mirror of
https://github.com/sockspls/badfish
synced 2025-04-30 08:43:09 +00:00
928 lines
36 KiB
C++
928 lines
36 KiB
C++
/*
|
|
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
|
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
|
Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
|
|
|
|
Stockfish is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Stockfish is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstring> // For std::memset
|
|
#include <iomanip>
|
|
#include <sstream>
|
|
|
|
#include "bitcount.h"
|
|
#include "evaluate.h"
|
|
#include "material.h"
|
|
#include "pawns.h"
|
|
|
|
namespace {
|
|
|
|
namespace Tracing {
|
|
|
|
enum Term { // First 8 entries are for PieceType
|
|
MATERIAL = 8, IMBALANCE, MOBILITY, THREAT, PASSED, SPACE, TOTAL, TERM_NB
|
|
};
|
|
|
|
Score scores[COLOR_NB][TERM_NB];
|
|
|
|
std::ostream& operator<<(std::ostream& os, Term idx);
|
|
|
|
double to_cp(Value v);
|
|
void write(int idx, Color c, Score s);
|
|
void write(int idx, Score w, Score b = SCORE_ZERO);
|
|
std::string do_trace(const Position& pos);
|
|
}
|
|
|
|
|
|
// Struct EvalInfo contains various information computed and collected
|
|
// by the evaluation functions.
|
|
struct EvalInfo {
|
|
|
|
// Pointers to material and pawn hash table entries
|
|
Material::Entry* mi;
|
|
Pawns::Entry* pi;
|
|
|
|
// attackedBy[color][piece type] is a bitboard representing all squares
|
|
// attacked by a given color and piece type, attackedBy[color][ALL_PIECES]
|
|
// contains all squares attacked by the given color.
|
|
Bitboard attackedBy[COLOR_NB][PIECE_TYPE_NB];
|
|
|
|
// kingRing[color] is the zone around the king which is considered
|
|
// by the king safety evaluation. This consists of the squares directly
|
|
// adjacent to the king, and the three (or two, for a king on an edge file)
|
|
// squares two ranks in front of the king. For instance, if black's king
|
|
// is on g8, kingRing[BLACK] is a bitboard containing the squares f8, h8,
|
|
// f7, g7, h7, f6, g6 and h6.
|
|
Bitboard kingRing[COLOR_NB];
|
|
|
|
// kingAttackersCount[color] is the number of pieces of the given color
|
|
// which attack a square in the kingRing of the enemy king.
|
|
int kingAttackersCount[COLOR_NB];
|
|
|
|
// kingAttackersWeight[color] is the sum of the "weight" of the pieces of the
|
|
// given color which attack a square in the kingRing of the enemy king. The
|
|
// weights of the individual piece types are given by the elements in the
|
|
// KingAttackWeights array.
|
|
int kingAttackersWeight[COLOR_NB];
|
|
|
|
// kingAdjacentZoneAttacksCount[color] is the number of attacks by the given
|
|
// color to squares directly adjacent to the enemy king. Pieces which attack
|
|
// more than one square are counted multiple times. For instance, if there is
|
|
// a white knight on g5 and black's king is on g8, this white knight adds 2
|
|
// to kingAdjacentZoneAttacksCount[WHITE].
|
|
int kingAdjacentZoneAttacksCount[COLOR_NB];
|
|
|
|
Bitboard pinnedPieces[COLOR_NB];
|
|
};
|
|
|
|
|
|
// Evaluation weights, indexed by the corresponding evaluation term
|
|
enum { Mobility, PawnStructure, PassedPawns, Space, KingSafety };
|
|
|
|
const struct Weight { int mg, eg; } Weights[] = {
|
|
{289, 344}, {233, 201}, {221, 273}, {46, 0}, {322, 0}
|
|
};
|
|
|
|
Score operator*(Score s, const Weight& w) {
|
|
return make_score(mg_value(s) * w.mg / 256, eg_value(s) * w.eg / 256);
|
|
}
|
|
|
|
|
|
#define V(v) Value(v)
|
|
#define S(mg, eg) make_score(mg, eg)
|
|
|
|
// MobilityBonus[PieceType][attacked] contains bonuses for middle and end
|
|
// game, indexed by piece type and number of attacked squares not occupied by
|
|
// friendly pieces.
