||
}
|
||
|
||
// Decrease all the other played quiet moves
|
||
for (int i = 0; i < quietCount; ++i)
|
||
{
|
||
thisThread->mainHistory[us][from_to(quiets[i])] << -bonus;
|
||
update_continuation_histories(ss, pos.moved_piece(quiets[i]), to_sq(quiets[i]), -bonus);
|
||
}
|
||
}
|
||
|
||
// When playing with strength handicap, choose best move among a set of RootMoves
|
||
// using a statistical rule dependent on 'level'. Idea by Heinz van Saanen.
|
||
|
||
Move Skill::pick_best(size_t multiPV) {
|
||
|
||
const RootMoves& rootMoves = Threads.main()->rootMoves;
|
||
static PRNG rng(now()); // PRNG sequence should be non-deterministic
|
||
|
||
// RootMoves are already sorted by score in descending order
|
||
Value topScore = rootMoves[0].score;
|
||
int delta = std::min(topScore - rootMoves[multiPV - 1].score, PawnValueMg);
|
||
int weakness = 120 - 2 * level;
|
||
int maxScore = -VALUE_INFINITE;
|
||
|
||
// Choose best move. For each move score we add two terms, both dependent on
|
||
// weakness. One is deterministic and bigger for weaker levels, and one is
|
||
// random. Then we choose the move with the resulting highest score.
|
||
for (size_t i = 0; i < multiPV; ++i)
|
||
{
|
||
// This is our magic formula
|
||
int push = ( weakness * int(topScore - rootMoves[i].score)
|
||
+ delta * (rng.rand<unsigned>() % weakness)) / 128;
|
||
|
||
if (rootMoves[i].score + push >= maxScore)
|
||
{
|
||
maxScore = rootMoves[i].score + push;
|
||
best = rootMoves[i].pv[0];
|
||
}
|
||
}
|
||
|
||
return best;
|
||
}
|
||
|
||
} // namespace
|
||
|
||
/// MainThread::check_time() is used to print debug info and, more importantly,
|
||
/// to detect when we are out of available time and thus stop the search.
|
||
|
||
void MainThread::check_time() {
|
||
|
||
if (--callsCnt > 0)
|
||
return;
|
||
|
||
// When using nodes, ensure checking rate is not lower than 0.1% of nodes
|
||
callsCnt = Limits.nodes ? std::min(1024, int(Limits.nodes / 1024)) : 1024;
|
||
|
||
static TimePoint lastInfoTime = now();
|
||
|
||
TimePoint elapsed = Time.elapsed();
|
||
TimePoint tick = Limits.startTime + elapsed;
|
||
|
||
if (tick - lastInfoTime >= 1000)
|
||
{
|
||
lastInfoTime = tick;
|
||
dbg_print();
|
||
}
|
||
|
||
// We should not stop pondering until told so by the GUI
|
||
if (ponder)
|
||
return;
|
||
|
||
if ( (Limits.use_time_management() && (elapsed > Time.maximum() - 10 || stopOnPonderhit))
|
||
|| (Limits.movetime && elapsed >= Limits.movetime)
|
||
|| (Limits.nodes && Threads.nodes_searched() >= (uint64_t)Limits.nodes))
|
||
Threads.stop = true;
|
||
}
|
||
|
||
|
||
/// UCI::pv() formats PV information according to the UCI protocol. UCI requires
|
||
/// that all (if any) unsearched PV lines are sent using a previous search score.
|
||
|
||
string UCI::pv(const Position& pos, Depth depth, Value alpha, Value beta) {
|
||
|
||
std::stringstream ss;
|
||
TimePoint elapsed = Time.elapsed() + 1;
|
||
const RootMoves& rootMoves = pos.this_thread()->rootMoves;
|
||
size_t pvIdx = pos.this_thread()->pvIdx;
|
||
size_t multiPV = std::min((size_t)Options["MultiPV"], rootMoves.size());
|
||
uint64_t nodesSearched = Threads.nodes_searched();
|
||
uint64_t tbHits = Threads.tb_hits() + (TB::RootInTB ? rootMoves.size() : 0);
|
||
|
||
for (size_t i = 0; i < multiPV; ++i)
|
||
{
|
||
bool updated = (i <= pvIdx && rootMoves[i].score != -VALUE_INFINITE);
|
||
|
||
if (depth == ONE_PLY && !updated)
|
||
continue;
|
||
|
||
Depth d = updated ? depth : depth - ONE_PLY;
|
||
Value v = updated ? rootMoves[i].score : rootMoves[i].previousScore;
|
||
|
||
bool tb = TB::RootInTB && abs(v) < VALUE_MATE - MAX_PLY;
|
||
v = tb ? rootMoves[i].tbScore : v;
|
||
|
||
if (ss.rdbuf()->in_avail()) // Not at first line
|
||
ss << "\n";
|
||
|
||
ss << "info"
|
||
<< " depth " << d / ONE_PLY
|
||
<< " seldepth " << rootMoves[i].selDepth
|
||
<< " multipv " << i + 1
|
||
<< " score " << UCI::value(v);
|
||
|
||
if (!tb && i == pvIdx)
|
||
ss << (v >= beta ? " lowerbound" : v <= alpha ? " upperbound" : "");
|
||
|
||
ss << " nodes " << nodesSearched
|
||
<< " nps " << nodesSearched * 1000 / elapsed;
|
||
|
||
if (elapsed > 1000) // Earlier makes little sense
|
||
ss << " hashfull " << TT.hashfull();
|
||
|
||
ss << " tbhits " << tbHits
|
||
<< " time " << elapsed
|
||
<< " pv";
|
||
|
||
for (Move m : rootMoves[i].pv)
|
||
ss << " " << UCI::move(m, pos.is_chess960());
|
||
}
|
||
|
||
return ss.str();
|
||
}
|
||
|
||
|
||
/// RootMove::extract_ponder_from_tt() is called in case we have no ponder move
|
||
/// before exiting the search, for instance, in case we stop the search during a
|
||
/// fail high at root. We try hard to have a ponder move to return to the GUI,
|
||
/// otherwise in case of 'ponder on' we have nothing to think on.
