mirror of
https://github.com/sockspls/badfish
synced 2025-04-30 16:53:09 +00:00

the removed condition appears illogical and is not needed. passed STC: LLR: 2.95 (-2.94,2.94) {-1.50,0.50} Total: 80418 W: 15217 L: 15144 D: 50057 Ptnml(0-2): 1341, 9399, 18679, 9426, 1364 https://tests.stockfishchess.org/tests/view/5e977eb5c9ada107a0370d6b passed LTC: LLR: 2.95 (-2.94,2.94) {-1.50,0.50} Total: 49878 W: 6299 L: 6247 D: 37332 Ptnml(0-2): 327, 4677, 14897, 4693, 345 https://tests.stockfishchess.org/tests/view/5e97e07dc9ada107a0370e53 closes https://github.com/official-stockfish/Stockfish/pull/2638 Bench: 4958027
1932 lines
68 KiB
C++
1932 lines
68 KiB
C++
/*
|
|
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
|
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
|
Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
|
|
Copyright (C) 2015-2020 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
|
|
|
|
Stockfish is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Stockfish is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstring> // For std::memset
|
|
#include <iostream>
|
|
#include <sstream>
|
|
|
|
#include "evaluate.h"
|
|
#include "misc.h"
|
|
#include "movegen.h"
|
|
#include "movepick.h"
|
|
#include "position.h"
|
|
#include "search.h"
|
|
#include "thread.h"
|
|
#include "timeman.h"
|
|
#include "tt.h"
|
|
#include "uci.h"
|
|
#include "syzygy/tbprobe.h"
|
|
|
|
namespace Search {
|
|
|
|
LimitsType Limits;
|
|
}
|
|
|
|
namespace Tablebases {
|
|
|
|
int Cardinality;
|
|
bool RootInTB;
|
|
bool UseRule50;
|
|
Depth ProbeDepth;
|
|
}
|
|
|
|
namespace TB = Tablebases;
|
|
|
|
using std::string;
|
|
using Eval::evaluate;
|
|
using namespace Search;
|
|
|
|
namespace {
|
|
|
|
// Different node types, used as a template parameter
|
|
enum NodeType { NonPV, PV };
|
|
|
|
constexpr uint64_t ttHitAverageWindow = 4096;
|
|
constexpr uint64_t ttHitAverageResolution = 1024;
|
|
|
|
// Razor and futility margins
|
|
constexpr int RazorMargin = 531;
|
|
Value futility_margin(Depth d, bool improving) {
|
|
return Value(217 * (d - improving));
|
|
}
|
|
|
|
// Reductions lookup table, initialized at startup
|
|
int Reductions[MAX_MOVES]; // [depth or moveNumber]
|
|
|
|
Depth reduction(bool i, Depth d, int mn) {
|
|
int r = Reductions[d] * Reductions[mn];
|
|
return (r + 511) / 1024 + (!i && r > 1007);
|
|
}
|
|
|
|
constexpr int futility_move_count(bool improving, Depth depth) {
|
|
return (4 + depth * depth) / (2 - improving);
|
|
}
|
|
|
|
// History and stats update bonus, based on depth
|
|
int stat_bonus(Depth d) {
|
|
return d > 15 ? -8 : 19 * d * d + 155 * d - 132;
|
|
}
|
|
|
|
// Add a small random component to draw evaluations to avoid 3fold-blindness
|
|
Value value_draw(Thread* thisThread) {
|
|
return VALUE_DRAW + Value(2 * (thisThread->nodes & 1) - 1);
|
|
}
|
|
|
|
// Skill structure is used to implement strength limit
|
|
struct Skill {
|
|
explicit Skill(int l) : level(l) {}
|
|
bool enabled() const { return level < 20; }
|
|
bool time_to_pick(Depth depth) const { return depth == 1 + level; }
|
|
Move pick_best(size_t multiPV);
|
|
|
|
int level;
|
|
Move best = MOVE_NONE;
|
|
};
|
|
|
|
// Breadcrumbs are used to mark nodes as being searched by a given thread
|
|
struct Breadcrumb {
|
|
std::atomic<Thread*> thread;
|
|
std::atomic<Key> key;
|
|
};
|
|
std::array<Breadcrumb, 1024> breadcrumbs;
|
|
|
|
// ThreadHolding structure keeps track of which thread left breadcrumbs at the given
|
|
// node for potential reductions. A free node will be marked upon entering the moves
|
|
// loop by the constructor, and unmarked upon leaving that loop by the destructor.
|
|
struct ThreadHolding {
|
|
explicit ThreadHolding(Thread* thisThread, Key posKey, int ply) {
|
|
location = ply < 8 ? &breadcrumbs[posKey & (breadcrumbs.size() - 1)] : nullptr;
|
|
otherThread = false;
|
|
owning = false;
|
|
if (location)
|
|
{
|
|
// See if another already marked this location, if not, mark it ourselves
|
|
Thread* tmp = (*location).thread.load(std::memory_order_relaxed);
|
|
if (tmp == nullptr)
|
|
{
|
|
(*location).thread.store(thisThread, std::memory_order_relaxed);
|
|
(*location).key.store(posKey, std::memory_order_relaxed);
|
|
owning = true;
|
|
}
|
|
else if ( tmp != thisThread
|
|
&& (*location).key.load(std::memory_order_relaxed) == posKey)
|
|
otherThread = true;
|
|
}
|
|
}
|
|
|
|
~ThreadHolding() {
|
|
if (owning) // Free the marked location
|
|
(*location).thread.store(nullptr, std::memory_order_relaxed);
|
|
}
|
|
|
|
bool marked() { return otherThread; }
|
|
|
|
private:
|
|
Breadcrumb* location;
|
|
bool otherThread, owning;
|
|
};
|
|
|
|
template <NodeType NT>
|
|
Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode);
|
|
|
|
template <NodeType NT>
|
|
Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth = 0);
|
|
|
|
Value value_to_tt(Value v, int ply);
|
|
Value value_from_tt(Value v, int ply, int r50c);
|
|
void update_pv(Move* pv, Move move, Move* childPv);
|
|
void update_continuation_histories(Stack* ss, Piece pc, Square to, int bonus);
|
|
void update_quiet_stats(const Position& pos, Stack* ss, Move move, int bonus, int depth);
|
|
void update_all_stats(const Position& pos, Stack* ss, Move bestMove, Value bestValue, Value beta, Square prevSq,
|
|
Move* quietsSearched, int quietCount, Move* capturesSearched, int captureCount, Depth depth);
|
|
|
|
// perft() is our utility to verify move generation. All the leaf nodes up
|
|
// to the given depth are generated and counted, and the sum is returned.
|
|
template<bool Root>
|
|
uint64_t perft(Position& pos, Depth depth) {
|
|
|
|
StateInfo st;
|
|
uint64_t cnt, nodes = 0;
|
|
const bool leaf = (depth == 2);
|
|
|
|
for (const auto& m : MoveList<LEGAL>(pos))
|
|
{
|
|
if (Root && depth <= 1)
|
|
cnt = 1, nodes++;
|
|
else
|
|
{
|
|
pos.do_move(m, st);
|
|
cnt = leaf ? MoveList<LEGAL>(pos).size() : perft<false>(pos, depth - 1);
|
|
nodes += cnt;
|
|
pos.undo_move(m);
|
|
}
|
|
if (Root)
|
|
sync_cout << UCI::move(m, pos.is_chess960()) << ": " << cnt << sync_endl;
|
|
}
|
|
return nodes;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
|
/// Search::init() is called at startup to initialize various lookup tables
|
|
|
|
void Search::init() {
|
|
|
|
for (int i = 1; i < MAX_MOVES; ++i)
|
|
Reductions[i] = int((24.8 + std::log(Threads.size())) * std::log(i));
|
|
}
|
|
|
|
|
|
/// Search::clear() resets search state to its initial value
|
|
|
|
void Search::clear() {
|
|
|
|
Threads.main()->wait_for_search_finished();
|
|
|
|
Time.availableNodes = 0;
|
|
TT.clear();
|
|
Threads.clear();
|
|
Tablebases::init(Options["SyzygyPath"]); // Free mapped files
|
|
}
|
|
|
|
|
|
/// MainThread::search() is started when the program receives the UCI 'go'
|
|
/// command. It searches from the root position and outputs the "bestmove".
|
|
|
|
void MainThread::search() {
|
|
|
|
if (Limits.perft)
|
|
{
|
|
nodes = perft<true>(rootPos, Limits.perft);
|
|
sync_cout << "\nNodes searched: " << nodes << "\n" << sync_endl;
|
|
return;
|
|
}
|
|
|
|
Color us = rootPos.side_to_move();
|
|
Time.init(Limits, us, rootPos.game_ply());
|
|
TT.new_search();
|
|
|
|
if (rootMoves.empty())
|
|
{
|
|
rootMoves.emplace_back(MOVE_NONE);
|
|
sync_cout << "info depth 0 score "
|
|
<< UCI::value(rootPos.checkers() ? -VALUE_MATE : VALUE_DRAW)
|
|
<< sync_endl;
|
|
}
|
|
else
|
|
{
|
|
for (Thread* th : Threads)
|
|
{
|
|
th->bestMoveChanges = 0;
|
|
if (th != this)
|
|
th->start_searching();
|
|
}
|
|
|
|
Thread::search(); // Let's start searching!
|
|
}
|
|
|
|
// When we reach the maximum depth, we can arrive here without a raise of
|
|
// Threads.stop. However, if we are pondering or in an infinite search,
|
|
// the UCI protocol states that we shouldn't print the best move before the
|
|
// GUI sends a "stop" or "ponderhit" command. We therefore simply wait here
|
|
// until the GUI sends one of those commands.
|
|
|
|
while (!Threads.stop && (ponder || Limits.infinite))
|
|
{} // Busy wait for a stop or a ponder reset
|
|
|
|
// Stop the threads if not already stopped (also raise the stop if
|
|
// "ponderhit" just reset Threads.ponder).
|
|
Threads.stop = true;
|
|
|
|
// Wait until all threads have finished
|
|
for (Thread* th : Threads)
|
|
if (th != this)
|
|
th->wait_for_search_finished();
|
|
|
|
// When playing in 'nodes as time' mode, subtract the searched nodes from
|
|
// the available ones before exiting.