|
|
const Score MobilityBonus[][32] = {
|
|
{}, {},
|
|
{ S(-68,-49), S(-46,-33), S(-3,-12), S( 5, -4), S( 9, 11), S(15, 16), // Knights
|
|
S( 23, 27), S( 33, 28), S(37, 29) },
|
|
{ S(-49,-44), S(-23,-16), S(16, 1), S(29, 16), S(40, 25), S(51, 34), // Bishops
|
|
S( 55, 43), S( 61, 49), S(64, 51), S(68, 52), S(73, 55), S(75, 60),
|
|
S( 80, 65), S( 86, 66) },
|
|
{ S(-50,-57), S(-28,-22), S(-11, 7), S(-1, 29), S( 0, 39), S( 1, 46), // Rooks
|
|
S( 10, 66), S( 16, 79), S(22, 86), S(23,103), S(30,109), S(33,111),
|
|
S( 37,115), S( 38,119), S(48,124) },
|
|
{ S(-43,-30), S(-27,-15), S( 1, -5), S( 2, -3), S(14, 10), S(18, 24), // Queens
|
|
S( 20, 27), S( 33, 37), S(33, 38), S(34, 43), S(40, 46), S(43, 56),
|
|
S( 46, 61), S( 52, 63), S(52, 63), S(57, 65), S(60, 70), S(61, 74),
|
|
S( 67, 80), S( 76, 82), S(77, 88), S(82, 94), S(86, 95), S(90, 96),
|
|
S( 94, 99), S( 96,100), S(99,111), S(99,112) }
|
|
};
|
|
|
|
// Outpost[Bishop/Knight][Square] contains bonuses for knights and bishops
|
|
// outposts, indexed by piece type and square (from white's point of view).
|
|
const Value Outpost[][SQUARE_NB] = {
|
|
{// A B C D E F G H
|
|
V(0), V(0), V(0), V(0), V(0), V(0), V(0), V(0), // Knights
|
|
V(0), V(0), V(0), V(0), V(0), V(0), V(0), V(0),
|
|
V(0), V(0), V(3), V(9), V(9), V(3), V(0), V(0),
|
|
V(0), V(4),V(18),V(25),V(25),V(18), V(4), V(0),
|
|
V(4), V(9),V(29),V(38),V(38),V(29), V(9), V(4),
|
|
V(2), V(9),V(19),V(15),V(15),V(19), V(9), V(2) },
|
|
{
|
|
V(0), V(0), V(0), V(0), V(0), V(0), V(0), V(0), // Bishops
|
|
V(0), V(0), V(0), V(0), V(0), V(0), V(0), V(0),
|
|
V(2), V(4), V(3), V(8), V(8), V(3), V(4), V(2),
|
|
V(1), V(9), V(9),V(13),V(13), V(9), V(9), V(1),
|
|
V(2), V(8),V(21),V(24),V(24),V(21), V(8), V(2),
|
|
V(0), V(4), V(6), V(6), V(6), V(6), V(4), V(0) }
|
|
};
|
|
|
|
// Threat[defended/weak][minor/major attacking][attacked PieceType] contains
|
|
// bonuses according to which piece type attacks which one.