|
||
|
||
bool RootMove::extract_ponder_from_tt(Position& pos) {
|
||
|
||
StateInfo st;
|
||
bool ttHit;
|
||
|
||
assert(pv.size() == 1);
|
||
|
||
if (pv[0] == MOVE_NONE)
|
||
return false;
|
||
|
||
pos.do_move(pv[0], st);
|
||
TTEntry* tte = TT.probe(pos.key(), ttHit);
|
||
|
||
if (ttHit)
|
||
{
|
||
Move m = tte->move(); // Local copy to be SMP safe
|
||
if (MoveList<LEGAL>(pos).contains(m))
|
||
pv.push_back(m);
|
||
}
|
||
|
||
pos.undo_move(pv[0]);
|
||
return pv.size() > 1;
|
||
}
|
||
|
||
void Tablebases::rank_root_moves(Position& pos, Search::RootMoves& rootMoves) {
|
||
|
||
RootInTB = false;
|
||
UseRule50 = bool(Options["Syzygy50MoveRule"]);
|
||
ProbeDepth = int(Options["SyzygyProbeDepth"]) * ONE_PLY;
|
||
Cardinality = int(Options["SyzygyProbeLimit"]);
|
||
bool dtz_available = true;
|
||
|
||
// Tables with fewer pieces than SyzygyProbeLimit are searched with
|
||
// ProbeDepth == DEPTH_ZERO
|
||
if (Cardinality > MaxCardinality)
|
||
{
|
||
Cardinality = MaxCardinality;
|
||
ProbeDepth = DEPTH_ZERO;
|
||
}
|
||
|
||
if (Cardinality >= popcount(pos.pieces()) && !pos.can_castle(ANY_CASTLING))
|
||
{
|
||
// Rank moves using DTZ tables
|
||
RootInTB = root_probe(pos, rootMoves);
|
||
|
||
if (!RootInTB)
|
||
{
|
||
// DTZ tables are missing; try to rank moves using WDL tables
|
||
dtz_available = false;
|
||
RootInTB = root_probe_wdl(pos, rootMoves);
|
||
}
|
||
}
|
||
|
||
if (RootInTB)
|
||
{
|
||
// Sort moves according to TB rank
|
||
std::sort(rootMoves.begin(), rootMoves.end(),
|
||
[](const RootMove &a, const RootMove &b) { return a.tbRank > b.tbRank; } );
|
||
|
||
// Probe during search only if DTZ is not available and we are winning
|
||
if (dtz_available || rootMoves[0].tbScore <= VALUE_DRAW)
|
||
Cardinality = 0;
|
||
}
|
||
else
|
||
{
|
||
// Assign the same rank to all moves
|
||
for (auto& m : rootMoves)
|
||
m.tbRank = 0;
|
||
}
|
||
}
|
||
|
||
// --- <20>w<EFBFBD>K<EFBFBD><4B><EFBFBD>ɗp<C997><70><EFBFBD><EFBFBD><EFBFBD>Adepth<74>Œ<EFBFBD><C592>T<EFBFBD><54><EFBFBD>Ȃǂ̊<CC8A><D690><EFBFBD><EFBFBD>O<EFBFBD><4F><EFBFBD>ɑ<C991><CE82>Č<EFBFBD><C48C>J
|
||
|
||
#if defined (EVAL_LEARN)
|
||
|
||
namespace Learner
|
||
{
|
||
// <20>w<EFBFBD>K<EFBFBD>p<EFBFBD>ɁA1<41>̃X<CC83><58><EFBFBD>b<EFBFBD>h<EFBFBD><68><EFBFBD><EFBFBD>search,qsearch()<29><><EFBFBD>Ăяo<D18F><6F><EFBFBD><EFBFBD><EFBFBD>悤<EFBFBD>ȃX<C883>^<5E>u<EFBFBD><75><EFBFBD>p<EFBFBD>ӂ<EFBFBD><D382><EFBFBD><EFBFBD>B
|
||
// <20><><EFBFBD>܂ɂ<DC82><C982>Ďv<C48E><76><EFBFBD>AApery<72>̂悤<CC82><E682A4>Searcher<65><72><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ăX<C483><58><EFBFBD>b<EFBFBD>h<EFBFBD><68><EFBFBD>Ƃɒu<C992><75><EFBFBD>\<5C>Ȃǂ<C882><C782>p<EFBFBD>ӂ<EFBFBD><D382><EFBFBD><EFBFBD>ق<EFBFBD><D982><EFBFBD>
|
||
// <20>ǂ<EFBFBD><C782><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>m<EFBFBD><6D><EFBFBD>Ȃ<EFBFBD><C882>B
|
||
|
||
// <20>w<EFBFBD>K<EFBFBD>̂<EFBFBD><CC82>߂̏<DF82><CC8F><EFBFBD><EFBFBD><EFBFBD><EFBFBD>B
|
||
// Learner::search(),Learner::qsearch()<29><><EFBFBD><EFBFBD><EFBFBD>Ăяo<D18F><6F><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>B
|
||
void init_for_search(Position& pos, Stack* ss)
|
||
{
|
||
|
||
// RootNode<64><65>ss->ply == 0<><30><EFBFBD><EFBFBD><EFBFBD>̏<EFBFBD><CC8F><EFBFBD><EFBFBD>B