|
|
if (Limits.npmsec)
|
|
Time.availableNodes += Limits.inc[us] - Threads.nodes_searched();
|
|
|
|
Thread* bestThread = this;
|
|
|
|
// Check if there are threads with a better score than main thread
|
|
if ( Options["MultiPV"] == 1
|
|
&& !Limits.depth
|
|
&& !(Skill(Options["Skill Level"]).enabled() || Options["UCI_LimitStrength"])
|
|
&& rootMoves[0].pv[0] != MOVE_NONE)
|
|
{
|
|
std::map<Move, int64_t> votes;
|
|
Value minScore = this->rootMoves[0].score;
|
|
|
|
// Find minimum score
|
|
for (Thread* th: Threads)
|
|
minScore = std::min(minScore, th->rootMoves[0].score);
|
|
|
|
// Vote according to score and depth, and select the best thread
|
|
for (Thread* th : Threads)
|
|
{
|
|
votes[th->rootMoves[0].pv[0]] +=
|
|
(th->rootMoves[0].score - minScore + 14) * int(th->completedDepth);
|
|
|
|
if (abs(bestThread->rootMoves[0].score) >= VALUE_TB_WIN_IN_MAX_PLY)
|
|
{
|
|
// Make sure we pick the shortest mate / TB conversion or stave off mate the longest
|
|
if (th->rootMoves[0].score > bestThread->rootMoves[0].score)
|
|
bestThread = th;
|
|
}
|
|
else if ( th->rootMoves[0].score >= VALUE_TB_WIN_IN_MAX_PLY
|
|
|| ( th->rootMoves[0].score > VALUE_TB_LOSS_IN_MAX_PLY
|
|
&& votes[th->rootMoves[0].pv[0]] > votes[bestThread->rootMoves[0].pv[0]]))
|
|
bestThread = th;
|
|
}
|
|
}
|
|
|
|
bestPreviousScore = bestThread->rootMoves[0].score;
|
|
|
|
// Send again PV info if we have a new best thread
|
|
if (bestThread != this)
|
|
sync_cout << UCI::pv(bestThread->rootPos, bestThread->completedDepth, -VALUE_INFINITE, VALUE_INFINITE) << sync_endl;
|
|
|
|
sync_cout << "bestmove " << UCI::move(bestThread->rootMoves[0].pv[0], rootPos.is_chess960());
|
|
|
|
if (bestThread->rootMoves[0].pv.size() > 1 || bestThread->rootMoves[0].extract_ponder_from_tt(rootPos))
|
|
std::cout << " ponder " << UCI::move(bestThread->rootMoves[0].pv[1], rootPos.is_chess960());
|
|
|
|
std::cout << sync_endl;
|
|
}
|
|
|
|
|
|
/// Thread::search() is the main iterative deepening loop. It calls search()
|
|
/// repeatedly with increasing depth until the allocated thinking time has been
|
|
/// consumed, the user stops the search, or the maximum search depth is reached.
|
|
|
|
void Thread::search() {
|
|
|
|
// To allow access to (ss-7) up to (ss+2), the stack must be oversized.
|
|
// The former is needed to allow update_continuation_histories(ss-1, ...),
|
|
// which accesses its argument at ss-6, also near the root.
|
|
// The latter is needed for statScores and killer initialization.
|
|
Stack stack[MAX_PLY+10], *ss = stack+7;
|
|
Move pv[MAX_PLY+1];
|
|
Value bestValue, alpha, beta, delta;
|
|
Move lastBestMove = MOVE_NONE;
|
|
Depth lastBestMoveDepth = 0;
|
|
MainThread* mainThread = (this == Threads.main() ? Threads.main() : nullptr);
|
|
double timeReduction = 1, totBestMoveChanges = 0;
|
|
Color us = rootPos.side_to_move();
|
|
int iterIdx = 0;
|
|
|
|
std::memset(ss-7, 0, 10 * sizeof(Stack));
|
|
for (int i = 7; i > 0; i--)
|
|
(ss-i)->continuationHistory = &this->continuationHistory[0][0][NO_PIECE][0]; // Use as a sentinel
|
|
|
|
ss->pv = pv;
|
|
|
|
bestValue = delta = alpha = -VALUE_INFINITE;
|
|
beta = VALUE_INFINITE;
|
|
|
|
if (mainThread)
|
|
{
|
|
if (mainThread->bestPreviousScore == VALUE_INFINITE)
|
|
for (int i=0; i<4; ++i)
|
|
mainThread->iterValue[i] = VALUE_ZERO;
|
|
else
|
|
for (int i=0; i<4; ++i)
|
|
mainThread->iterValue[i] = mainThread->bestPreviousScore;
|
|
}
|
|
|
|
size_t multiPV = Options["MultiPV"];
|
|
|
|
// Pick integer skill levels, but non-deterministically round up or down
|
|
// such that the average integer skill corresponds to the input floating point one.
|
|
// UCI_Elo is converted to a suitable fractional skill level, using anchoring
|
|
// to CCRL Elo (goldfish 1.13 = 2000) and a fit through Ordo derived Elo
|
|
// for match (TC 60+0.6) results spanning a wide range of k values.
|
|
PRNG rng(now());
|
|
double floatLevel = Options["UCI_LimitStrength"] ?
|
|
Utility::clamp(std::pow((Options["UCI_Elo"] - 1346.6) / 143.4, 1 / 0.806), 0.0, 20.0) :
|
|
double(Options["Skill Level"]);
|
|
int intLevel = int(floatLevel) +
|
|
((floatLevel - int(floatLevel)) * 1024 > rng.rand<unsigned>() % 1024 ? 1 : 0);
|
|
Skill skill(intLevel);
|
|
|
|
// When playing with strength handicap enable MultiPV search that we will
|
|
// use behind the scenes to retrieve a set of possible moves.
|
|
if (skill.enabled())
|
|
multiPV = std::max(multiPV, (size_t)4);
|
|
|
|
multiPV = std::min(multiPV, rootMoves.size());
|
|
ttHitAverage = ttHitAverageWindow * ttHitAverageResolution / 2;
|
|
|
|
int ct = int(Options["Contempt"]) * PawnValueEg / 100; // From centipawns
|
|
|
|
// In analysis mode, adjust contempt in accordance with user preference
|
|
if (Limits.infinite || Options["UCI_AnalyseMode"])
|
|
ct = Options["Analysis Contempt"] == "Off" ? 0
|
|
: Options["Analysis Contempt"] == "Both" ? ct
|
|
: Options["Analysis Contempt"] == "White" && us == BLACK ? -ct
|
|
: Options["Analysis Contempt"] == "Black" && us == WHITE ? -ct
|
|
: ct;
|
|
|
|
// Evaluation score is from the white point of view
|
|
contempt = (us == WHITE ? make_score(ct, ct / 2)
|
|
: -make_score(ct, ct / 2));
|
|
|
|
int searchAgainCounter = 0;
|
|
|
|
// Iterative deepening loop until requested to stop or the target depth is reached
|
|
while ( ++rootDepth < MAX_PLY
|
|
&& !Threads.stop
|
|
&& !(Limits.depth && mainThread && rootDepth > Limits.depth))
|
|
{
|
|
// Age out PV variability metric
|
|
if (mainThread)
|
|
totBestMoveChanges /= 2;
|
|
|
|
// Save the last iteration's scores before first PV line is searched and
|
|
// all the move scores except the (new) PV are set to -VALUE_INFINITE.
|
|
for (RootMove& rm : rootMoves)
|
|
rm.previousScore = rm.score;
|
|
|
|
size_t pvFirst = 0;
|
|
pvLast = 0;
|
|
|
|
if (!Threads.increaseDepth)
|
|
searchAgainCounter++;
|
|
|
|
// MultiPV loop. We perform a full root search for each PV line
|
|
for (pvIdx = 0; pvIdx < multiPV && !Threads.stop; ++pvIdx)
|
|
{
|
|
if (pvIdx == pvLast)
|
|
{
|
|
pvFirst = pvLast;
|
|
for (pvLast++; pvLast < rootMoves.size(); pvLast++)
|
|
if (rootMoves[pvLast].tbRank != rootMoves[pvFirst].tbRank)
|
|
break;
|
|
}
|
|
|
|
// Reset UCI info selDepth for each depth and each PV line
|
|
selDepth = 0;
|
|
|
|
// Reset aspiration window starting size
|
|
if (rootDepth >= 4)
|
|
{
|
|
Value prev = rootMoves[pvIdx].previousScore;
|
|
delta = Value(21);
|
|
alpha = std::max(prev - delta,-VALUE_INFINITE);
|
|
beta = std::min(prev + delta, VALUE_INFINITE);
|
|
|
|
// Adjust contempt based on root move's previousScore (dynamic contempt)
|
|
int dct = ct + (102 - ct / 2) * prev / (abs(prev) + 157);
|
|
|
|
contempt = (us == WHITE ? make_score(dct, dct / 2)
|
|
: -make_score(dct, dct / 2));
|
|
}
|
|
|
|
// Start with a small aspiration window and, in the case of a fail
|
|
// high/low, re-search with a bigger window until we don't fail
|
|
// high/low anymore.
|
|
int failedHighCnt = 0;
|
|
while (true)
|
|
{
|
|
Depth adjustedDepth = std::max(1, rootDepth - failedHighCnt - searchAgainCounter);
|
|
bestValue = ::search<PV>(rootPos, ss, alpha, beta, adjustedDepth, false);
|
|
|
|
// Bring the best move to the front. It is critical that sorting
|
|
// is done with a stable algorithm because all the values but the
|
|
// first and eventually the new best one are set to -VALUE_INFINITE
|
|
// and we want to keep the same order for all the moves except the
|
|
// new PV that goes to the front. Note that in case of MultiPV
|
|
// search the already searched PV lines are preserved.
|
|
std::stable_sort(rootMoves.begin() + pvIdx, rootMoves.begin() + pvLast);
|
|
|
|
// If search has been stopped, we break immediately. Sorting is
|
|
// safe because RootMoves is still valid, although it refers to
|
|
// the previous iteration.
|
|
if (Threads.stop)
|
|
break;
|
|
|
|
// When failing high/low give some update (without cluttering
|
|
// the UI) before a re-search.
|
|
if ( mainThread
|
|
&& multiPV == 1
|
|
&& (bestValue <= alpha || bestValue >= beta)
|
|
&& Time.elapsed() > 3000)
|
|
sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl;
|
|
|
|
// In case of failing low/high increase aspiration window and
|
|
// re-search, otherwise exit the loop.