|
|
const Score Threat[][2][PIECE_TYPE_NB] = {
|
|
{ { S(0, 0), S( 0, 0), S(19, 37), S(24, 37), S(44, 97), S(35,106) }, // Defended Minor
|
|
{ S(0, 0), S( 0, 0), S( 9, 14), S( 9, 14), S( 7, 14), S(24, 48) } }, // Defended Major
|
|
{ { S(0, 0), S( 0,32), S(33, 41), S(31, 50), S(41,100), S(35,104) }, // Weak Minor
|
|
{ S(0, 0), S( 0,27), S(26, 57), S(26, 57), S(0 , 43), S(23, 51) } } // Weak Major
|
|
};
|
|
|
|
// ThreatenedByPawn[PieceType] contains a penalty according to which piece
|
|
// type is attacked by an enemy pawn.
|
|
const Score ThreatenedByPawn[PIECE_TYPE_NB] = {
|
|
S(0, 0), S(0, 0), S(107, 138), S(84, 122), S(114, 203), S(121, 217)
|
|
};
|
|
|
|
const Score ThreatenedByHangingPawn = S(40, 60);
|
|
|
|
// Assorted bonuses and penalties used by evaluation
|
|
const Score KingOnOne = S( 2, 58);
|
|
const Score KingOnMany = S( 6,125);
|
|
const Score RookOnPawn = S( 7, 27);
|
|
const Score RookOnOpenFile = S(43, 21);
|
|
const Score RookOnSemiOpenFile = S(19, 10);
|
|
const Score BishopPawns = S( 8, 12);
|
|
const Score MinorBehindPawn = S(16, 0);
|
|
const Score TrappedRook = S(92, 0);
|
|
const Score Unstoppable = S( 0, 20);
|
|
const Score Hanging = S(31, 26);
|
|
const Score PawnAttackThreat = S(20, 20);
|
|
const Score PawnSafePush = S( 5, 5);
|
|
|
|
// Penalty for a bishop on a1/h1 (a8/h8 for black) which is trapped by
|
|
// a friendly pawn on b2/g2 (b7/g7 for black). This can obviously only
|
|
// happen in Chess960 games.
|
|
const Score TrappedBishopA1H1 = S(50, 50);
|
|
|
|
#undef S
|
|
#undef V
|
|
|
|
// SpaceMask[Color] contains the area of the board which is considered
|
|
// by the space evaluation. In the middlegame, each side is given a bonus
|
|
// based on how many squares inside this area are safe and available for
|
|
// friendly minor pieces.
|
|
const Bitboard SpaceMask[COLOR_NB] = {
|
|
(FileCBB | FileDBB | FileEBB | FileFBB) & (Rank2BB | Rank3BB | Rank4BB),
|
|
(FileCBB | FileDBB | FileEBB | FileFBB) & (Rank7BB | Rank6BB | Rank5BB)
|
|
};
|
|
|
|
// King danger constants and variables. The king danger scores are looked-up
|
|
// in KingDanger[]. Various little "meta-bonuses" measuring the strength
|
|
// of the enemy attack are added up into an integer, which is used as an
|
|
// index to KingDanger[].
|
|
Score KingDanger[512];
|
|
|
|
// KingAttackWeights[PieceType] contains king attack weights by piece type
|
|
const int KingAttackWeights[PIECE_TYPE_NB] = { 0, 0, 7, 5, 4, 1 };
|
|
|
|
// Penalties for enemy's safe checks
|
|
const int QueenContactCheck = 89;
|
|
const int RookContactCheck = 71;
|
|
const int QueenCheck = 50;
|
|
const int RookCheck = 37;
|
|
const int BishopCheck = 6;
|
|
const int KnightCheck = 14;
|
|
|
|
|
|
// init_eval_info() initializes king bitboards for given color adding
|
|
// pawn attacks. To be done at the beginning of the evaluation.