|
||
// <20>[<5B><><EFBFBD>N<EFBFBD><4E><EFBFBD>A<EFBFBD><41><EFBFBD><EFBFBD><EFBFBD>̂ŁAss->ply == 0<>ƂȂ<C682><C882>̂ő<CC82><C591><EFBFBD><EFBFBD>v<EFBFBD>c<EFBFBD>B
|
||
|
||
std::memset(ss - 7, 0, 10 * sizeof(Stack));
|
||
|
||
// Search::Limits<74>Ɋւ<C98A><D682><EFBFBD>
|
||
// <20><><EFBFBD>̃<EFBFBD><CC83><EFBFBD><EFBFBD>o<EFBFBD>[<5B>ϐ<EFBFBD><CF90><EFBFBD>global<61>Ȃ̂ő<CC82><C591>̃X<CC83><58><EFBFBD>b<EFBFBD>h<EFBFBD>ɉe<C989><65><EFBFBD><EFBFBD><EFBFBD>y<EFBFBD>ڂ<EFBFBD><DA82>̂ŋC<C58B><43><EFBFBD><EFBFBD><C282>邱<EFBFBD>ƁB
|
||
{
|
||
auto& limits = Search::Limits;
|
||
|
||
// <20>T<EFBFBD><54><EFBFBD><EFBFBD>"go infinite"<22>R<EFBFBD>}<7D><><EFBFBD>h<EFBFBD><68><EFBFBD><EFBFBD><EFBFBD>ɂ<EFBFBD><C982><EFBFBD><EFBFBD>B(time management<6E><74><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ƍ<EFBFBD><C68D>邽<EFBFBD><E982BD>)
|
||
limits.infinite = true;
|
||
|
||
// PV<50><56><EFBFBD>\<5C><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ǝז<C68E><D796>Ȃ̂ŏ<CC82><C58F><EFBFBD><EFBFBD>Ă<EFBFBD><C482><EFBFBD><EFBFBD>B
|
||
limits.silent = true;
|
||
|
||
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>p<EFBFBD><70><EFBFBD><EFBFBD><EFBFBD>Ɗe<C68A>X<EFBFBD><58><EFBFBD>b<EFBFBD>h<EFBFBD><68>nodes<65><73><EFBFBD>ώZ<CF8E><5A><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>̂Ɣ<CC82><C694>r<EFBFBD><72><EFBFBD><EFBFBD><EFBFBD>Ă<EFBFBD><C482>܂<EFBFBD><DC82>B<EFBFBD>䂦<EFBFBD>Ɏg<C98E>p<EFBFBD><70><EFBFBD>Ȃ<EFBFBD><C882>B
|
||
limits.nodes = 0;
|
||
|
||
// depth<74><68><EFBFBD>ALearner::search()<29>̈<EFBFBD><CC88><EFBFBD><EFBFBD>Ƃ<EFBFBD><C682>ēn<C493><6E><EFBFBD>ꂽ<EFBFBD><EA82BD><EFBFBD>̂ŏ<CC82><C58F><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>B
|
||
limits.depth = 0;
|
||
|
||
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>t<EFBFBD>߂̎萔<CC8E>ň<EFBFBD><C588><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>̒l<CC92><6C><EFBFBD>Ԃ<EFBFBD><D482>̂<EFBFBD><CC82>h<EFBFBD><68><EFBFBD><EFBFBD><EFBFBD>߂ɑ傫<C991>Ȓl<C892>ɂ<EFBFBD><C982>Ă<EFBFBD><C482><EFBFBD><EFBFBD>B
|
||
//limits.max_game_ply = 1 << 16;
|
||
|
||
// <20><><EFBFBD>ʃ<EFBFBD><CA83>[<5B><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ă<EFBFBD><C482><EFBFBD><EFBFBD>Ȃ<EFBFBD><C882>ƈ<EFBFBD><C688><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ɂȂ<C982><C882>Č<EFBFBD><C48C><EFBFBD><EFBFBD><EFBFBD><C282>ɂ<EFBFBD><C982><EFBFBD><EFBFBD>B
|
||
//limits.enteringKingRule = EnteringKingRule::EKR_27_POINT;
|
||
}
|
||
|
||
// DrawValue<75>̐ݒ<CC90>
|
||
{
|
||
// <20>X<EFBFBD><58><EFBFBD>b<EFBFBD>h<EFBFBD><68><EFBFBD>Ƃɗp<C997>ӂ<EFBFBD><D382>ĂȂ<C482><C882>̂<EFBFBD>
|
||
// <20><><EFBFBD>̃X<CC83><58><EFBFBD>b<EFBFBD>h<EFBFBD>ŏ㏑<C58F><E38F91><EFBFBD><EFBFBD><EFBFBD>ꂩ<EFBFBD>˂Ȃ<CB82><C882>B<EFBFBD>d<EFBFBD><64><EFBFBD><EFBFBD><EFBFBD>Ȃ<EFBFBD><C882><EFBFBD><EFBFBD>B
|
||
// <20>ǂ<EFBFBD><C782><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ȃ<EFBFBD><C882>Ȃ<EFBFBD><C882>A0<41>ɂ<EFBFBD><C982>ׂ<EFBFBD><D782><EFBFBD><EFBFBD>Ǝv<C68E><76><EFBFBD>B
|
||
//drawValueTable[REPETITION_DRAW][BLACK] = VALUE_ZERO;
|
||
//drawValueTable[REPETITION_DRAW][WHITE] = VALUE_ZERO;
|
||
}
|
||
|
||
// this_thread<61>Ɋւ<C98A><D682>āB
|
||
{
|
||
auto th = pos.this_thread();
|