|
|
if (bestValue <= alpha)
|
|
{
|
|
beta = (alpha + beta) / 2;
|
|
alpha = std::max(bestValue - delta, -VALUE_INFINITE);
|
|
|
|
failedHighCnt = 0;
|
|
if (mainThread)
|
|
mainThread->stopOnPonderhit = false;
|
|
}
|
|
else if (bestValue >= beta)
|
|
{
|
|
beta = std::min(bestValue + delta, VALUE_INFINITE);
|
|
++failedHighCnt;
|
|
}
|
|
else
|
|
{
|
|
++rootMoves[pvIdx].bestMoveCount;
|
|
break;
|
|
}
|
|
|
|
delta += delta / 4 + 5;
|
|
|
|
assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
|
|
}
|
|
|
|
// Sort the PV lines searched so far and update the GUI
|
|
std::stable_sort(rootMoves.begin() + pvFirst, rootMoves.begin() + pvIdx + 1);
|
|
|
|
if ( mainThread
|
|
&& (Threads.stop || pvIdx + 1 == multiPV || Time.elapsed() > 3000))
|
|
sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl;
|
|
}
|
|
|
|
if (!Threads.stop)
|
|
completedDepth = rootDepth;
|
|
|
|
if (rootMoves[0].pv[0] != lastBestMove) {
|
|
lastBestMove = rootMoves[0].pv[0];
|
|
lastBestMoveDepth = rootDepth;
|
|
}
|
|
|
|
// Have we found a "mate in x"?
|
|
if ( Limits.mate
|
|
&& bestValue >= VALUE_MATE_IN_MAX_PLY
|
|
&& VALUE_MATE - bestValue <= 2 * Limits.mate)
|
|
Threads.stop = true;
|
|
|
|
if (!mainThread)
|
|
continue;
|
|
|
|
// If skill level is enabled and time is up, pick a sub-optimal best move
|
|
if (skill.enabled() && skill.time_to_pick(rootDepth))
|
|
skill.pick_best(multiPV);
|
|
|
|
// Do we have time for the next iteration? Can we stop searching now?
|
|
if ( Limits.use_time_management()
|
|
&& !Threads.stop
|
|
&& !mainThread->stopOnPonderhit)
|
|
{
|
|
double fallingEval = (332 + 6 * (mainThread->bestPreviousScore - bestValue)
|
|
+ 6 * (mainThread->iterValue[iterIdx] - bestValue)) / 704.0;
|
|
fallingEval = Utility::clamp(fallingEval, 0.5, 1.5);
|
|
|
|
// If the bestMove is stable over several iterations, reduce time accordingly
|
|
timeReduction = lastBestMoveDepth + 9 < completedDepth ? 1.94 : 0.91;
|
|
double reduction = (1.41 + mainThread->previousTimeReduction) / (2.27 * timeReduction);
|
|
|
|
// Use part of the gained time from a previous stable move for the current move
|
|
for (Thread* th : Threads)
|
|
{
|
|
totBestMoveChanges += th->bestMoveChanges;
|
|
th->bestMoveChanges = 0;
|
|
}
|
|
double bestMoveInstability = 1 + totBestMoveChanges / Threads.size();
|
|
|
|
// Stop the search if we have only one legal move, or if available time elapsed
|
|
if ( rootMoves.size() == 1
|
|
|| Time.elapsed() > Time.optimum() * fallingEval * reduction * bestMoveInstability)
|
|
{
|
|
// If we are allowed to ponder do not stop the search now but
|
|
// keep pondering until the GUI sends "ponderhit" or "stop".
|
|
if (mainThread->ponder)
|
|
mainThread->stopOnPonderhit = true;
|
|
else
|
|
Threads.stop = true;
|
|
}
|
|
else if ( Threads.increaseDepth
|
|
&& !mainThread->ponder
|
|
&& Time.elapsed() > Time.optimum() * fallingEval * reduction * bestMoveInstability * 0.6)
|
|
Threads.increaseDepth = false;
|
|
else
|
|
Threads.increaseDepth = true;
|
|
}
|
|
|
|
mainThread->iterValue[iterIdx] = bestValue;
|
|
iterIdx = (iterIdx + 1) & 3;
|
|
}
|
|
|
|
if (!mainThread)
|
|
return;
|
|
|
|
mainThread->previousTimeReduction = timeReduction;
|
|
|
|
// If skill level is enabled, swap best PV line with the sub-optimal one
|
|
if (skill.enabled())
|
|
std::swap(rootMoves[0], *std::find(rootMoves.begin(), rootMoves.end(),
|
|
skill.best ? skill.best : skill.pick_best(multiPV)));
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
// search<>() is the main search function for both PV and non-PV nodes
|
|
|
|
template <NodeType NT>
|
|
Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode) {
|
|
|
|
constexpr bool PvNode = NT == PV;
|
|
const bool rootNode = PvNode && ss->ply == 0;
|
|
|
|
// Check if we have an upcoming move which draws by repetition, or
|
|
// if the opponent had an alternative move earlier to this position.
|
|
if ( pos.rule50_count() >= 3
|
|
&& alpha < VALUE_DRAW
|
|
&& !rootNode
|
|
&& pos.has_game_cycle(ss->ply))
|
|
{
|
|
alpha = value_draw(pos.this_thread());
|
|
if (alpha >= beta)
|
|
return alpha;
|
|
}
|
|
|
|
// Dive into quiescence search when the depth reaches zero
|
|
if (depth <= 0)
|
|
return qsearch<NT>(pos, ss, alpha, beta);
|
|
|
|
assert(-VALUE_INFINITE <= alpha && alpha < beta && beta <= VALUE_INFINITE);
|
|
assert(PvNode || (alpha == beta - 1));
|
|
assert(0 < depth && depth < MAX_PLY);
|
|
assert(!(PvNode && cutNode));
|
|
|
|
Move pv[MAX_PLY+1], capturesSearched[32], quietsSearched[64];
|
|
StateInfo st;
|
|
TTEntry* tte;
|
|
Key posKey;
|
|
Move ttMove, move, excludedMove, bestMove;
|
|
Depth extension, newDepth;
|
|
Value bestValue, value, ttValue, eval, maxValue;
|
|
bool ttHit, ttPv, formerPv, inCheck, givesCheck, improving, didLMR, priorCapture;
|
|
bool captureOrPromotion, doFullDepthSearch, moveCountPruning, ttCapture, singularLMR;
|
|
Piece movedPiece;
|
|
int moveCount, captureCount, quietCount;
|
|
|
|
// Step 1. Initialize node
|
|
Thread* thisThread = pos.this_thread();
|
|
inCheck = pos.checkers();
|
|
priorCapture = pos.captured_piece();
|
|
Color us = pos.side_to_move();
|
|
moveCount = captureCount = quietCount = ss->moveCount = 0;
|
|
bestValue = -VALUE_INFINITE;
|
|
maxValue = VALUE_INFINITE;
|
|
|
|
// Check for the available remaining time
|
|
if (thisThread == Threads.main())
|
|
static_cast<MainThread*>(thisThread)->check_time();
|
|
|
|
// Used to send selDepth info to GUI (selDepth counts from 1, ply from 0)
|
|
if (PvNode && thisThread->selDepth < ss->ply + 1)
|
|
thisThread->selDepth = ss->ply + 1;
|
|
|
|
if (!rootNode)
|
|
{
|
|
// Step 2. Check for aborted search and immediate draw
|
|
if ( Threads.stop.load(std::memory_order_relaxed)
|
|
|| pos.is_draw(ss->ply)
|
|
|| ss->ply >= MAX_PLY)
|
|
return (ss->ply >= MAX_PLY && !inCheck) ? evaluate(pos)
|
|
: value_draw(pos.this_thread());
|
|
|
|
// Step 3. Mate distance pruning. Even if we mate at the next move our score
|
|
// would be at best mate_in(ss->ply+1), but if alpha is already bigger because
|
|
// a shorter mate was found upward in the tree then there is no need to search
|
|
// because we will never beat the current alpha. Same logic but with reversed
|
|
// signs applies also in the opposite condition of being mated instead of giving
|
|
// mate. In this case return a fail-high score.
|
|
alpha = std::max(mated_in(ss->ply), alpha);
|
|
beta = std::min(mate_in(ss->ply+1), beta);
|
|
if (alpha >= beta)
|
|
return alpha;
|
|
}
|
|
|
|
assert(0 <= ss->ply && ss->ply < MAX_PLY);
|
|
|
|
(ss+1)->ply = ss->ply + 1;
|
|
(ss+1)->excludedMove = bestMove = MOVE_NONE;
|
|
(ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE;
|
|
Square prevSq = to_sq((ss-1)->currentMove);
|
|
|
|
// Initialize statScore to zero for the grandchildren of the current position.
|
|
// So statScore is shared between all grandchildren and only the first grandchild
|
|
// starts with statScore = 0. Later grandchildren start with the last calculated
|
|
// statScore of the previous grandchild. This influences the reduction rules in
|
|
// LMR which are based on the statScore of parent position.
|
|
if (rootNode)
|
|
(ss+4)->statScore = 0;
|
|
else
|
|
(ss+2)->statScore = 0;
|
|
|
|
// Step 4. Transposition table lookup. We don't want the score of a partial
|
|
// search to overwrite a previous full search TT value, so we use a different
|
|
// position key in case of an excluded move.