|
|
|
|
template<Color Us>
|
|
void init_eval_info(const Position& pos, EvalInfo& ei) {
|
|
|
|
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
|
const Square Down = (Us == WHITE ? DELTA_S : DELTA_N);
|
|
|
|
ei.pinnedPieces[Us] = pos.pinned_pieces(Us);
|
|
ei.attackedBy[Us][ALL_PIECES] = ei.attackedBy[Us][PAWN] = ei.pi->pawn_attacks(Us);
|
|
Bitboard b = ei.attackedBy[Them][KING] = pos.attacks_from<KING>(pos.king_square(Them));
|
|
|
|
// Init king safety tables only if we are going to use them
|
|
if (pos.non_pawn_material(Us) >= QueenValueMg)
|
|
{
|
|
ei.kingRing[Them] = b | shift_bb<Down>(b);
|
|
b &= ei.attackedBy[Us][PAWN];
|
|
ei.kingAttackersCount[Us] = b ? popcount<Max15>(b) : 0;
|
|
ei.kingAdjacentZoneAttacksCount[Us] = ei.kingAttackersWeight[Us] = 0;
|
|
}
|
|
else
|
|
ei.kingRing[Them] = ei.kingAttackersCount[Us] = 0;
|
|
}
|
|
|
|
|
|
// evaluate_outpost() evaluates bishop and knight outpost squares
|
|
|
|
template<PieceType Pt, Color Us>
|
|
Score evaluate_outpost(const Position& pos, const EvalInfo& ei, Square s) {
|
|
|
|
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
|
|
|
assert (Pt == BISHOP || Pt == KNIGHT);
|
|
|
|
// Initial bonus based on square
|
|
Value bonus = Outpost[Pt == BISHOP][relative_square(Us, s)];
|
|
|
|
// Increase bonus if supported by pawn, especially if the opponent has
|
|
// no minor piece which can trade with the outpost piece.
|
|
if (bonus && (ei.attackedBy[Us][PAWN] & s))
|
|
{
|
|
if ( !pos.pieces(Them, KNIGHT)
|
|
&& !(squares_of_color(s) & pos.pieces(Them, BISHOP)))
|
|
bonus += bonus + bonus / 2;
|
|
else
|
|
bonus += bonus / 2;
|
|
}
|
|
|
|
return make_score(bonus * 2, bonus / 2);
|
|
}
|
|
|
|
|
|
// evaluate_pieces() assigns bonuses and penalties to the pieces of a given color
|
|
|
|
template<PieceType Pt, Color Us, bool Trace>
|
|
Score evaluate_pieces(const Position& pos, EvalInfo& ei, Score* mobility, Bitboard* mobilityArea) {
|
|
|
|
Bitboard b;
|
|
Square s;
|
|
Score score = SCORE_ZERO;
|
|
|
|
const PieceType NextPt = (Us == WHITE ? Pt : PieceType(Pt + 1));
|
|
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
|
const Square* pl = pos.list<Pt>(Us);
|
|
|
|
ei.attackedBy[Us][Pt] = 0;
|
|
|
|
while ((s = *pl++) != SQ_NONE)
|
|
{
|
|
// Find attacked squares, including x-ray attacks for bishops and rooks
|
|
b = Pt == BISHOP ? attacks_bb<BISHOP>(s, pos.pieces() ^ pos.pieces(Us, QUEEN))
|
|
: Pt == ROOK ? attacks_bb< ROOK>(s, pos.pieces() ^ pos.pieces(Us, ROOK, QUEEN))
|
|
: pos.attacks_from<Pt>(s);
|
|
|
|
if (ei.pinnedPieces[Us] & s)
|
|
b &= LineBB[pos.king_square(Us)][s];
|
|
|
|
ei.attackedBy[Us][ALL_PIECES] |= ei.attackedBy[Us][Pt] |= b;
|
|
|
|
if (b & ei.kingRing[Them])
|
|
{
|
|
ei.kingAttackersCount[Us]++;
|
|
ei.kingAttackersWeight[Us] += KingAttackWeights[Pt];
