1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-05-02 09:39:36 +00:00
BadFish/src/thread.cpp
xoto10 3c62ad7e07 Add compensation factor to adjust extra time according to time control
As stockfish nets and search evolve, the existing time control appears
to give too little time at STC, roughly correct at LTC, and too little
at VLTC+.

This change adds an adjustment to the optExtra calculation. This
adjustment is easy to retune and refine, so it should be easier to keep
up-to-date than the more complex calculations used for optConstant and
optScale.

Passed STC 10+0.1:
LLR: 2.93 (-2.94,2.94) <0.00,2.00>
Total: 169568 W: 43803 L: 43295 D: 82470
Ptnml(0-2): 485, 19679, 44055, 19973, 592
https://tests.stockfishchess.org/tests/view/66531865a86388d5e27da9fa

Yellow LTC 60+0.6:
LLR: -2.94 (-2.94,2.94) <0.50,2.50>
Total: 209970 W: 53087 L: 52914 D: 103969
Ptnml(0-2): 91, 19652, 65314, 19849, 79
https://tests.stockfishchess.org/tests/view/6653e38ba86388d5e27daaa0

Passed VLTC 180+1.8 :
LLR: 2.94 (-2.94,2.94) <0.50,2.50>
Total: 85618 W: 21735 L: 21342 D: 42541
Ptnml(0-2): 15, 8267, 25848, 8668, 11
https://tests.stockfishchess.org/tests/view/6655131da86388d5e27db95f