|
|
excludedMove = ss->excludedMove;
|
|
posKey = pos.key() ^ Key(excludedMove << 16); // Isn't a very good hash
|
|
tte = TT.probe(posKey, ttHit);
|
|
ttValue = ttHit ? value_from_tt(tte->value(), ss->ply, pos.rule50_count()) : VALUE_NONE;
|
|
ttMove = rootNode ? thisThread->rootMoves[thisThread->pvIdx].pv[0]
|
|
: ttHit ? tte->move() : MOVE_NONE;
|
|
ttPv = PvNode || (ttHit && tte->is_pv());
|
|
formerPv = ttPv && !PvNode;
|
|
|
|
if (ttPv && depth > 12 && ss->ply - 1 < MAX_LPH && !pos.captured_piece() && is_ok((ss-1)->currentMove))
|
|
thisThread->lowPlyHistory[ss->ply - 1][from_to((ss-1)->currentMove)] << stat_bonus(depth - 5);
|
|
|
|
// thisThread->ttHitAverage can be used to approximate the running average of ttHit
|
|
thisThread->ttHitAverage = (ttHitAverageWindow - 1) * thisThread->ttHitAverage / ttHitAverageWindow
|
|
+ ttHitAverageResolution * ttHit;
|
|
|
|
// At non-PV nodes we check for an early TT cutoff
|
|
if ( !PvNode
|
|
&& ttHit
|
|
&& tte->depth() >= depth
|
|
&& ttValue != VALUE_NONE // Possible in case of TT access race
|
|
&& (ttValue >= beta ? (tte->bound() & BOUND_LOWER)
|
|
: (tte->bound() & BOUND_UPPER)))
|
|
{
|
|
// If ttMove is quiet, update move sorting heuristics on TT hit
|
|
if (ttMove)
|
|
{
|
|
if (ttValue >= beta)
|
|
{
|
|
if (!pos.capture_or_promotion(ttMove))
|
|
update_quiet_stats(pos, ss, ttMove, stat_bonus(depth), depth);
|
|
|
|
// Extra penalty for early quiet moves of the previous ply
|
|
if ((ss-1)->moveCount <= 2 && !priorCapture)
|
|
update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, -stat_bonus(depth + 1));
|
|
}
|
|
// Penalty for a quiet ttMove that fails low
|
|
else if (!pos.capture_or_promotion(ttMove))
|
|
{
|
|
int penalty = -stat_bonus(depth);
|
|
thisThread->mainHistory[us][from_to(ttMove)] << penalty;
|
|
update_continuation_histories(ss, pos.moved_piece(ttMove), to_sq(ttMove), penalty);
|
|
}
|
|
}
|
|
|
|
if (pos.rule50_count() < 90)
|
|
return ttValue;
|
|
}
|
|
|
|
// Step 5. Tablebases probe
|
|
if (!rootNode && TB::Cardinality)
|
|
{
|
|
int piecesCount = pos.count<ALL_PIECES>();
|
|
|
|
if ( piecesCount <= TB::Cardinality
|
|
&& (piecesCount < TB::Cardinality || depth >= TB::ProbeDepth)
|
|
&& pos.rule50_count() == 0
|
|
&& !pos.can_castle(ANY_CASTLING))
|
|
{
|
|
TB::ProbeState err;
|
|
TB::WDLScore wdl = Tablebases::probe_wdl(pos, &err);
|
|
|
|
// Force check of time on the next occasion
|
|
if (thisThread == Threads.main())
|
|
static_cast<MainThread*>(thisThread)->callsCnt = 0;
|
|
|
|
if (err != TB::ProbeState::FAIL)
|
|
{
|
|
thisThread->tbHits.fetch_add(1, std::memory_order_relaxed);
|
|
|
|
int drawScore = TB::UseRule50 ? 1 : 0;
|
|
|
|
// use the range VALUE_MATE_IN_MAX_PLY to VALUE_TB_WIN_IN_MAX_PLY to score
|
|
value = wdl < -drawScore ? VALUE_MATED_IN_MAX_PLY + ss->ply + 1
|
|
: wdl > drawScore ? VALUE_MATE_IN_MAX_PLY - ss->ply - 1
|
|
: VALUE_DRAW + 2 * wdl * drawScore;
|
|
|
|
Bound b = wdl < -drawScore ? BOUND_UPPER
|
|
: wdl > drawScore ? BOUND_LOWER : BOUND_EXACT;
|
|
|
|
if ( b == BOUND_EXACT
|
|
|| (b == BOUND_LOWER ? value >= beta : value <= alpha))
|
|
{
|
|
tte->save(posKey, value_to_tt(value, ss->ply), ttPv, b,
|
|
std::min(MAX_PLY - 1, depth + 6),
|
|
MOVE_NONE, VALUE_NONE);
|
|
|
|
return value;
|
|
}
|
|
|
|
if (PvNode)
|
|
{
|
|
if (b == BOUND_LOWER)
|
|
bestValue = value, alpha = std::max(alpha, bestValue);
|
|
else
|
|
maxValue = value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
CapturePieceToHistory& captureHistory = thisThread->captureHistory;
|
|
|
|
// Step 6. Static evaluation of the position
|
|
if (inCheck)
|
|
{
|
|
ss->staticEval = eval = VALUE_NONE;
|
|
improving = false;
|
|
goto moves_loop; // Skip early pruning when in check
|
|
}
|
|
else if (ttHit)
|
|
{
|
|
// Never assume anything about values stored in TT
|
|
ss->staticEval = eval = tte->eval();
|
|
if (eval == VALUE_NONE)
|
|
ss->staticEval = eval = evaluate(pos);
|
|
|
|
if (eval == VALUE_DRAW)
|
|
eval = value_draw(thisThread);
|
|
|
|
// Can ttValue be used as a better position evaluation?
|
|
if ( ttValue != VALUE_NONE
|
|
&& (tte->bound() & (ttValue > eval ? BOUND_LOWER : BOUND_UPPER)))
|
|
eval = ttValue;
|
|
}
|
|
else
|
|
{
|
|
if ((ss-1)->currentMove != MOVE_NULL)
|
|
{
|
|
int bonus = -(ss-1)->statScore / 512;
|
|
|
|
ss->staticEval = eval = evaluate(pos) + bonus;
|
|
}
|
|
else
|
|
ss->staticEval = eval = -(ss-1)->staticEval + 2 * Tempo;
|
|
|
|
tte->save(posKey, VALUE_NONE, ttPv, BOUND_NONE, DEPTH_NONE, MOVE_NONE, eval);
|
|
}
|
|
|
|
// Step 7. Razoring (~1 Elo)
|
|
if ( !rootNode // The required rootNode PV handling is not available in qsearch
|
|
&& depth == 1
|
|
&& eval <= alpha - RazorMargin)
|
|
return qsearch<NT>(pos, ss, alpha, beta);
|
|
|
|
improving = (ss-2)->staticEval == VALUE_NONE ? (ss->staticEval > (ss-4)->staticEval
|
|
|| (ss-4)->staticEval == VALUE_NONE) : ss->staticEval > (ss-2)->staticEval;
|
|
|
|
// Step 8. Futility pruning: child node (~50 Elo)
|
|
if ( !PvNode
|
|
&& depth < 6
|
|
&& eval - futility_margin(depth, improving) >= beta
|
|
&& eval < VALUE_KNOWN_WIN) // Do not return unproven wins
|
|
return eval;
|
|
|
|
// Step 9. Null move search with verification search (~40 Elo)
|
|
if ( !PvNode
|
|
&& (ss-1)->currentMove != MOVE_NULL
|
|
&& (ss-1)->statScore < 23397
|
|
&& eval >= beta
|
|
&& eval >= ss->staticEval
|
|
&& ss->staticEval >= beta - 32 * depth - 30 * improving + 120 * ttPv + 292
|
|
&& !excludedMove
|
|
&& pos.non_pawn_material(us)
|
|
&& (ss->ply >= thisThread->nmpMinPly || us != thisThread->nmpColor))
|
|
{
|
|
assert(eval - beta >= 0);
|
|
|
|
// Null move dynamic reduction based on depth and value
|
|
Depth R = (854 + 68 * depth) / 258 + std::min(int(eval - beta) / 192, 3);
|
|
|
|
ss->currentMove = MOVE_NULL;
|
|
ss->continuationHistory = &thisThread->continuationHistory[0][0][NO_PIECE][0];
|
|
|
|
pos.do_null_move(st);
|
|
|
|
Value nullValue = -search<NonPV>(pos, ss+1, -beta, -beta+1, depth-R, !cutNode);
|
|
|
|
pos.undo_null_move();
|
|
|
|
if (nullValue >= beta)
|
|
{
|
|
// Do not return unproven mate or TB scores
|
|
if (nullValue >= VALUE_TB_WIN_IN_MAX_PLY)
|
|
nullValue = beta;
|
|
|
|
if (thisThread->nmpMinPly || (abs(beta) < VALUE_KNOWN_WIN && depth < 13))
|
|
return nullValue;
|
|
|
|
assert(!thisThread->nmpMinPly); // Recursive verification is not allowed
|
|
|
|
// Do verification search at high depths, with null move pruning disabled
|
|
// for us, until ply exceeds nmpMinPly.
|
|
thisThread->nmpMinPly = ss->ply + 3 * (depth-R) / 4;
|
|
thisThread->nmpColor = us;
|
|
|
|
Value v = search<NonPV>(pos, ss, beta-1, beta, depth-R, false);
|
|
|
|
thisThread->nmpMinPly = 0;
|
|
|
|
if (v >= beta)
|
|
return nullValue;
|
|
}
|
|
}
|
|
|
|
// Step 10. ProbCut (~10 Elo)
|
|
// If we have a good enough capture and a reduced search returns a value
|
|
// much above beta, we can (almost) safely prune the previous move.