||
|
||
th->completedDepth = DEPTH_ZERO;
|
||
th->selDepth = 0;
|
||
th->rootDepth = DEPTH_ZERO;
|
||
|
||
// <20>T<EFBFBD><54><EFBFBD>m<EFBFBD>[<5B>h<EFBFBD><68><EFBFBD>̃[<5B><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
||
th->nodes = 0;
|
||
|
||
// history<72>ނ<EFBFBD><DE82>S<EFBFBD><53><EFBFBD>N<EFBFBD><4E><EFBFBD>A<EFBFBD><41><EFBFBD><EFBFBD><EFBFBD>B<EFBFBD><42><EFBFBD>̏<EFBFBD><CC8F><EFBFBD><EFBFBD><EFBFBD><EFBFBD>͏<EFBFBD><CD8F><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ԃ<EFBFBD><D482><EFBFBD><EFBFBD><EFBFBD><EFBFBD>邵<EFBFBD>A<EFBFBD>T<EFBFBD><54><EFBFBD>̐<EFBFBD><CC90>x<EFBFBD>͂ނ<CD82><DE82>뉺<EFBFBD><EB89BA><EFBFBD><EFBFBD><EFBFBD>̂őP<C591><50><EFBFBD>͂悭<CD82>킩<EFBFBD><ED82A9><EFBFBD>Ȃ<EFBFBD><C882>B
|
||
// th->clear();
|
||
|
||
int ct = int(Options["Contempt"]) * PawnValueEg / 100; // From centipawns
|
||
Color us = pos.side_to_move();
|
||
|
||
// In analysis mode, adjust contempt in accordance with user preference
|
||
if (Limits.infinite || Options["UCI_AnalyseMode"])
|
||
ct = Options["Analysis Contempt"] == "Off" ? 0
|
||
: Options["Analysis Contempt"] == "Both" ? ct
|
||
: Options["Analysis Contempt"] == "White" && us == BLACK ? -ct
|
||
: Options["Analysis Contempt"] == "Black" && us == WHITE ? -ct
|
||
: ct;
|
||
|
||
// Evaluation score is from the white point of view
|
||
th->contempt = (us == WHITE ? make_score(ct, ct / 2)
|
||
: -make_score(ct, ct / 2));
|
||
|
||
for (int i = 7; i > 0; i--)
|
||
(ss - i)->continuationHistory = &th->continuationHistory[NO_PIECE][0]; // Use as sentinel
|
||
|
||
// rootMoves<65>̐ݒ<CC90>
|
||
auto& rootMoves = th->rootMoves;
|
||
|
||
rootMoves.clear();
|
||
for (auto m : MoveList<LEGAL>(pos))
|
||
rootMoves.push_back(Search::RootMove(m));
|
||
|
||
assert(!rootMoves.empty());
|
||
|
||
//#if defined(USE_GLOBAL_OPTIONS)
|
||
// <20>T<EFBFBD><54><EFBFBD>X<EFBFBD><58><EFBFBD>b<EFBFBD>h<EFBFBD><68><EFBFBD>Ƃ̒u<CC92><75><EFBFBD>\<5C>̐<EFBFBD><CC90><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ǘ<EFBFBD><C797><EFBFBD><EFBFBD>Ă<EFBFBD><C482><EFBFBD><EFBFBD>͂<EFBFBD><CD82>Ȃ̂ŁA
|
||
// <20>V<EFBFBD>K<EFBFBD>̒T<CC92><54><EFBFBD>ł<EFBFBD><C582>邩<EFBFBD><E982A9><EFBFBD>A<EFBFBD><41><EFBFBD>̃X<CC83><58><EFBFBD>b<EFBFBD>h<EFBFBD>ɑ<C991><CE82><EFBFBD><EFBFBD>u<EFBFBD><75><EFBFBD>\<5C>̐<EFBFBD><CC90><EFBFBD><EFBFBD>𑝂₷<F0919D82>B
|
||
//TT.new_search(th->thread_id());
|
||
|
||
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>new_search<63><68><EFBFBD>Ăяo<D18F><6F><EFBFBD><EFBFBD>1<EFBFBD><31><EFBFBD>O<EFBFBD>̒T<CC92><54><EFBFBD><EFBFBD><EFBFBD>ʂ<EFBFBD><CA82>g<EFBFBD><67><EFBFBD>Ȃ<EFBFBD><C882>đ<EFBFBD><C491>Ƃ<EFBFBD><C682><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ƃ͂<C682><CD82><EFBFBD><EFBFBD>̂ł́c<CD81>B
|
||
// <20><><EFBFBD><EFBFBD><EFBFBD>ł<EFBFBD><C582><EFBFBD><EFBFBD>͂<EFBFBD><CD82>炸<EFBFBD>ɁA<C981>Ăяo<D18F><6F><EFBFBD><EFBFBD><EFBFBD><EFBFBD>1<EFBFBD>ǂ<EFBFBD><C782>Ƃ<EFBFBD>TT.new_search(th->thread_id())<29><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ׂ<EFBFBD><D782>ł́c<CD81>B
|
||
|
||
// <20><><EFBFBD>@<40><><EFBFBD><EFBFBD><EFBFBD>̏I<CC8F>ǐ}<7D>Ɏ<EFBFBD><C98E><EFBFBD><EFBFBD>̂<EFBFBD><CC82><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>̂ŁA<C581><41><EFBFBD>t<EFBFBD><74><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ɂ͒u<CD92><75><EFBFBD>\<5C>͑S<CD91>X<EFBFBD><58><EFBFBD><EFBFBD><EFBFBD>ʂŎg<C58E><67><EFBFBD>悤<EFBFBD>ɂ<EFBFBD><C982><EFBFBD><EFBFBD>B
