mirror of
https://github.com/sockspls/badfish
synced 2025-04-30 00:33:09 +00:00
218 lines
7.6 KiB
C++
218 lines
7.6 KiB
C++
/*
|
|
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
|
Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file)
|
|
|
|
Stockfish is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Stockfish is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "bitboard.h"
|
|
|
|
#include <algorithm>
|
|
#include <bitset>
|
|
#include <initializer_list>
|
|
|
|
#include "misc.h"
|
|
|
|
namespace Stockfish {
|
|
|
|
uint8_t PopCnt16[1 << 16];
|
|
uint8_t SquareDistance[SQUARE_NB][SQUARE_NB];
|
|
|
|
Bitboard LineBB[SQUARE_NB][SQUARE_NB];
|
|
Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
|
|
Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
|
|
Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
|
|
|
|
Magic RookMagics[SQUARE_NB];
|
|
Magic BishopMagics[SQUARE_NB];
|
|
|
|
namespace {
|
|
|
|
Bitboard RookTable[0x19000]; // To store rook attacks
|
|
Bitboard BishopTable[0x1480]; // To store bishop attacks
|
|
|
|
void init_magics(PieceType pt, Bitboard table[], Magic magics[]);
|
|
|
|
}
|
|
|
|
// Returns the bitboard of target square for the given step
|
|
// from the given square. If the step is off the board, returns empty bitboard.
|
|
inline Bitboard safe_destination(Square s, int step) {
|
|
Square to = Square(s + step);
|
|
return is_ok(to) && distance(s, to) <= 2 ? square_bb(to) : Bitboard(0);
|
|
}
|
|
|
|
|
|
// Returns an ASCII representation of a bitboard suitable
|
|
// to be printed to standard output. Useful for debugging.
|
|
std::string Bitboards::pretty(Bitboard b) {
|
|
|
|
std::string s = "+---+---+---+---+---+---+---+---+\n";
|
|
|
|
for (Rank r = RANK_8; r >= RANK_1; --r)
|
|
{
|
|
for (File f = FILE_A; f <= FILE_H; ++f)
|
|
s += b & make_square(f, r) ? "| X " : "| ";
|
|
|
|
s += "| " + std::to_string(1 + r) + "\n+---+---+---+---+---+---+---+---+\n";
|
|
}
|
|
s += " a b c d e f g h\n";
|
|
|
|
return s;
|
|
}
|
|
|
|
|
|
// Initializes various bitboard tables. It is called at
|
|
// startup and relies on global objects to be already zero-initialized.
|
|
void Bitboards::init() {
|
|
|
|
for (unsigned i = 0; i < (1 << 16); ++i)
|
|
PopCnt16[i] = uint8_t(std::bitset<16>(i).count());
|
|
|
|
for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
|
|
for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
|
|
SquareDistance[s1][s2] = std::max(distance<File>(s1, s2), distance<Rank>(s1, s2));
|
|
|
|
init_magics(ROOK, RookTable, RookMagics);
|
|
init_magics(BISHOP, BishopTable, BishopMagics);
|
|
|
|
for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
|
|
{
|
|
PawnAttacks[WHITE][s1] = pawn_attacks_bb<WHITE>(square_bb(s1));
|
|
PawnAttacks[BLACK][s1] = pawn_attacks_bb<BLACK>(square_bb(s1));
|
|
|
|
for (int step : {-9, -8, -7, -1, 1, 7, 8, 9})
|
|
PseudoAttacks[KING][s1] |= safe_destination(s1, step);
|
|
|
|
for (int step : {-17, -15, -10, -6, 6, 10, 15, 17})
|
|
PseudoAttacks[KNIGHT][s1] |= safe_destination(s1, step);
|
|
|
|
PseudoAttacks[QUEEN][s1] = PseudoAttacks[BISHOP][s1] = attacks_bb<BISHOP>(s1, 0);
|
|
PseudoAttacks[QUEEN][s1] |= PseudoAttacks[ROOK][s1] = attacks_bb<ROOK>(s1, 0);
|
|
|
|
for (PieceType pt : {BISHOP, ROOK})
|
|
for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
|
|
{
|
|
if (PseudoAttacks[pt][s1] & s2)
|
|
{
|
|
LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2;
|
|
BetweenBB[s1][s2] =
|
|
(attacks_bb(pt, s1, square_bb(s2)) & attacks_bb(pt, s2, square_bb(s1)));
|
|
}
|
|
BetweenBB[s1][s2] |= s2;
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
Bitboard sliding_attack(PieceType pt, Square sq, Bitboard occupied) {
|
|
|
|
Bitboard attacks = 0;
|
|
Direction RookDirections[4] = {NORTH, SOUTH, EAST, WEST};
|
|
Direction BishopDirections[4] = {NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_WEST};
|
|
|
|
for (Direction d : (pt == ROOK ? RookDirections : BishopDirections))
|
|
{
|
|
Square s = sq;
|
|
while (safe_destination(s, d) && !(occupied & s))
|
|
attacks |= (s += d);
|
|
}
|
|
|
|
return attacks;
|
|
}
|
|
|
|
|
|
// Computes all rook and bishop attacks at startup. Magic
|
|
// bitboards are used to look up attacks of sliding pieces. As a reference see
|
|
// www.chessprogramming.org/Magic_Bitboards. In particular, here we use the so
|
|
// called "fancy" approach.
