1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-05-02 01:29:36 +00:00
BadFish/src/timeman.cpp
Stéphane Nicolet a03e98dcd3 Switch time management to 64 bits
This is a patch to fix issue #1498, switching the time management variables
to 64 bits to avoid overflow of time variables after 25 days.

There was a bug in Stockfish 9 causing the output to be wrong after
2^31 milliseconds search. Here is a long run from the starting position:

info depth 64 seldepth 87 multipv 1 score cp 23 nodes 13928920239402
nps 0 tbhits 0 time -504995523 pv g1f3 d7d5 d2d4 g8f6 c2c4 d5c4 e2e3 e7e6 f1c4
c7c5 e1g1 b8c6 d4c5 d8d1 f1d1 f8c5 c4e2 e8g8 a2a3 c5e7 b2b4 f8d8 b1d2 b7b6 c1b2
c8b7 a1c1 a8c8 c1c2 c6e5 d1c1 c8c2 c1c2 e5f3 d2f3 a7a5 b4b5 e7c5 f3d4 d8c8 d4b3
c5d6 c2c8 b7c8 b3d2 c8b7 d2c4 d6c5 e2f3 b7d5 f3d5 e6d5 c4e5 a5a4 e5d3 f6e4 d3c5
e4c5 b2d4 c5e4 d4b6 e4d6 g2g4 d6b5 b6c5 b5c7 g1g2 c7e6 c5d6 g7g6

We check at compile time that the TimePoint type is exactly 64 bits long for
the compiler (TimePoint is our alias in Stockfish for std::chrono::milliseconds
-- it is a signed integer type of at least 45 bits according to the C++ standard,
but will most probably be implemented as a 64 bits signed integer on modern
compilers), and we use this TimePoint type consistently across the code.

Bug report by user "fischerandom" on the TCEC chat (thanks), and the
patch includes code and suggestions by user "WOnder93" and Ronald de Man.

Fixes issue:          https://github.com/official-stockfish/Stockfish/issues/1498
Closes pull request:  https://github.com/official-stockfish/Stockfish/pull/1510

No functional change.
2018-03-27 16:25:41 +02:00

133 lines
5.2 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
Copyright (C) 2015-2018 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm>
#include <cfloat>
#include <cmath>
#include "search.h"
#include "timeman.h"
#include "uci.h"
TimeManagement Time; // Our global time management object
namespace {
enum TimeType { OptimumTime, MaxTime };
constexpr int MoveHorizon = 50; // Plan time management at most this many moves ahead
constexpr double MaxRatio = 7.3; // When in trouble, we can step over reserved time with this ratio
constexpr double StealRatio = 0.34; // However we must not steal time from remaining moves over this ratio
// move_importance() is a skew-logistic function based on naive statistical
// analysis of "how many games are still undecided after n half-moves". Game
// is considered "undecided" as long as neither side has >275cp advantage.
// Data was extracted from the CCRL game database with some simple filtering criteria.
double move_importance(int ply) {
constexpr double XScale = 6.85;
constexpr double XShift = 64.5;
constexpr double Skew = 0.171;
return pow((1 + exp((ply - XShift) / XScale)), -Skew) + DBL_MIN; // Ensure non-zero
}
template<TimeType T>
TimePoint remaining(TimePoint myTime, int movesToGo, int ply, TimePoint slowMover) {
constexpr double TMaxRatio = (T == OptimumTime ? 1.0 : MaxRatio);
constexpr double TStealRatio = (T == OptimumTime ? 0.0 : StealRatio);
double moveImportance = (move_importance(ply) * slowMover) / 100.0;
double otherMovesImportance = 0.0;
for (int i = 1; i < movesToGo; ++i)
otherMovesImportance += move_importance(ply + 2 * i);
double ratio1 = (TMaxRatio * moveImportance) / (TMaxRatio * moveImportance + otherMovesImportance);
double ratio2 = (moveImportance + TStealRatio * otherMovesImportance) / (moveImportance + otherMovesImportance);
return TimePoint(myTime * std::min(ratio1, ratio2)); // Intel C++ asks for an explicit cast
}
} // namespace
/// init() is called at the beginning of the search and calculates the allowed
/// thinking time out of the time control and current game ply. We support four
/// different kinds of time controls, passed in 'limits':
///
/// inc == 0 && movestogo == 0 means: x basetime [sudden death!]
/// inc == 0 && movestogo != 0 means: x moves in y minutes
/// inc > 0 && movestogo == 0 means: x basetime + z increment
/// inc > 0 && movestogo != 0 means: x moves in y minutes + z increment
void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) {
TimePoint minThinkingTime = Options["Minimum Thinking Time"];
TimePoint moveOverhead = Options["Move Overhead"];
TimePoint slowMover = Options["Slow Mover"];
TimePoint npmsec = Options["nodestime"];
TimePoint hypMyTime;
// If we have to play in 'nodes as time' mode, then convert from time
// to nodes, and use resulting values in time management formulas.
// WARNING: to avoid time losses, the given npmsec (nodes per millisecond)
// must be much lower than the real engine speed.
if (npmsec)
{
if (!availableNodes) // Only once at game start
availableNodes = npmsec * limits.time[us]; // Time is in msec
// Convert from milliseconds to nodes
limits.time[us] = TimePoint(availableNodes);
limits.inc[us] *= npmsec;
limits.npmsec = npmsec;
}
startTime = limits.startTime;
optimumTime = maximumTime = std::max(limits.time[us], minThinkingTime);
const int maxMTG = limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon;
// We calculate optimum time usage for different hypothetical "moves to go" values
// and choose the minimum of calculated search time values. Usually the greatest
// hypMTG gives the minimum values.
for (int hypMTG = 1; hypMTG <= maxMTG; ++hypMTG)
{
// Calculate thinking time for hypothetical "moves to go"-value
hypMyTime = limits.time[us]
+ limits.inc[us] * (hypMTG - 1)
- moveOverhead * (2 + std::min(hypMTG, 40));
hypMyTime = std::max(hypMyTime, TimePoint(0));
TimePoint t1 = minThinkingTime + remaining<OptimumTime>(hypMyTime, hypMTG, ply, slowMover);
TimePoint t2 = minThinkingTime + remaining<MaxTime >(hypMyTime, hypMTG, ply, slowMover);
optimumTime = std::min(t1, optimumTime);
maximumTime = std::min(t2, maximumTime);
}
if (Options["Ponder"])
optimumTime += optimumTime / 4;
}