|
|
if ( !PvNode
|
|
&& depth >= 5
|
|
&& abs(beta) < VALUE_TB_WIN_IN_MAX_PLY)
|
|
{
|
|
Value raisedBeta = beta + 189 - 45 * improving;
|
|
assert(raisedBeta < VALUE_INFINITE);
|
|
MovePicker mp(pos, ttMove, raisedBeta - ss->staticEval, &captureHistory);
|
|
int probCutCount = 0;
|
|
|
|
while ( (move = mp.next_move()) != MOVE_NONE
|
|
&& probCutCount < 2 + 2 * cutNode
|
|
&& !( move == ttMove
|
|
&& tte->depth() >= depth - 4
|
|
&& ttValue < raisedBeta))
|
|
if (move != excludedMove && pos.legal(move))
|
|
{
|
|
assert(pos.capture_or_promotion(move));
|
|
assert(depth >= 5);
|
|
|
|
captureOrPromotion = true;
|
|
probCutCount++;
|
|
|
|
ss->currentMove = move;
|
|
ss->continuationHistory = &thisThread->continuationHistory[inCheck]
|
|
[captureOrPromotion]
|
|
[pos.moved_piece(move)]
|
|
[to_sq(move)];
|
|
|
|
pos.do_move(move, st);
|
|
|
|
// Perform a preliminary qsearch to verify that the move holds
|
|
value = -qsearch<NonPV>(pos, ss+1, -raisedBeta, -raisedBeta+1);
|
|
|
|
// If the qsearch held, perform the regular search
|
|
if (value >= raisedBeta)
|
|
value = -search<NonPV>(pos, ss+1, -raisedBeta, -raisedBeta+1, depth - 4, !cutNode);
|
|
|
|
pos.undo_move(move);
|
|
|
|
if (value >= raisedBeta)
|
|
return value;
|
|
}
|
|
}
|
|
|
|
// Step 11. Internal iterative deepening (~1 Elo)
|
|
if (depth >= 7 && !ttMove)
|
|
{
|
|
search<NT>(pos, ss, alpha, beta, depth - 7, cutNode);
|
|
|
|
tte = TT.probe(posKey, ttHit);
|
|
ttValue = ttHit ? value_from_tt(tte->value(), ss->ply, pos.rule50_count()) : VALUE_NONE;
|
|
ttMove = ttHit ? tte->move() : MOVE_NONE;
|
|
}
|
|
|
|
moves_loop: // When in check, search starts from here
|
|
|
|
const PieceToHistory* contHist[] = { (ss-1)->continuationHistory, (ss-2)->continuationHistory,
|
|
nullptr , (ss-4)->continuationHistory,
|
|
nullptr , (ss-6)->continuationHistory };
|
|
|
|
Move countermove = thisThread->counterMoves[pos.piece_on(prevSq)][prevSq];
|
|
|
|
MovePicker mp(pos, ttMove, depth, &thisThread->mainHistory,
|
|
&thisThread->lowPlyHistory,
|
|
&captureHistory,
|
|
contHist,
|
|
countermove,
|
|
ss->killers,
|
|
depth > 12 ? ss->ply : MAX_PLY);
|
|
|
|
value = bestValue;
|
|
singularLMR = moveCountPruning = false;
|
|
ttCapture = ttMove && pos.capture_or_promotion(ttMove);
|
|
|
|
// Mark this node as being searched
|
|
ThreadHolding th(thisThread, posKey, ss->ply);
|
|
|
|
// Step 12. Loop through all pseudo-legal moves until no moves remain
|
|
// or a beta cutoff occurs.
|
|
while ((move = mp.next_move(moveCountPruning)) != MOVE_NONE)
|
|
{
|
|
assert(is_ok(move));
|
|
|
|
if (move == excludedMove)
|
|
continue;
|
|
|
|
// At root obey the "searchmoves" option and skip moves not listed in Root
|
|
// Move List. As a consequence any illegal move is also skipped. In MultiPV
|
|
// mode we also skip PV moves which have been already searched and those
|
|
// of lower "TB rank" if we are in a TB root position.
|
|
if (rootNode && !std::count(thisThread->rootMoves.begin() + thisThread->pvIdx,
|
|
thisThread->rootMoves.begin() + thisThread->pvLast, move))
|
|
continue;
|
|
|
|
ss->moveCount = ++moveCount;
|
|
|
|
if (rootNode && thisThread == Threads.main() && Time.elapsed() > 3000)
|
|
sync_cout << "info depth " << depth
|
|
<< " currmove " << UCI::move(move, pos.is_chess960())
|
|
<< " currmovenumber " << moveCount + thisThread->pvIdx << sync_endl;
|
|
if (PvNode)
|
|
(ss+1)->pv = nullptr;
|
|
|
|
extension = 0;
|
|
captureOrPromotion = pos.capture_or_promotion(move);
|
|
movedPiece = pos.moved_piece(move);
|
|
givesCheck = pos.gives_check(move);
|
|
|
|
// Calculate new depth for this move
|
|
newDepth = depth - 1;
|
|
|
|
// Step 13. Pruning at shallow depth (~200 Elo)
|
|
if ( !rootNode
|
|
&& pos.non_pawn_material(us)
|
|
&& bestValue > VALUE_TB_LOSS_IN_MAX_PLY)
|
|
{
|
|
// Skip quiet moves if movecount exceeds our FutilityMoveCount threshold
|
|
moveCountPruning = moveCount >= futility_move_count(improving, depth);
|
|
|
|
// Reduced depth of the next LMR search
|
|
int lmrDepth = std::max(newDepth - reduction(improving, depth, moveCount), 0);
|
|
|
|
if ( !captureOrPromotion
|
|
&& !givesCheck)
|
|
{
|
|
// Countermoves based pruning (~20 Elo)
|
|
if ( lmrDepth < 4 + ((ss-1)->statScore > 0 || (ss-1)->moveCount == 1)
|
|
&& (*contHist[0])[movedPiece][to_sq(move)] < CounterMovePruneThreshold
|
|
&& (*contHist[1])[movedPiece][to_sq(move)] < CounterMovePruneThreshold)
|
|
continue;
|
|
|
|
// Futility pruning: parent node (~5 Elo)
|
|
if ( lmrDepth < 6
|
|
&& !inCheck
|
|
&& ss->staticEval + 235 + 172 * lmrDepth <= alpha
|
|
&& (*contHist[0])[movedPiece][to_sq(move)]
|
|
+ (*contHist[1])[movedPiece][to_sq(move)]
|
|
+ (*contHist[3])[movedPiece][to_sq(move)] < 27400)
|
|
continue;
|
|
|
|
// Prune moves with negative SEE (~20 Elo)
|
|
if (!pos.see_ge(move, Value(-(32 - std::min(lmrDepth, 18)) * lmrDepth * lmrDepth)))
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
// Capture history based pruning when the move doesn't give check
|
|
if ( !givesCheck
|
|
&& lmrDepth < 1
|
|
&& captureHistory[movedPiece][to_sq(move)][type_of(pos.piece_on(to_sq(move)))] < 0)
|
|
continue;
|
|
|
|
// See based pruning
|
|
if (!pos.see_ge(move, Value(-194) * depth)) // (~25 Elo)
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Step 14. Extensions (~75 Elo)
|
|
|
|
// Singular extension search (~70 Elo). If all moves but one fail low on a
|
|
// search of (alpha-s, beta-s), and just one fails high on (alpha, beta),
|
|
// then that move is singular and should be extended. To verify this we do
|
|
// a reduced search on all the other moves but the ttMove and if the
|
|
// result is lower than ttValue minus a margin then we will extend the ttMove.
|
|
if ( depth >= 6
|
|
&& move == ttMove
|
|
&& !rootNode
|
|
&& !excludedMove // Avoid recursive singular search
|
|
/* && ttValue != VALUE_NONE Already implicit in the next condition */
|
|
&& abs(ttValue) < VALUE_KNOWN_WIN
|
|
&& (tte->bound() & BOUND_LOWER)
|
|
&& tte->depth() >= depth - 3
|
|
&& pos.legal(move))
|
|
{
|
|
Value singularBeta = ttValue - ((formerPv + 4) * depth) / 2;
|
|
Depth singularDepth = (depth - 1 + 3 * formerPv) / 2;
|
|
ss->excludedMove = move;
|
|
value = search<NonPV>(pos, ss, singularBeta - 1, singularBeta, singularDepth, cutNode);
|
|
ss->excludedMove = MOVE_NONE;
|
|
|
|
if (value < singularBeta)
|
|
{
|
|
extension = 1;
|
|
singularLMR = true;
|
|
}
|
|
|
|
// Multi-cut pruning
|
|
// Our ttMove is assumed to fail high, and now we failed high also on a reduced
|
|
// search without the ttMove. So we assume this expected Cut-node is not singular,
|
|
// that multiple moves fail high, and we can prune the whole subtree by returning
|
|
// a soft bound.
|
|
else if (singularBeta >= beta)
|
|
return singularBeta;
|
|
}
|
|
|
|
// Check extension (~2 Elo)
|
|
else if ( givesCheck
|
|
&& (pos.is_discovery_check_on_king(~us, move) || pos.see_ge(move)))
|
|
extension = 1;
|
|
|
|
// Passed pawn extension
|
|
else if ( move == ss->killers[0]
|
|
&& pos.advanced_pawn_push(move)
|
|
&& pos.pawn_passed(us, to_sq(move)))
|
|
extension = 1;
|
|
|
|
// Last captures extension
|
|
else if ( PieceValue[EG][pos.captured_piece()] > PawnValueEg
|
|
&& pos.non_pawn_material() <= 2 * RookValueMg)
|
|
extension = 1;
|
|
|
|
// Castling extension
|
|
if (type_of(move) == CASTLING)
|
|
extension = 1;
|
|
|
|
// Late irreversible move extension
|
|
if ( move == ttMove
|
|
&& pos.rule50_count() > 80
|
|
&& (captureOrPromotion || type_of(movedPiece) == PAWN))
|
|
extension = 2;
|
|
|
|
// Add extension to new depth
|
|
newDepth += extension;
|
|
|
|
// Speculative prefetch as early as possible
|
|
prefetch(TT.first_entry(pos.key_after(move)));
|
|
|
|
// Check for legality just before making the move
|
|
if (!rootNode && !pos.legal(move))
|
|
{
|
|
ss->moveCount = --moveCount;
|
|
continue;
|
|
}
|
|
|
|
// Update the current move (this must be done after singular extension search)
|
|
ss->currentMove = move;
|
|
ss->continuationHistory = &thisThread->continuationHistory[inCheck]
|
|
[captureOrPromotion]
|
|
[movedPiece]
|
|
[to_sq(move)];
|
|
|
|
// Step 15. Make the move
|
|
pos.do_move(move, st, givesCheck);
|
|
|
|
// Step 16. Reduced depth search (LMR, ~200 Elo). If the move fails high it will be
|
|
// re-searched at full depth.
|
|
if ( depth >= 3
|
|
&& moveCount > 1 + 2 * rootNode
|
|
&& (!rootNode || thisThread->best_move_count(move) == 0)
|
|
&& ( !captureOrPromotion
|
|
|| moveCountPruning
|
|
|| ss->staticEval + PieceValue[EG][pos.captured_piece()] <= alpha
|
|
|| cutNode
|
|
|| thisThread->ttHitAverage < 375 * ttHitAverageResolution * ttHitAverageWindow / 1024))
|
|
{
|
|
Depth r = reduction(improving, depth, moveCount);
|
|
|
|
// Decrease reduction if the ttHit running average is large
|
|
if (thisThread->ttHitAverage > 500 * ttHitAverageResolution * ttHitAverageWindow / 1024)
|
|
r--;
|
|
|
|
// Reduction if other threads are searching this position.