|
||
//#endif
|
||
}
|
||
}
|
||
|
||
// <20>ǂƕ]<5D><><EFBFBD>l<EFBFBD>̃y<CC83>A<EFBFBD>BLearner::search(),Learner::qsearch()<29><><EFBFBD>Ԃ<EFBFBD><D482>B
|
||
typedef std::pair<Value, std::vector<Move> > ValueAndPV;
|
||
|
||
// <20>Î~<7E>T<EFBFBD><54><EFBFBD>B
|
||
//
|
||
// <20>O<EFBFBD><4F><EFBFBD><EFBFBD><EFBFBD><EFBFBD>) pos.set_this_thread(Threads[thread_id])<29>ŒT<C592><54><EFBFBD>X<EFBFBD><58><EFBFBD>b<EFBFBD>h<EFBFBD><68><EFBFBD>ݒ肳<DD92><E882B3><EFBFBD>Ă<EFBFBD><C482>邱<EFBFBD>ƁB
|
||
// <20>@<40>܂<EFBFBD><DC82>AThreads.stop<6F><70><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ƒT<C692><54><EFBFBD>𒆒f<F0928692><66><EFBFBD>Ă<EFBFBD><C482>܂<EFBFBD><DC82>̂ŁA<C581><41><EFBFBD>̂Ƃ<CC82><C682><EFBFBD>PV<50>͐<EFBFBD><CD90><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ȃ<EFBFBD><C882>B
|
||
// <20>@search()<29><><EFBFBD><EFBFBD><EFBFBD>߂<EFBFBD><DF82><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ƁAThreads.stop == true<75>Ȃ<EFBFBD><C882>A<EFBFBD><41><EFBFBD>̒T<CC92><54><EFBFBD><EFBFBD><EFBFBD>ʂ<EFBFBD><CA82>p<EFBFBD><70><EFBFBD>Ă͂Ȃ<CD82><C882>Ȃ<EFBFBD><C882>B
|
||
// <20>@<40><><EFBFBD>ƁA<C681>Ăяo<D18F><6F><EFBFBD>O<EFBFBD>́AThreads.stop == false<73>̏<EFBFBD><CC8F>ԂŌĂяo<D18F><6F><EFBFBD>Ȃ<EFBFBD><C882>ƁA<C681>T<EFBFBD><54><EFBFBD>𒆒f<F0928692><66><EFBFBD>ĕԂ<C495><D482>Ă<EFBFBD><C482>܂<EFBFBD><DC82>̂Œ<CC82><C592>ӁB
|
||
//
|
||
// <20>l<EFBFBD>܂<EFBFBD><DC82><EFBFBD><EFBFBD>Ă<EFBFBD><C482><EFBFBD><EFBFBD>ꍇ<EFBFBD>́APV<50>z<EFBFBD><7A><EFBFBD><EFBFBD>MOVE_RESIGN<47><4E><EFBFBD>Ԃ<EFBFBD><D482>B
|
||
//
|
||
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>alpha,beta<74><61><EFBFBD>w<EFBFBD><77><EFBFBD>ł<EFBFBD><C582><EFBFBD><EFBFBD>悤<EFBFBD>ɂ<EFBFBD><C982>Ă<EFBFBD><C482><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A<EFBFBD><41><EFBFBD>ꂪ<EFBFBD><EA82AA><EFBFBD>̑<EFBFBD><CC91>ŒT<C592><54><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ƃ<EFBFBD><C682>̌<EFBFBD><CC8C>ʂ<EFBFBD>
|
||
// <20>u<EFBFBD><75><EFBFBD>\<5C>ɏ<EFBFBD><C98F><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ނ̂ŁA<C581><41><EFBFBD>̑<EFBFBD><CC91>ɑ<C991><CE82>Ď}<7D><><EFBFBD>肪<EFBFBD>o<EFBFBD><6F><EFBFBD><EFBFBD><EFBFBD>悤<EFBFBD>Ȓl<C892><6C><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>܂<EFBFBD><DC82>Ċw<C48A>K<EFBFBD>̂Ƃ<CC82><C682><EFBFBD>
|
||
// <20><><EFBFBD><EFBFBD><EFBFBD>e<EFBFBD><65><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>̂ŁA<C581><41><EFBFBD>͈̔͂<CD88><CD82>w<EFBFBD><77><EFBFBD>ł<EFBFBD><C582><EFBFBD><EFBFBD>悤<EFBFBD>ɂ<EFBFBD><C982><EFBFBD><EFBFBD>̂<EFBFBD><CC82><EFBFBD><EFBFBD>߂邱<DF82>Ƃɂ<C682><C982><EFBFBD><EFBFBD>B
|
||
ValueAndPV qsearch(Position& pos)
|
||
{
|
||
Stack stack[MAX_PLY + 10], * ss = stack + 7;
|
||
Move pv[MAX_PLY + 1];
|
||
|
||
init_for_search(pos, ss);
|
||
ss->pv = pv; // <20>Ƃ肠<C682><E882A0><EFBFBD><EFBFBD><EFBFBD>_<EFBFBD>~<7E>[<5B>łǂ<C582><C782><EFBFBD><EFBFBD>o<EFBFBD>b<EFBFBD>t<EFBFBD>@<40><><EFBFBD>Ȃ<EFBFBD><C882>Ƃ<EFBFBD><C682><EFBFBD><EFBFBD>Ȃ<EFBFBD><C882>B
|
||
|
||
if (pos.is_draw(0)) {
|
||
// Return draw value if draw.