closes https://github.com/official-stockfish/Stockfish/pull/5297

Bench: 1212167
2024-05-29 19:04:57 +02:00

405 lines
14 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "thread.h"
#include <algorithm>
#include <cassert>
#include <deque>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include "movegen.h"
#include "search.h"
#include "syzygy/tbprobe.h"
#include "timeman.h"
#include "types.h"
#include "uci.h"
#include "ucioption.h"
namespace Stockfish {
// Constructor launches the thread and waits until it goes to sleep
// in idle_loop(). Note that 'searching' and 'exit' should be already set.
Thread::Thread(Search::SharedState& sharedState,
std::unique_ptr<Search::ISearchManager> sm,
size_t n,
OptionalThreadToNumaNodeBinder binder) :
idx(n),
nthreads(sharedState.options["Threads"]),
stdThread(&Thread::idle_loop, this) {
wait_for_search_finished();
run_custom_job([this, &binder, &sharedState, &sm, n]() {
// Use the binder to [maybe] bind the threads to a NUMA node before doing
// the Worker allocation.
// Ideally we would also allocate the SearchManager here, but that's minor.
this->numaAccessToken = binder();
this->worker =
std::make_unique<Search::Worker>(sharedState, std::move(sm), n, this->numaAccessToken);
});
wait_for_search_finished();
}
// Destructor wakes up the thread in idle_loop() and waits
// for its termination. Thread should be already waiting.
Thread::~Thread() {
assert(!searching);
exit = true;
start_searching();
stdThread.join();
}
// Wakes up the thread that will start the search
void Thread::start_searching() {
assert(worker != nullptr);
run_custom_job([this]() { worker->start_searching(); });
}
// Wakes up the thread that will start the search
void Thread::clear_worker() {
assert(worker != nullptr);
run_custom_job([this]() { worker->clear(); });
}
// Blocks on the condition variable
// until the thread has finished searching.
void Thread::wait_for_search_finished() {
std::unique_lock<std::mutex> lk(mutex);
cv.wait(lk, [&] { return !searching; });
}
void Thread::run_custom_job(std::function<void()> f) {
{
std::unique_lock<std::mutex> lk(mutex);
cv.wait(lk, [&] { return !searching; });
jobFunc = std::move(f);
searching = true;
}
cv.notify_one();
}
// Thread gets parked here, blocked on the
// condition variable, when it has no work to do.
void Thread::idle_loop() {
while (true)
{
std::unique_lock<std::mutex> lk(mutex);
searching = false;
cv.notify_one(); // Wake up anyone waiting for search finished
cv.wait(lk, [&] { return searching; });
if (exit)
return;
std::function<void()> job = std::move(jobFunc);
jobFunc = nullptr;
lk.unlock();
if (job)
job();
}
}
Search::SearchManager* ThreadPool::main_manager() {
return static_cast<Search::SearchManager*>(main_thread()->worker.get()->manager.get());
}
uint64_t ThreadPool::nodes_searched() const { return accumulate(&Search::Worker::nodes); }
uint64_t ThreadPool::tb_hits() const { return accumulate(&Search::Worker::tbHits); }
// Creates/destroys threads to match the requested number.
// Created and launched threads will immediately go to sleep in idle_loop.
// Upon resizing, threads are recreated to allow for binding if necessary.
void ThreadPool::set(const NumaConfig& numaConfig,
Search::SharedState sharedState,
const Search::SearchManager::UpdateContext& updateContext) {
if (threads.size() > 0) // destroy any existing thread(s)
{
main_thread()->wait_for_search_finished();
threads.clear();
boundThreadToNumaNode.clear();
}
const size_t requested = sharedState.options["Threads"];
if (requested > 0) // create new thread(s)
{
// Binding threads may be problematic when there's multiple NUMA nodes and
// multiple Stockfish instances running. In particular, if each instance
// runs a single thread then they would all be mapped to the first NUMA node.
// This is undesirable, and so the default behaviour (i.e. when the user does not
// change the NumaConfig UCI setting) is to not bind the threads to processors
// unless we know for sure that we span NUMA nodes and replication is required.
const std::string numaPolicy(sharedState.options["NumaPolicy"]);
const bool doBindThreads = [&]() {
if (numaPolicy == "none")
return false;
if (numaPolicy == "auto")
return numaConfig.suggests_binding_threads(requested);
// numaPolicy == "system", or explicitly set by the user
return true;
}();
boundThreadToNumaNode = doBindThreads
? numaConfig.distribute_threads_among_numa_nodes(requested)
: std::vector<NumaIndex>{};
while (threads.size() < requested)
{
const size_t threadId = threads.size();
const NumaIndex numaId = doBindThreads ? boundThreadToNumaNode[threadId] : 0;
auto manager = threadId == 0 ? std::unique_ptr<Search::ISearchManager>(
std::make_unique<Search::SearchManager>(updateContext))
: std::make_unique<Search::NullSearchManager>();
// When not binding threads we want to force all access to happen
// from the same NUMA node, because in case of NUMA replicated memory
// accesses we don't want to trash cache in case the threads get scheduled
// on the same NUMA node.
auto binder = doBindThreads ? OptionalThreadToNumaNodeBinder(numaConfig, numaId)
: OptionalThreadToNumaNodeBinder(numaId);
threads.emplace_back(
std::make_unique<Thread>(sharedState, std::move(manager), threadId, binder));
}
clear();
main_thread()->wait_for_search_finished();
}
}
// Sets threadPool data to initial values
void ThreadPool::clear() {
if (threads.size() == 0)
return;
for (auto&& th : threads)
th->clear_worker();
for (auto&& th : threads)
th->wait_for_search_finished();
main_manager()->callsCnt = 0;
main_manager()->bestPreviousScore = VALUE_INFINITE;
main_manager()->bestPreviousAverageScore = VALUE_INFINITE;