|
|
if (th.marked())
|
|
r++;
|
|
|
|
// Decrease reduction if position is or has been on the PV (~10 Elo)
|
|
if (ttPv)
|
|
r -= 2;
|
|
|
|
if (moveCountPruning && !formerPv)
|
|
r++;
|
|
|
|
// Decrease reduction if opponent's move count is high (~5 Elo)
|
|
if ((ss-1)->moveCount > 14)
|
|
r--;
|
|
|
|
// Decrease reduction if ttMove has been singularly extended (~3 Elo)
|
|
if (singularLMR)
|
|
r -= 1 + formerPv;
|
|
|
|
if (!captureOrPromotion)
|
|
{
|
|
// Increase reduction if ttMove is a capture (~5 Elo)
|
|
if (ttCapture)
|
|
r++;
|
|
|
|
// Increase reduction for cut nodes (~10 Elo)
|
|
if (cutNode)
|
|
r += 2;
|
|
|
|
// Decrease reduction for moves that escape a capture. Filter out
|
|
// castling moves, because they are coded as "king captures rook" and
|
|
// hence break make_move(). (~2 Elo)
|
|
else if ( type_of(move) == NORMAL
|
|
&& !pos.see_ge(reverse_move(move)))
|
|
r -= 2 + ttPv;
|
|
|
|
ss->statScore = thisThread->mainHistory[us][from_to(move)]
|
|
+ (*contHist[0])[movedPiece][to_sq(move)]
|
|
+ (*contHist[1])[movedPiece][to_sq(move)]
|
|
+ (*contHist[3])[movedPiece][to_sq(move)]
|
|
- 4926;
|
|
|
|
// Decrease/increase reduction by comparing opponent's stat score (~10 Elo)
|
|
if (ss->statScore >= -102 && (ss-1)->statScore < -114)
|
|
r--;
|
|
|
|
else if ((ss-1)->statScore >= -116 && ss->statScore < -154)
|
|
r++;
|
|
|
|
// Decrease/increase reduction for moves with a good/bad history (~30 Elo)
|
|
r -= ss->statScore / 16434;
|
|
}
|
|
else
|
|
{
|
|
// Increase reduction for captures/promotions if late move and at low depth
|
|
if (depth < 8 && moveCount > 2)
|
|
r++;
|
|
|
|
// Unless giving check, this capture is likely bad
|
|
if ( !givesCheck
|
|
&& ss->staticEval + PieceValue[EG][pos.captured_piece()] + 200 * depth <= alpha)
|
|
r++;
|
|
}
|
|
|
|
Depth d = Utility::clamp(newDepth - r, 1, newDepth);
|
|
|
|
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d, true);
|
|
|
|
doFullDepthSearch = value > alpha && d != newDepth;
|
|
|
|
didLMR = true;
|
|
}
|
|
else
|
|
{
|
|
doFullDepthSearch = !PvNode || moveCount > 1;
|
|
|
|
didLMR = false;
|
|
}
|
|
|
|
// Step 17. Full depth search when LMR is skipped or fails high
|
|
if (doFullDepthSearch)
|
|
{
|
|
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode);
|
|
|
|
if (didLMR && !captureOrPromotion)
|
|
{
|
|
int bonus = value > alpha ? stat_bonus(newDepth)
|
|
: -stat_bonus(newDepth);
|
|
|
|
if (move == ss->killers[0])
|
|
bonus += bonus / 4;
|
|
|
|
update_continuation_histories(ss, movedPiece, to_sq(move), bonus);
|
|
}
|
|
}
|
|
|
|
// For PV nodes only, do a full PV search on the first move or after a fail
|
|
// high (in the latter case search only if value < beta), otherwise let the
|
|
// parent node fail low with value <= alpha and try another move.
|
|
if (PvNode && (moveCount == 1 || (value > alpha && (rootNode || value < beta))))
|
|
{
|
|
(ss+1)->pv = pv;
|
|
(ss+1)->pv[0] = MOVE_NONE;
|
|
|
|
value = -search<PV>(pos, ss+1, -beta, -alpha, newDepth, false);
|
|
}
|
|
|
|
// Step 18. Undo move
|
|
pos.undo_move(move);
|
|
|
|
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
|
|
|
|
// Step 19. Check for a new best move
|
|
// Finished searching the move. If a stop occurred, the return value of
|
|
// the search cannot be trusted, and we return immediately without
|
|
// updating best move, PV and TT.
|
|
if (Threads.stop.load(std::memory_order_relaxed))
|
|
return VALUE_ZERO;
|
|
|
|
if (rootNode)
|
|
{
|
|
RootMove& rm = *std::find(thisThread->rootMoves.begin(),
|
|
thisThread->rootMoves.end(), move);
|
|
|
|
// PV move or new best move?
|
|
if (moveCount == 1 || value > alpha)
|
|
{
|
|
rm.score = value;
|
|
rm.selDepth = thisThread->selDepth;
|
|
rm.pv.resize(1);
|
|
|
|
assert((ss+1)->pv);
|
|
|
|
for (Move* m = (ss+1)->pv; *m != MOVE_NONE; ++m)
|
|
rm.pv.push_back(*m);
|
|
|
|
// We record how often the best move has been changed in each
|
|
// iteration. This information is used for time management: When
|
|
// the best move changes frequently, we allocate some more time.
|
|
if (moveCount > 1)
|
|
++thisThread->bestMoveChanges;
|
|
}
|
|
else
|
|
// All other moves but the PV are set to the lowest value: this
|
|
// is not a problem when sorting because the sort is stable and the
|
|
// move position in the list is preserved - just the PV is pushed up.
|
|
rm.score = -VALUE_INFINITE;
|
|
}
|
|
|
|
if (value > bestValue)
|
|
{
|
|
bestValue = value;
|
|
|
|
if (value > alpha)
|
|
{
|
|
bestMove = move;
|
|
|
|
if (PvNode && !rootNode) // Update pv even in fail-high case
|
|
update_pv(ss->pv, move, (ss+1)->pv);
|
|
|
|
if (PvNode && value < beta) // Update alpha! Always alpha < beta
|
|
alpha = value;
|
|
else
|
|
{
|
|
assert(value >= beta); // Fail high
|
|
ss->statScore = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (move != bestMove)
|
|
{
|
|
if (captureOrPromotion && captureCount < 32)
|
|
capturesSearched[captureCount++] = move;
|
|
|
|
else if (!captureOrPromotion && quietCount < 64)
|
|
quietsSearched[quietCount++] = move;
|
|
}
|
|
}
|
|
|
|
// The following condition would detect a stop only after move loop has been
|
|
// completed. But in this case bestValue is valid because we have fully
|
|
// searched our subtree, and we can anyhow save the result in TT.
|
|
/*
|
|
if (Threads.stop)
|
|
return VALUE_DRAW;
|
|
*/
|
|
|
|
// Step 20. Check for mate and stalemate
|
|
// All legal moves have been searched and if there are no legal moves, it
|
|
// must be a mate or a stalemate. If we are in a singular extension search then
|
|
// return a fail low score.
|
|
|
|
assert(moveCount || !inCheck || excludedMove || !MoveList<LEGAL>(pos).size());
|
|
|
|
if (!moveCount)
|
|
bestValue = excludedMove ? alpha
|
|
: inCheck ? mated_in(ss->ply) : VALUE_DRAW;
|
|
|
|
else if (bestMove)
|
|
update_all_stats(pos, ss, bestMove, bestValue, beta, prevSq,
|
|
quietsSearched, quietCount, capturesSearched, captureCount, depth);
|
|
|
|
// Bonus for prior countermove that caused the fail low
|
|
else if ( (depth >= 3 || PvNode)
|
|
&& !priorCapture)
|
|
update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, stat_bonus(depth));
|
|
|
|
if (PvNode)
|
|
bestValue = std::min(bestValue, maxValue);
|
|
|
|
if (!excludedMove && !(rootNode && thisThread->pvIdx))
|
|
tte->save(posKey, value_to_tt(bestValue, ss->ply), ttPv,
|
|
bestValue >= beta ? BOUND_LOWER :
|
|
PvNode && bestMove ? BOUND_EXACT : BOUND_UPPER,
|
|
depth, bestMove, ss->staticEval);
|
|
|
|
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
|
|
|
|
return bestValue;
|
|
}
|
|
|
|
|
|
// qsearch() is the quiescence search function, which is called by the main search
|
|
// function with zero depth, or recursively with further decreasing depth per call.
|
|
template <NodeType NT>
|
|
Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) {
|
|
|
|
constexpr bool PvNode = NT == PV;
|
|
|
|
assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE);
|
|
assert(PvNode || (alpha == beta - 1));
|
|
assert(depth <= 0);
|
|
|
|
Move pv[MAX_PLY+1];
|
|
StateInfo st;
|
|
TTEntry* tte;
|
|
Key posKey;
|
|
Move ttMove, move, bestMove;
|
|
Depth ttDepth;
|
|
Value bestValue, value, ttValue, futilityValue, futilityBase, oldAlpha;
|
|
bool ttHit, pvHit, inCheck, givesCheck, captureOrPromotion;
|
|
int moveCount;
|
|
|
|
if (PvNode)
|
|
{
|
|
oldAlpha = alpha; // To flag BOUND_EXACT when eval above alpha and no available moves
|
|
(ss+1)->pv = pv;
|
|
ss->pv[0] = MOVE_NONE;
|
|
}
|
|
|
|
Thread* thisThread = pos.this_thread();
|
|
(ss+1)->ply = ss->ply + 1;
|
|
bestMove = MOVE_NONE;
|
|
inCheck = pos.checkers();
|
|
moveCount = 0;
|
|
|
|
// Check for an immediate draw or maximum ply reached
|
|
if ( pos.is_draw(ss->ply)
|
|
|| ss->ply >= MAX_PLY)
|
|
return (ss->ply >= MAX_PLY && !inCheck) ? evaluate(pos) : VALUE_DRAW;
|
|
|
|
assert(0 <= ss->ply && ss->ply < MAX_PLY);
|
|
|
|
// Decide whether or not to include checks: this fixes also the type of
|
|
// TT entry depth that we are going to use. Note that in qsearch we use
|
|
// only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS.