|
||
return { VALUE_DRAW, {} };
|
||
}
|
||
|
||
// <20>l<EFBFBD>܂<EFBFBD><DC82><EFBFBD><EFBFBD>Ă<EFBFBD><C482><EFBFBD><EFBFBD>̂<EFBFBD>
|
||
if (MoveList<LEGAL>(pos).size() == 0)
|
||
{
|
||
// Return the mated value if checkmated.
|
||
return { mated_in(/*ss->ply*/ 0 + 1), {} };
|
||
}
|
||
|
||
auto bestValue = ::qsearch<PV>(pos, ss, -VALUE_INFINITE, VALUE_INFINITE, DEPTH_ZERO);
|
||
|
||
// <20><><EFBFBD><EFBFBD><EFBFBD>ꂽPV<50><56><EFBFBD>Ԃ<EFBFBD><D482>B
|
||
std::vector<Move> pvs;
|
||
for (Move* p = &ss->pv[0]; is_ok(*p); ++p)
|
||
pvs.push_back(*p);
|
||
|
||
return ValueAndPV(bestValue, pvs);
|
||
}
|
||
|
||
// <20>ʏ<EFBFBD><CA8F>T<EFBFBD><54><EFBFBD>B<EFBFBD>[<5B><>depth(<28><><EFBFBD><EFBFBD><EFBFBD>Ŏw<C58E><77>)<29>B
|
||
// 3<><33><EFBFBD>ǂݎ<C782><DD8E>̃X<CC83>R<EFBFBD>A<EFBFBD><41><EFBFBD>~<7E><><EFBFBD><EFBFBD><EFBFBD>Ȃ<EFBFBD><C882>A
|
||
// auto v = search(pos,3);
|
||
// <20>̂悤<CC82>ɂ<EFBFBD><C982>ׂ<EFBFBD><D782>B
|
||
// v.first<73>ɕ]<5D><><EFBFBD>l<EFBFBD>Av.second<6E><64>PV<50><56><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>B
|
||
// multi pv<70><76><EFBFBD>L<EFBFBD><4C><EFBFBD>̂Ƃ<CC82><C682>́Apos.this_thread()->rootMoves[N].pv<70>ɂ<EFBFBD><C982><EFBFBD>PV(<28>ǂ<C782>)<29>̔z<CC94><EFBFBD><F182AA93><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>B
|
||
// multi pv<70>̎w<CC8E><77><EFBFBD>͂<EFBFBD><CD82>̊<CC8A><D690>̈<EFBFBD><CC88><EFBFBD>multiPV<50>ōs<C58D>Ȃ<EFBFBD><C882>B(Options["MultiPV"]<5D>̒l<CC92>͖<EFBFBD><CD96><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>)
|
||
//
|
||
// root<6F>ł̐錾<CC90><E98CBE><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>͂<EFBFBD><CD82>Ȃ<EFBFBD><C882>̂<EFBFBD>(<28><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʓ|<7C>Ȃ̂<C882>)<29>A<EFBFBD><41><EFBFBD><EFBFBD><EFBFBD>ł͍s<CD8D><73><EFBFBD>Ȃ<EFBFBD><C882>B
|
||
// <20>Ăяo<D18F><6F><EFBFBD><EFBFBD><EFBFBD>ŏ<EFBFBD><C58F><EFBFBD><EFBFBD><EFBFBD><EFBFBD>邱<EFBFBD>ƁB
|
||
//
|
||
// <20>O<EFBFBD><4F><EFBFBD><EFBFBD><EFBFBD><EFBFBD>) pos.set_this_thread(Threads[thread_id])<29>ŒT<C592><54><EFBFBD>X<EFBFBD><58><EFBFBD>b<EFBFBD>h<EFBFBD><68><EFBFBD>ݒ肳<DD92><E882B3><EFBFBD>Ă<EFBFBD><C482>邱<EFBFBD>ƁB
|
||
// <20>@<40>܂<EFBFBD><DC82>AThreads.stop<6F><70><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ƒT<C692><54><EFBFBD>𒆒f<F0928692><66><EFBFBD>Ă<EFBFBD><C482>܂<EFBFBD><DC82>̂ŁA<C581><41><EFBFBD>̂Ƃ<CC82><C682><EFBFBD>PV<50>͐<EFBFBD><CD90><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ȃ<EFBFBD><C882>B
|
||
// <20>@search()<29><><EFBFBD><EFBFBD><EFBFBD>߂<EFBFBD><DF82><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ƁAThreads.stop == true<75>Ȃ<EFBFBD><C882>A<EFBFBD><41><EFBFBD>̒T<CC92><54><EFBFBD><EFBFBD><EFBFBD>ʂ<EFBFBD><CA82>p<EFBFBD><70><EFBFBD>Ă͂Ȃ<CD82><C882>Ȃ<EFBFBD><C882>B
|
||
// <20>@<40><><EFBFBD>ƁA<C681>Ăяo<D18F><6F><EFBFBD>O<EFBFBD>́AThreads.stop == false<73>̏<EFBFBD><CC8F>ԂŌĂяo<D18F><6F><EFBFBD>Ȃ<EFBFBD><C882>ƁA<C681>T<EFBFBD><54><EFBFBD>𒆒f<F0928692><66><EFBFBD>ĕԂ<C495><D482>Ă<EFBFBD><C482>܂<EFBFBD><DC82>̂Œ<CC82><C592>ӁB
|
||
|
||
ValueAndPV search(Position& pos, int depth_, size_t multiPV /* = 1 */, uint64_t nodesLimit /* = 0 */)
|
||
{
|
||
std::vector<Move> pvs;
|
||
|
||
Depth depth = depth_ * ONE_PLY;
|
||
if (depth < DEPTH_ZERO)
|
||