main_manager()->originalPly = -1;
main_manager()->originalTimeAdjust = -1;
main_manager()->previousTimeReduction = 1.0;
main_manager()->tm.clear();
}
void ThreadPool::run_on_thread(size_t threadId, std::function<void()> f) {
assert(threads.size() > threadId);
threads[threadId]->run_custom_job(std::move(f));
}
void ThreadPool::wait_on_thread(size_t threadId) {
assert(threads.size() > threadId);
threads[threadId]->wait_for_search_finished();
}
size_t ThreadPool::num_threads() const { return threads.size(); }
// Wakes up main thread waiting in idle_loop() and
// returns immediately. Main thread will wake up other threads and start the search.
void ThreadPool::start_thinking(const OptionsMap& options,
Position& pos,
StateListPtr& states,
Search::LimitsType limits) {
main_thread()->wait_for_search_finished();
main_manager()->stopOnPonderhit = stop = abortedSearch = false;
main_manager()->ponder = limits.ponderMode;
increaseDepth = true;
Search::RootMoves rootMoves;
const auto legalmoves = MoveList<LEGAL>(pos);
for (const auto& uciMove : limits.searchmoves)
{
auto move = UCIEngine::to_move(pos, uciMove);
if (std::find(legalmoves.begin(), legalmoves.end(), move) != legalmoves.end())
rootMoves.emplace_back(move);
}
if (rootMoves.empty())
for (const auto& m : legalmoves)
rootMoves.emplace_back(m);
Tablebases::Config tbConfig = Tablebases::rank_root_moves(options, pos, rootMoves);
// After ownership transfer 'states' becomes empty, so if we stop the search
// and call 'go' again without setting a new position states.get() == nullptr.
assert(states.get() || setupStates.get());
if (states.get())
setupStates = std::move(states); // Ownership transfer, states is now empty
// We use Position::set() to set root position across threads. But there are
// some StateInfo fields (previous, pliesFromNull, capturedPiece) that cannot
// be deduced from a fen string, so set() clears them and they are set from
// setupStates->back() later. The rootState is per thread, earlier states are shared
// since they are read-only.
for (auto&& th : threads)
{
th->run_custom_job([&]() {
th->worker->limits = limits;
th->worker->nodes = th->worker->tbHits = th->worker->nmpMinPly =
th->worker->bestMoveChanges = 0;
th->worker->rootDepth = th->worker->completedDepth = 0;
th->worker->rootMoves = rootMoves;
th->worker->rootPos.set(pos.fen(), pos.is_chess960(), &th->worker->rootState);
th->worker->rootState = setupStates->back();
th->worker->tbConfig = tbConfig;
});
}
for (auto&& th : threads)
th->wait_for_search_finished();
main_thread()->start_searching();
}
Thread* ThreadPool::get_best_thread() const {
Thread* bestThread = threads.front().get();
Value minScore = VALUE_NONE;
std::unordered_map<Move, int64_t, Move::MoveHash> votes(
2 * std::min(size(), bestThread->worker->rootMoves.size()));
// Find the minimum score of all threads
for (auto&& th : threads)
minScore = std::min(minScore, th->worker->rootMoves[0].score);
// Vote according to score and depth, and select the best thread
auto thread_voting_value = [minScore](Thread* th) {
return (th->worker->rootMoves[0].score - minScore + 14) * int(th->worker->completedDepth);
};
for (auto&& th : threads)
votes[th->worker->rootMoves[0].pv[0]] += thread_voting_value(th.get());
for (auto&& th : threads)
{
const auto bestThreadScore = bestThread->worker->rootMoves[0].score;
const auto newThreadScore = th->worker->rootMoves[0].score;
const auto& bestThreadPV = bestThread->worker->rootMoves[0].pv;
const auto& newThreadPV = th->worker->rootMoves[0].pv;
const auto bestThreadMoveVote = votes[bestThreadPV[0]];
const auto newThreadMoveVote = votes[newThreadPV[0]];
const bool bestThreadInProvenWin = bestThreadScore >= VALUE_TB_WIN_IN_MAX_PLY;
const bool newThreadInProvenWin = newThreadScore >= VALUE_TB_WIN_IN_MAX_PLY;
const bool bestThreadInProvenLoss =
bestThreadScore != -VALUE_INFINITE && bestThreadScore <= VALUE_TB_LOSS_IN_MAX_PLY;
const bool newThreadInProvenLoss =
newThreadScore != -VALUE_INFINITE && newThreadScore <= VALUE_TB_LOSS_IN_MAX_PLY;
// Note that we make sure not to pick a thread with truncated-PV for better viewer experience.
const bool betterVotingValue =
thread_voting_value(th.get()) * int(newThreadPV.size() > 2)
> thread_voting_value(bestThread) * int(bestThreadPV.size() > 2);
if (bestThreadInProvenWin)
{
// Make sure we pick the shortest mate / TB conversion
if (newThreadScore > bestThreadScore)
bestThread = th.get();
}
else if (bestThreadInProvenLoss)
{
// Make sure we pick the shortest mated / TB conversion
if (newThreadInProvenLoss && newThreadScore < bestThreadScore)
bestThread = th.get();
}
else if (newThreadInProvenWin || newThreadInProvenLoss
|| (newThreadScore > VALUE_TB_LOSS_IN_MAX_PLY
&& (newThreadMoveVote > bestThreadMoveVote
|| (newThreadMoveVote == bestThreadMoveVote && betterVotingValue))))
bestThread = th.get();
}
return bestThread;
}
// Start non-main threads
// Will be invoked by main thread after it has started searching
void ThreadPool::start_searching() {
for (auto&& th : threads)
if (th != threads.front())
th->start_searching();
}
// Wait for non-main threads
void ThreadPool::wait_for_search_finished() const {
for (auto&& th : threads)
if (th != threads.front())
th->wait_for_search_finished();
}
std::vector<size_t> ThreadPool::get_bound_thread_count_by_numa_node() const {
std::vector<size_t> counts;
if (!boundThreadToNumaNode.empty())
{
NumaIndex highestNumaNode = 0;
for (NumaIndex n : boundThreadToNumaNode)
if (n > highestNumaNode)
highestNumaNode = n;
counts.resize(highestNumaNode + 1, 0);
for (NumaIndex n : boundThreadToNumaNode)
counts[n] += 1;
}
return counts;
}
} // namespace Stockfish