|
|
ttDepth = inCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS
|
|
: DEPTH_QS_NO_CHECKS;
|
|
// Transposition table lookup
|
|
posKey = pos.key();
|
|
tte = TT.probe(posKey, ttHit);
|
|
ttValue = ttHit ? value_from_tt(tte->value(), ss->ply, pos.rule50_count()) : VALUE_NONE;
|
|
ttMove = ttHit ? tte->move() : MOVE_NONE;
|
|
pvHit = ttHit && tte->is_pv();
|
|
|
|
if ( !PvNode
|
|
&& ttHit
|
|
&& tte->depth() >= ttDepth
|
|
&& ttValue != VALUE_NONE // Only in case of TT access race
|
|
&& (ttValue >= beta ? (tte->bound() & BOUND_LOWER)
|
|
: (tte->bound() & BOUND_UPPER)))
|
|
return ttValue;
|
|
|
|
// Evaluate the position statically
|
|
if (inCheck)
|
|
{
|
|
ss->staticEval = VALUE_NONE;
|
|
bestValue = futilityBase = -VALUE_INFINITE;
|
|
}
|
|
else
|
|
{
|
|
if (ttHit)
|
|
{
|
|
// Never assume anything about values stored in TT
|
|
if ((ss->staticEval = bestValue = tte->eval()) == VALUE_NONE)
|
|
ss->staticEval = bestValue = evaluate(pos);
|
|
|
|
// Can ttValue be used as a better position evaluation?
|
|
if ( ttValue != VALUE_NONE
|
|
&& (tte->bound() & (ttValue > bestValue ? BOUND_LOWER : BOUND_UPPER)))
|
|
bestValue = ttValue;
|
|
}
|
|
else
|
|
ss->staticEval = bestValue =
|
|
(ss-1)->currentMove != MOVE_NULL ? evaluate(pos)
|
|
: -(ss-1)->staticEval + 2 * Tempo;
|
|
|
|
// Stand pat. Return immediately if static value is at least beta
|
|
if (bestValue >= beta)
|
|
{
|
|
if (!ttHit)
|
|
tte->save(posKey, value_to_tt(bestValue, ss->ply), false, BOUND_LOWER,
|
|
DEPTH_NONE, MOVE_NONE, ss->staticEval);
|
|
|
|
return bestValue;
|
|
}
|
|
|
|
if (PvNode && bestValue > alpha)
|
|
alpha = bestValue;
|
|
|
|
futilityBase = bestValue + 154;
|
|
}
|
|
|
|
const PieceToHistory* contHist[] = { (ss-1)->continuationHistory, (ss-2)->continuationHistory,
|
|
nullptr , (ss-4)->continuationHistory,
|
|
nullptr , (ss-6)->continuationHistory };
|
|
|
|
// Initialize a MovePicker object for the current position, and prepare
|
|
// to search the moves. Because the depth is <= 0 here, only captures,
|
|
// queen promotions and checks (only if depth >= DEPTH_QS_CHECKS) will
|
|
// be generated.
|
|
MovePicker mp(pos, ttMove, depth, &thisThread->mainHistory,
|
|
&thisThread->captureHistory,
|
|
contHist,
|
|
to_sq((ss-1)->currentMove));
|
|
|
|
// Loop through the moves until no moves remain or a beta cutoff occurs
|
|
while ((move = mp.next_move()) != MOVE_NONE)
|
|
{
|
|
assert(is_ok(move));
|
|
|
|
givesCheck = pos.gives_check(move);
|
|
captureOrPromotion = pos.capture_or_promotion(move);
|
|
|
|
moveCount++;
|
|
|
|
// Futility pruning
|
|
if ( !inCheck
|
|
&& !givesCheck
|
|
&& futilityBase > -VALUE_KNOWN_WIN
|
|
&& !pos.advanced_pawn_push(move))
|
|
{
|
|
assert(type_of(move) != ENPASSANT); // Due to !pos.advanced_pawn_push
|
|
|
|
futilityValue = futilityBase + PieceValue[EG][pos.piece_on(to_sq(move))];
|
|
|
|
if (futilityValue <= alpha)
|
|
{
|
|
bestValue = std::max(bestValue, futilityValue);
|
|
continue;
|
|
}
|
|
|
|
if (futilityBase <= alpha && !pos.see_ge(move, VALUE_ZERO + 1))
|
|
{
|
|
bestValue = std::max(bestValue, futilityBase);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Don't search moves with negative SEE values
|
|
if ( !inCheck && !pos.see_ge(move))
|
|
continue;
|
|
|
|
// Speculative prefetch as early as possible
|
|
prefetch(TT.first_entry(pos.key_after(move)));
|
|
|
|
// Check for legality just before making the move
|
|
if (!pos.legal(move))
|
|
{
|
|
moveCount--;
|
|
continue;
|
|
}
|
|
|
|
ss->currentMove = move;
|
|
ss->continuationHistory = &thisThread->continuationHistory[inCheck]
|
|
[captureOrPromotion]
|
|
[pos.moved_piece(move)]
|
|
[to_sq(move)];
|
|
|
|
// Make and search the move
|
|
pos.do_move(move, st, givesCheck);
|
|
value = -qsearch<NT>(pos, ss+1, -beta, -alpha, depth - 1);
|
|
pos.undo_move(move);
|
|
|
|
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
|
|
|
|
// Check for a new best move
|
|
if (value > bestValue)
|
|
{
|
|
bestValue = value;
|
|
|
|
if (value > alpha)
|
|
{
|
|
bestMove = move;
|
|
|
|
if (PvNode) // Update pv even in fail-high case
|
|
update_pv(ss->pv, move, (ss+1)->pv);
|
|
|
|
if (PvNode && value < beta) // Update alpha here!
|
|
alpha = value;
|
|
else
|
|
break; // Fail high
|
|
}
|
|
}
|
|
}
|
|
|
|
// All legal moves have been searched. A special case: If we're in check
|
|
// and no legal moves were found, it is checkmate.
|
|
if (inCheck && bestValue == -VALUE_INFINITE)
|
|
return mated_in(ss->ply); // Plies to mate from the root
|
|
|
|
tte->save(posKey, value_to_tt(bestValue, ss->ply), pvHit,
|
|
bestValue >= beta ? BOUND_LOWER :
|
|
PvNode && bestValue > oldAlpha ? BOUND_EXACT : BOUND_UPPER,
|
|
ttDepth, bestMove, ss->staticEval);
|
|
|
|
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
|
|
|
|
return bestValue;
|
|
}
|
|
|
|
|
|
// value_to_tt() adjusts a mate or TB score from "plies to mate from the root" to
|
|
// "plies to mate from the current position". standard scores are unchanged.
|
|
// The function is called before storing a value in the transposition table.
|
|
|
|
Value value_to_tt(Value v, int ply) {
|
|
|
|
assert(v != VALUE_NONE);
|
|
|
|
return v >= VALUE_TB_WIN_IN_MAX_PLY ? v + ply
|
|
: v <= VALUE_TB_LOSS_IN_MAX_PLY ? v - ply : v;
|
|
}
|
|
|
|
|
|
// value_from_tt() is the inverse of value_to_tt(): It adjusts a mate or TB score
|
|
// from the transposition table (which refers to the plies to mate/be mated
|
|
// from current position) to "plies to mate/be mated (TB win/loss) from the root".
|
|
// However, for mate scores, to avoid potentially false mate scores related to the 50 moves rule,
|
|
// and the graph history interaction, return an optimal TB score instead.
|
|
|
|
Value value_from_tt(Value v, int ply, int r50c) {
|
|
|
|
if (v == VALUE_NONE)
|
|
return VALUE_NONE;
|
|
|
|
if (v >= VALUE_TB_WIN_IN_MAX_PLY) // TB win or better
|
|
{
|
|
if (v >= VALUE_MATE_IN_MAX_PLY && VALUE_MATE - v > 99 - r50c)
|
|
return VALUE_MATE_IN_MAX_PLY - 1; // do not return a potentially false mate score
|
|
|
|
return v - ply;
|
|
}
|
|
|
|
if (v <= VALUE_TB_LOSS_IN_MAX_PLY) // TB loss or worse
|
|
{
|
|
if (v <= VALUE_MATED_IN_MAX_PLY && VALUE_MATE + v > 99 - r50c)
|
|
return VALUE_MATED_IN_MAX_PLY + 1; // do not return a potentially false mate score
|
|
|
|
return v + ply;
|
|
}
|
|
|
|
return v;
|
|
}
|
|
|
|
|
|
// update_pv() adds current move and appends child pv[]
|
|
|
|
void update_pv(Move* pv, Move move, Move* childPv) {
|
|
|
|
for (*pv++ = move; childPv && *childPv != MOVE_NONE; )
|
|
*pv++ = *childPv++;
|
|
*pv = MOVE_NONE;
|
|
}
|
|
|
|
|
|
// update_all_stats() updates stats at the end of search() when a bestMove is found
|
|
|
|
void update_all_stats(const Position& pos, Stack* ss, Move bestMove, Value bestValue, Value beta, Square prevSq,
|
|
Move* quietsSearched, int quietCount, Move* capturesSearched, int captureCount, Depth depth) {
|
|
|
|
int bonus1, bonus2;
|
|
Color us = pos.side_to_move();
|
|
Thread* thisThread = pos.this_thread();
|
|
CapturePieceToHistory& captureHistory = thisThread->captureHistory;
|
|
Piece moved_piece = pos.moved_piece(bestMove);
|
|
PieceType captured = type_of(pos.piece_on(to_sq(bestMove)));
|
|
|
|
bonus1 = stat_bonus(depth + 1);
|
|
bonus2 = bestValue > beta + PawnValueMg ? bonus1 // larger bonus
|
|
: stat_bonus(depth); // smaller bonus
|
|
|
|
if (!pos.capture_or_promotion(bestMove))
|
|
{
|
|
update_quiet_stats(pos, ss, bestMove, bonus2, depth);
|
|
|
|
// Decrease all the non-best quiet moves
|
|
for (int i = 0; i < quietCount; ++i)
|
|
{
|
|
thisThread->mainHistory[us][from_to(quietsSearched[i])] << -bonus2;
|
|
update_continuation_histories(ss, pos.moved_piece(quietsSearched[i]), to_sq(quietsSearched[i]), -bonus2);
|
|
}
|
|
}
|
|
else
|
|
captureHistory[moved_piece][to_sq(bestMove)][captured] << bonus1;
|
|
|
|
// Extra penalty for a quiet TT or main killer move in previous ply when it gets refuted
|
|
if ( ((ss-1)->moveCount == 1 || ((ss-1)->currentMove == (ss-1)->killers[0]))
|
|
&& !pos.captured_piece())
|
|
update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, -bonus1);
|
|
|
|
// Decrease all the non-best capture moves
|
|
for (int i = 0; i < captureCount; ++i)
|
|
{
|
|
moved_piece = pos.moved_piece(capturesSearched[i]);
|
|
captured = type_of(pos.piece_on(to_sq(capturesSearched[i])));
|
|
captureHistory[moved_piece][to_sq(capturesSearched[i])][captured] << -bonus1;
|
|
}
|
|
}
|
|
|
|
|
|
// update_continuation_histories() updates histories of the move pairs formed
|
|
// by moves at ply -1, -2, -4, and -6 with current move.