return std::pair<Value, std::vector<Move>>(Eval::evaluate(pos), std::vector<Move>());
|
||
|
||
if (depth == DEPTH_ZERO)
|
||
return qsearch(pos);
|
||
|
||
Stack stack[MAX_PLY + 10], * ss = stack + 7;
|
||
Move pv[MAX_PLY + 1];
|
||
|
||
init_for_search(pos, ss);
|
||
|
||
ss->pv = pv; // <20>Ƃ肠<C682><E882A0><EFBFBD><EFBFBD><EFBFBD>_<EFBFBD>~<7E>[<5B>łǂ<C582><C782><EFBFBD><EFBFBD>o<EFBFBD>b<EFBFBD>t<EFBFBD>@<40><><EFBFBD>Ȃ<EFBFBD><C882>Ƃ<EFBFBD><C682><EFBFBD><EFBFBD>Ȃ<EFBFBD><C882>B
|
||
|
||
// this_thread<61>Ɋ֘A<D698><41><EFBFBD><EFBFBD><EFBFBD>ϐ<EFBFBD><CF90>̏<EFBFBD><CC8F><EFBFBD><EFBFBD><EFBFBD>
|
||
auto th = pos.this_thread();
|
||
auto& rootDepth = th->rootDepth;
|
||
auto& pvIdx = th->pvIdx;
|
||
auto& pvLast = th->pvLast;
|
||
auto& rootMoves = th->rootMoves;
|
||
auto& completedDepth = th->completedDepth;
|
||
auto& selDepth = th->selDepth;
|
||
|
||
// bestmove<76>Ƃ<EFBFBD><C682>Ă<EFBFBD><C482><EFBFBD><EFBFBD>̋ǖʂ̏<CA82><CC8F><EFBFBD>N<EFBFBD><EFBFBD><C282>T<EFBFBD><54><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>@<40>\
|
||
//size_t multiPV = Options["MultiPV"];
|
||
|
||
// <20><><EFBFBD>̋ǖʂł̎w<CC8E><77><EFBFBD><EFBFBD><EFBFBD>̐<EFBFBD><CC90><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ă͂<C482><CD82><EFBFBD><EFBFBD>Ȃ<EFBFBD>
|
||
multiPV = std::min(multiPV, rootMoves.size());
|
||
|
||
// <20>m<EFBFBD>[<5B>h<EFBFBD><68><EFBFBD><EFBFBD><EFBFBD><EFBFBD>MultiPV<50>̒l<CC92><6C><EFBFBD>|<7C><><EFBFBD>Ă<EFBFBD><C482><EFBFBD><EFBFBD>Ȃ<EFBFBD><C882>ƁAdepth<74>Œ<EFBFBD><C592>AMultiPV<50><56><EFBFBD><EFBFBD><EFBFBD>ɂ<EFBFBD><C982><EFBFBD><EFBFBD>Ƃ<EFBFBD><C682><EFBFBD>1<EFBFBD>̌<C282><CC8C><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ɓ<EFBFBD><C993><EFBFBD>node<64><65><EFBFBD><EFBFBD><EFBFBD>v<EFBFBD>l<EFBFBD><6C><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ƂɂȂ<C982><C882>Ȃ<EFBFBD><C882>B
|
||
nodesLimit *= multiPV;
|
||
|
||
Value alpha = -VALUE_INFINITE;
|
||
Value beta = VALUE_INFINITE;
|
||
Value delta = -VALUE_INFINITE;
|
||
Value bestValue = -VALUE_INFINITE;
|
||
|
||
while ((rootDepth += ONE_PLY) <= depth
|
||
// node<64><65><EFBFBD><EFBFBD><EFBFBD><EFBFBD><F092B482><EFBFBD><EFBFBD>ꍇ<EFBFBD><EA8D87><EFBFBD><EFBFBD><EFBFBD>̃<EFBFBD><CC83>[<5B>v<EFBFBD><EFBFBD><F094B282><EFBFBD>
|
||
// <20>T<EFBFBD><54><EFBFBD>m<EFBFBD>[<5B>h<EFBFBD><68><EFBFBD>́A<CD81><41><EFBFBD>̊<CC8A><D690>̈<EFBFBD><CC88><EFBFBD><EFBFBD>œn<C593><6E><EFBFBD><EFBFBD><EFBFBD>Ă<EFBFBD><C482><EFBFBD><EFBFBD>B
|
||
&& !(nodesLimit /*node<64><65><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>*/ && th->nodes.load(std::memory_order_relaxed) >= nodesLimit)
|
||
)
|
||
{
|
||
for (RootMove& rm : rootMoves)
|
||
rm.previousScore = rm.score;
|
||
|
||
size_t pvFirst = 0;
|
||
pvLast = 0;
|
||
|
||
// MultiPV loop. We perform a full root search for each PV line
|
||
for (pvIdx = 0; pvIdx < multiPV && !Threads.stop; ++pvIdx)
|
||
{
|
||
if (pvIdx == pvLast)
|
||
{
|
||
pvFirst = pvLast;
|
||
for (pvLast++; pvLast < rootMoves.size(); pvLast++)
|
||
if (rootMoves[pvLast].tbRank != rootMoves[pvFirst].tbRank)
|
||
break;
|
||
}
|
||
|
||
// <20><><EFBFBD>ꂼ<EFBFBD><EA82BC><EFBFBD><EFBFBD>depth<74><68>PV line<6E>ɑ<C991><CE82><EFBFBD>USI info<66>ŏo<C58F>͂<EFBFBD><CD82><EFBFBD>selDepth
|
||
