1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-30 00:33:09 +00:00
BadFish/src/timeman.cpp
2024-01-04 15:47:10 +01:00

107 lines
4 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "timeman.h"
#include <algorithm>
#include <cmath>
#include "search.h"
#include "uci.h"
namespace Stockfish {
TimeManagement Time; // Our global time management object
// Called at the beginning of the search and calculates
// the bounds of time allowed for the current game ply. We currently support:
// 1) x basetime (+ z increment)
// 2) x moves in y seconds (+ z increment)
void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) {
// If we have no time, no need to initialize TM, except for the start time,
// which is used by movetime.
startTime = limits.startTime;
if (limits.time[us] == 0)
return;
TimePoint moveOverhead = TimePoint(Options["Move Overhead"]);
TimePoint npmsec = TimePoint(Options["nodestime"]);
// optScale is a percentage of available time to use for the current move.
// maxScale is a multiplier applied to optimumTime.
double optScale, maxScale;
// If we have to play in 'nodes as time' mode, then convert from time
// to nodes, and use resulting values in time management formulas.
// WARNING: to avoid time losses, the given npmsec (nodes per millisecond)
// must be much lower than the real engine speed.
if (npmsec)
{
if (!availableNodes) // Only once at game start
availableNodes = npmsec * limits.time[us]; // Time is in msec
// Convert from milliseconds to nodes
limits.time[us] = TimePoint(availableNodes);
limits.inc[us] *= npmsec;
limits.npmsec = npmsec;
}
// Maximum move horizon of 50 moves
int mtg = limits.movestogo ? std::min(limits.movestogo, 50) : 50;
// Make sure timeLeft is > 0 since we may use it as a divisor
TimePoint timeLeft = std::max(TimePoint(1), limits.time[us] + limits.inc[us] * (mtg - 1)
- moveOverhead * (2 + mtg));
// Use extra time with larger increments
double optExtra = std::clamp(1.0 + 12.5 * limits.inc[us] / limits.time[us], 1.0, 1.11);
// Calculate time constants based on current time left.
double optConstant = std::min(0.00334 + 0.0003 * std::log10(limits.time[us] / 1000.0), 0.0049);
double maxConstant = std::max(3.4 + 3.0 * std::log10(limits.time[us] / 1000.0), 2.76);
// x basetime (+ z increment)
// If there is a healthy increment, timeLeft can exceed actual available
// game time for the current move, so also cap to 20% of available game time.
if (limits.movestogo == 0)
{
optScale = std::min(0.0120 + std::pow(ply + 3.1, 0.44) * optConstant,
0.21 * limits.time[us] / double(timeLeft))
* optExtra;
maxScale = std::min(6.9, maxConstant + ply / 12.2);
}
// x moves in y seconds (+ z increment)
else
{
optScale = std::min((0.88 + ply / 116.4) / mtg, 0.88 * limits.time[us] / double(timeLeft));
maxScale = std::min(6.3, 1.5 + 0.11 * mtg);
}
// Limit the maximum possible time for this move
optimumTime = TimePoint(optScale * timeLeft);
maximumTime =
TimePoint(std::min(0.84 * limits.time[us] - moveOverhead, maxScale * optimumTime)) - 10;
if (Options["Ponder"])
optimumTime += optimumTime / 4;
}
} // namespace Stockfish