|
|
|
|
void update_continuation_histories(Stack* ss, Piece pc, Square to, int bonus) {
|
|
|
|
for (int i : {1, 2, 4, 6})
|
|
if (is_ok((ss-i)->currentMove))
|
|
(*(ss-i)->continuationHistory)[pc][to] << bonus;
|
|
}
|
|
|
|
|
|
// update_quiet_stats() updates move sorting heuristics
|
|
|
|
void update_quiet_stats(const Position& pos, Stack* ss, Move move, int bonus, int depth) {
|
|
|
|
if (ss->killers[0] != move)
|
|
{
|
|
ss->killers[1] = ss->killers[0];
|
|
ss->killers[0] = move;
|
|
}
|
|
|
|
Color us = pos.side_to_move();
|
|
Thread* thisThread = pos.this_thread();
|
|
thisThread->mainHistory[us][from_to(move)] << bonus;
|
|
update_continuation_histories(ss, pos.moved_piece(move), to_sq(move), bonus);
|
|
|
|
if (type_of(pos.moved_piece(move)) != PAWN)
|
|
thisThread->mainHistory[us][from_to(reverse_move(move))] << -bonus;
|
|
|
|
if (is_ok((ss-1)->currentMove))
|
|
{
|
|
Square prevSq = to_sq((ss-1)->currentMove);
|
|
thisThread->counterMoves[pos.piece_on(prevSq)][prevSq] = move;
|
|
}
|
|
|
|
if (depth > 12 && ss->ply < MAX_LPH)
|
|
thisThread->lowPlyHistory[ss->ply][from_to(move)] << stat_bonus(depth - 7);
|
|
}
|
|
|
|
// When playing with strength handicap, choose best move among a set of RootMoves
|
|
// using a statistical rule dependent on 'level'. Idea by Heinz van Saanen.
|
|
|
|
Move Skill::pick_best(size_t multiPV) {
|
|
|
|
const RootMoves& rootMoves = Threads.main()->rootMoves;
|
|
static PRNG rng(now()); // PRNG sequence should be non-deterministic
|
|
|
|
// RootMoves are already sorted by score in descending order
|
|
Value topScore = rootMoves[0].score;
|
|
int delta = std::min(topScore - rootMoves[multiPV - 1].score, PawnValueMg);
|
|
int weakness = 120 - 2 * level;
|
|
int maxScore = -VALUE_INFINITE;
|
|
|
|
// Choose best move. For each move score we add two terms, both dependent on
|
|
// weakness. One is deterministic and bigger for weaker levels, and one is
|
|
// random. Then we choose the move with the resulting highest score.
|
|
for (size_t i = 0; i < multiPV; ++i)
|
|
{
|
|
// This is our magic formula
|
|
int push = ( weakness * int(topScore - rootMoves[i].score)
|
|
+ delta * (rng.rand<unsigned>() % weakness)) / 128;
|
|
|
|
if (rootMoves[i].score + push >= maxScore)
|
|
{
|
|
maxScore = rootMoves[i].score + push;
|
|
best = rootMoves[i].pv[0];
|
|
}
|
|
}
|
|
|
|
return best;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
/// MainThread::check_time() is used to print debug info and, more importantly,
|
|
/// to detect when we are out of available time and thus stop the search.
|
|
|
|
void MainThread::check_time() {
|
|
|
|
if (--callsCnt > 0)
|
|
return;
|
|
|
|
// When using nodes, ensure checking rate is not lower than 0.1% of nodes
|
|
callsCnt = Limits.nodes ? std::min(1024, int(Limits.nodes / 1024)) : 1024;
|
|
|
|
static TimePoint lastInfoTime = now();
|
|
|
|
TimePoint elapsed = Time.elapsed();
|
|
TimePoint tick = Limits.startTime + elapsed;
|
|
|
|
if (tick - lastInfoTime >= 1000)
|
|
{
|
|
lastInfoTime = tick;
|
|
dbg_print();
|
|
}
|
|
|
|
// We should not stop pondering until told so by the GUI
|
|
if (ponder)
|
|
return;
|
|
|
|
if ( (Limits.use_time_management() && (elapsed > Time.maximum() - 10 || stopOnPonderhit))
|
|
|| (Limits.movetime && elapsed >= Limits.movetime)
|
|
|| (Limits.nodes && Threads.nodes_searched() >= (uint64_t)Limits.nodes))
|
|
Threads.stop = true;
|
|
}
|
|
|
|
|
|
/// UCI::pv() formats PV information according to the UCI protocol. UCI requires
|
|
/// that all (if any) unsearched PV lines are sent using a previous search score.
|
|
|
|
string UCI::pv(const Position& pos, Depth depth, Value alpha, Value beta) {
|
|
|
|
std::stringstream ss;
|
|
TimePoint elapsed = Time.elapsed() + 1;
|
|
const RootMoves& rootMoves = pos.this_thread()->rootMoves;
|
|
size_t pvIdx = pos.this_thread()->pvIdx;
|
|
size_t multiPV = std::min((size_t)Options["MultiPV"], rootMoves.size());
|
|
uint64_t nodesSearched = Threads.nodes_searched();
|
|
uint64_t tbHits = Threads.tb_hits() + (TB::RootInTB ? rootMoves.size() : 0);
|
|
|
|
for (size_t i = 0; i < multiPV; ++i)
|
|
{
|
|
bool updated = rootMoves[i].score != -VALUE_INFINITE;
|
|
|
|
if (depth == 1 && !updated)
|
|
continue;
|
|
|
|
Depth d = updated ? depth : depth - 1;
|
|
Value v = updated ? rootMoves[i].score : rootMoves[i].previousScore;
|
|
|
|
bool tb = TB::RootInTB && abs(v) < VALUE_MATE_IN_MAX_PLY;
|
|
v = tb ? rootMoves[i].tbScore : v;
|
|
|
|
if (ss.rdbuf()->in_avail()) // Not at first line
|
|
ss << "\n";
|
|
|
|
ss << "info"
|
|
<< " depth " << d
|
|
<< " seldepth " << rootMoves[i].selDepth
|
|
<< " multipv " << i + 1
|
|
<< " score " << UCI::value(v);
|
|
|
|
if (!tb && i == pvIdx)
|
|
ss << (v >= beta ? " lowerbound" : v <= alpha ? " upperbound" : "");
|
|
|
|
ss << " nodes " << nodesSearched
|
|
<< " nps " << nodesSearched * 1000 / elapsed;
|
|
|
|
if (elapsed > 1000) // Earlier makes little sense
|
|
ss << " hashfull " << TT.hashfull();
|
|
|
|
ss << " tbhits " << tbHits
|
|
<< " time " << elapsed
|
|
<< " pv";
|
|
|
|
for (Move m : rootMoves[i].pv)
|
|
ss << " " << UCI::move(m, pos.is_chess960());
|
|
}
|
|
|
|
return ss.str();
|
|
}
|
|
|
|
|
|
/// RootMove::extract_ponder_from_tt() is called in case we have no ponder move
|
|
/// before exiting the search, for instance, in case we stop the search during a
|
|
/// fail high at root. We try hard to have a ponder move to return to the GUI,
|
|
/// otherwise in case of 'ponder on' we have nothing to think on.
|
|
|
|
bool RootMove::extract_ponder_from_tt(Position& pos) {
|
|
|
|
StateInfo st;
|
|
bool ttHit;
|
|
|
|
assert(pv.size() == 1);
|
|
|
|
if (pv[0] == MOVE_NONE)
|
|
return false;
|
|
|
|
pos.do_move(pv[0], st);
|
|
TTEntry* tte = TT.probe(pos.key(), ttHit);
|
|
|
|
if (ttHit)
|
|
{
|
|
Move m = tte->move(); // Local copy to be SMP safe
|
|
if (MoveList<LEGAL>(pos).contains(m))
|
|
pv.push_back(m);
|
|
}
|
|
|
|
pos.undo_move(pv[0]);
|
|
return pv.size() > 1;
|
|
}
|
|
|
|
void Tablebases::rank_root_moves(Position& pos, Search::RootMoves& rootMoves) {
|
|
|
|
RootInTB = false;
|
|
UseRule50 = bool(Options["Syzygy50MoveRule"]);
|
|
ProbeDepth = int(Options["SyzygyProbeDepth"]);
|
|
Cardinality = int(Options["SyzygyProbeLimit"]);
|
|
bool dtz_available = true;
|
|
|
|
// Tables with fewer pieces than SyzygyProbeLimit are searched with
|
|
// ProbeDepth == DEPTH_ZERO
|
|
if (Cardinality > MaxCardinality)
|
|
{
|
|
Cardinality = MaxCardinality;
|
|
ProbeDepth = 0;
|
|
}
|
|
|
|
if (Cardinality >= popcount(pos.pieces()) && !pos.can_castle(ANY_CASTLING))
|
|
{
|
|
// Rank moves using DTZ tables
|
|
RootInTB = root_probe(pos, rootMoves);
|
|
|
|
if (!RootInTB)
|
|
{
|
|
// DTZ tables are missing; try to rank moves using WDL tables
|
|
dtz_available = false;
|
|
RootInTB = root_probe_wdl(pos, rootMoves);
|
|
}
|
|
}
|
|
|
|
if (RootInTB)
|
|
{
|
|
// Sort moves according to TB rank
|
|
std::sort(rootMoves.begin(), rootMoves.end(),
|
|
[](const RootMove &a, const RootMove &b) { return a.tbRank > b.tbRank; } );
|
|
|
|
// Probe during search only if DTZ is not available and we are winning
|
|
if (dtz_available || rootMoves[0].tbScore <= VALUE_DRAW)
|
|
Cardinality = 0;
|
|
}
|
|
else
|
|
{
|
|
// Clean up if root_probe() and root_probe_wdl() have failed
|
|
for (auto& m : rootMoves)
|
|
m.tbRank = 0;
|
|
}
|
|
}
|