|
|
void init_magics(PieceType pt, Bitboard table[], Magic magics[]) {
|
|
|
|
// Optimal PRNG seeds to pick the correct magics in the shortest time
|
|
int seeds[][RANK_NB] = {{8977, 44560, 54343, 38998, 5731, 95205, 104912, 17020},
|
|
{728, 10316, 55013, 32803, 12281, 15100, 16645, 255}};
|
|
|
|
Bitboard occupancy[4096], reference[4096], edges, b;
|
|
int epoch[4096] = {}, cnt = 0, size = 0;
|
|
|
|
for (Square s = SQ_A1; s <= SQ_H8; ++s)
|
|
{
|
|
// Board edges are not considered in the relevant occupancies
|
|
edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s));
|
|
|
|
// Given a square 's', the mask is the bitboard of sliding attacks from
|
|
// 's' computed on an empty board. The index must be big enough to contain
|
|
// all the attacks for each possible subset of the mask and so is 2 power
|
|
// the number of 1s of the mask. Hence we deduce the size of the shift to
|
|
// apply to the 64 or 32 bits word to get the index.
|
|
Magic& m = magics[s];
|
|
m.mask = sliding_attack(pt, s, 0) & ~edges;
|
|
m.shift = (Is64Bit ? 64 : 32) - popcount(m.mask);
|
|
|
|
// Set the offset for the attacks table of the square. We have individual
|
|
// table sizes for each square with "Fancy Magic Bitboards".
|
|
m.attacks = s == SQ_A1 ? table : magics[s - 1].attacks + size;
|
|
|
|
// Use Carry-Rippler trick to enumerate all subsets of masks[s] and
|
|
// store the corresponding sliding attack bitboard in reference[].
|
|
b = size = 0;
|
|
do
|
|
{
|
|
occupancy[size] = b;
|
|
reference[size] = sliding_attack(pt, s, b);
|
|
|
|
if (HasPext)
|
|
m.attacks[pext(b, m.mask)] = reference[size];
|
|
|
|
size++;
|
|
b = (b - m.mask) & m.mask;
|
|
} while (b);
|
|
|
|
if (HasPext)
|
|
continue;
|
|
|
|
PRNG rng(seeds[Is64Bit][rank_of(s)]);
|
|
|
|
// Find a magic for square 's' picking up an (almost) random number
|
|
// until we find the one that passes the verification test.
|
|
for (int i = 0; i < size;)
|
|
{
|
|
for (m.magic = 0; popcount((m.magic * m.mask) >> 56) < 6;)
|
|
m.magic = rng.sparse_rand<Bitboard>();
|
|
|
|
// A good magic must map every possible occupancy to an index that
|
|
// looks up the correct sliding attack in the attacks[s] database.
|
|
// Note that we build up the database for square 's' as a side
|
|
// effect of verifying the magic. Keep track of the attempt count
|
|
// and save it in epoch[], little speed-up trick to avoid resetting
|
|
// m.attacks[] after every failed attempt.
|
|
for (++cnt, i = 0; i < size; ++i)
|
|
{
|
|
unsigned idx = m.index(occupancy[i]);
|
|
|
|
if (epoch[idx] < cnt)
|
|
{
|
|
epoch[idx] = cnt;
|
|
m.attacks[idx] = reference[i];
|
|
}
|
|
else if (m.attacks[idx] != reference[i])
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace Stockfish
|