selDepth = 0;
|
||
|
||
// depth 5<>ȏ<EFBFBD><C88F>ɂ<EFBFBD><C982><EFBFBD><EFBFBD>Ă<EFBFBD>aspiration search<63>ɐ<C990><D882>ւ<EFBFBD><D682><EFBFBD><EFBFBD>B
|
||
if (rootDepth >= 5 * ONE_PLY)
|
||
{
|
||
delta = Value(20);
|
||
|
||
Value p = rootMoves[pvIdx].previousScore;
|
||
|
||
alpha = std::max(p - delta, -VALUE_INFINITE);
|
||
beta = std::min(p + delta, VALUE_INFINITE);
|
||
}
|
||
|
||
// aspiration search
|
||
int failedHighCnt = 0;
|
||
while (true)
|
||
{
|
||
Depth adjustedDepth = std::max(ONE_PLY, rootDepth - failedHighCnt * ONE_PLY);
|
||
bestValue = ::search<PV>(pos, ss, alpha, beta, adjustedDepth, false);
|
||
|
||
stable_sort(rootMoves.begin() + pvIdx, rootMoves.end());
|
||
//my_stable_sort(pos.this_thread()->thread_id(),&rootMoves[0] + pvIdx, rootMoves.size() - pvIdx);
|
||
|
||
// fail low/high<67>ɑ<C991><CE82><EFBFBD>aspiration window<6F><77><EFBFBD>L<EFBFBD><4C><EFBFBD><EFBFBD><EFBFBD>B
|
||
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A<EFBFBD><41><EFBFBD><EFBFBD><EFBFBD>Ŏw<C58E>肳<EFBFBD><E882B3><EFBFBD>Ă<EFBFBD><C482><EFBFBD><EFBFBD>l<EFBFBD>ɂȂ<C982><C882>Ă<EFBFBD><C482><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A<EFBFBD><41><EFBFBD><EFBFBD>fail low/high<67><68><EFBFBD><EFBFBD><EFBFBD>Ƃ<EFBFBD><C682><EFBFBD>break<61><6B><EFBFBD><EFBFBD><EFBFBD>B
|
||
if (bestValue <= alpha)
|
||
{
|
||
beta = (alpha + beta) / 2;
|
||
alpha = std::max(bestValue - delta, -VALUE_INFINITE);
|
||
|
||
failedHighCnt = 0;
|
||
//if (mainThread)
|
||
// mainThread->stopOnPonderhit = false;
|
||
|
||
}
|
||
else if (bestValue >= beta)
|
||
{
|
||
beta = std::min(bestValue + delta, VALUE_INFINITE);
|
||
++failedHighCnt;
|
||
}
|
||
else
|
||
break;
|
||
|
||
delta += delta / 4 + 5;
|
||
assert(-VALUE_INFINITE <= alpha && beta <= VALUE_INFINITE);
|
||
|
||
// <20>\<5C><><EFBFBD>`<60>F<EFBFBD>b<EFBFBD>N
|
||
//assert(th->nodes.load(std::memory_order_relaxed) <= 1000000 );
|
||
}
|
||
|
||
stable_sort(rootMoves.begin(), rootMoves.begin() + pvIdx + 1);
|
||
//my_stable_sort(pos.this_thread()->thread_id() , &rootMoves[0] , pvIdx + 1);
|
||
|
||
} // multi PV
|
||
|
||
completedDepth = rootDepth;
|
||
}
|
||
|
||
// <20><><EFBFBD><EFBFBD>PV<50>A<EFBFBD>r<EFBFBD><72><EFBFBD><EFBFBD>NULL_MOVE<56>̉\<5C><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>邩<EFBFBD><E982A9><EFBFBD>m<EFBFBD><6D><EFBFBD>Ȃ<EFBFBD><C882>̂Ŕr<C594><72><EFBFBD><EFBFBD><EFBFBD>邽<EFBFBD>߂<EFBFBD>is_ok()<29><><EFBFBD>ʂ<EFBFBD><CA82>B
|
||
// <20><><EFBFBD>@PV<50>Ȃ̂<C882>NULL_MOVE<56>͂<EFBFBD><CD82>Ȃ<EFBFBD><C882><EFBFBD><EFBFBD>ƂɂȂ<C982><C882>Ă<EFBFBD><C482><EFBFBD><EFBFBD>͂<EFBFBD><CD82><EFBFBD><EFBFBD><EFBFBD><EFBFBD>A
|
||
// MOVE_WIN<49><4E><EFBFBD>˂<EFBFBD><CB82><EFBFBD><EFBFBD>܂<EFBFBD><DC82>Ă<EFBFBD><C482>邱<EFBFBD>Ƃ͂Ȃ<CD82><C882>B(<28><><EFBFBD>܂̂Ƃ<CC82><C682><EFBFBD>)
|
||
for (Move move : rootMoves[0].pv)
|
||
{
|
||
if (!is_ok(move))
|
||
break;
|
||
pvs.push_back(move);
|
||
}
|
||
|
||
//sync_cout << rootDepth << sync_endl;
|
||
|
||
// multiPV<50><56><EFBFBD><EFBFBD><EFBFBD>l<EFBFBD><6C><EFBFBD><EFBFBD><EFBFBD>āArootMoves[0]<5D><>score<72><65>bestValue<75>Ƃ<EFBFBD><C682>ĕԂ<C495><D482>B
|
||
bestValue = rootMoves[0].score;
|
||
|
||
return ValueAndPV(bestValue, pvs);
|
||
}
|
||
|
||
}
|
||
#endif
|