|
|
Bitboard bb = b & ei.attackedBy[Them][KING];
|
|
if (bb)
|
|
ei.kingAdjacentZoneAttacksCount[Us] += popcount<Max15>(bb);
|
|
}
|
|
|
|
if (Pt == QUEEN)
|
|
b &= ~( ei.attackedBy[Them][KNIGHT]
|
|
| ei.attackedBy[Them][BISHOP]
|
|
| ei.attackedBy[Them][ROOK]);
|
|
|
|
int mob = popcount<Pt == QUEEN ? Full : Max15>(b & mobilityArea[Us]);
|
|
|
|
mobility[Us] += MobilityBonus[Pt][mob];
|
|
|
|
if (Pt == BISHOP || Pt == KNIGHT)
|
|
{
|
|
// Bonus for outpost square
|
|
if (!(pos.pieces(Them, PAWN) & pawn_attack_span(Us, s)))
|
|
score += evaluate_outpost<Pt, Us>(pos, ei, s);
|
|
|
|
// Bonus when behind a pawn
|
|
if ( relative_rank(Us, s) < RANK_5
|
|
&& (pos.pieces(PAWN) & (s + pawn_push(Us))))
|
|
score += MinorBehindPawn;
|
|
|
|
// Penalty for pawns on same color square of bishop
|
|
if (Pt == BISHOP)
|
|
score -= BishopPawns * ei.pi->pawns_on_same_color_squares(Us, s);
|
|
|
|
// An important Chess960 pattern: A cornered bishop blocked by a friendly
|
|
// pawn diagonally in front of it is a very serious problem, especially
|
|
// when that pawn is also blocked.
|
|
if ( Pt == BISHOP
|
|
&& pos.is_chess960()
|
|
&& (s == relative_square(Us, SQ_A1) || s == relative_square(Us, SQ_H1)))
|
|
{
|
|
Square d = pawn_push(Us) + (file_of(s) == FILE_A ? DELTA_E : DELTA_W);
|
|
if (pos.piece_on(s + d) == make_piece(Us, PAWN))
|
|
score -= !pos.empty(s + d + pawn_push(Us)) ? TrappedBishopA1H1 * 4
|
|
: pos.piece_on(s + d + d) == make_piece(Us, PAWN) ? TrappedBishopA1H1 * 2
|
|
: TrappedBishopA1H1;
|
|
}
|
|
}
|
|
|
|
if (Pt == ROOK)
|
|
{
|
|
// Bonus for aligning with enemy pawns on the same rank/file
|
|
if (relative_rank(Us, s) >= RANK_5)
|
|
{
|
|
Bitboard alignedPawns = pos.pieces(Them, PAWN) & PseudoAttacks[ROOK][s];
|
|
if (alignedPawns)
|
|
score += popcount<Max15>(alignedPawns) * RookOnPawn;
|
|
}
|
|
|
|
// Bonus when on an open or semi-open file
|
|
if (ei.pi->semiopen_file(Us, file_of(s)))
|
|
score += ei.pi->semiopen_file(Them, file_of(s)) ? RookOnOpenFile : RookOnSemiOpenFile;
|
|
|
|
// Penalize when trapped by the king, even more if king cannot castle
|
|
if (mob <= 3 && !ei.pi->semiopen_file(Us, file_of(s)))
|
|
{
|
|
Square ksq = pos.king_square(Us);
|
|
|
|
if ( ((file_of(ksq) < FILE_E) == (file_of(s) < file_of(ksq)))
|
|
&& (rank_of(ksq) == rank_of(s) || relative_rank(Us, ksq) == RANK_1)
|
|
&& !ei.pi->semiopen_side(Us, file_of(ksq), file_of(s) < file_of(ksq)))
|
|
score -= (TrappedRook - make_score(mob * 22, 0)) * (1 + !pos.can_castle(Us));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Trace)
|
|
Tracing::write(Pt, Us, score);
|
|
|
|
// Recursively call evaluate_pieces() of next piece type until KING excluded
|
|
return score - evaluate_pieces<NextPt, Them, Trace>(pos, ei, mobility, mobilityArea);
|
|
}
|
|
|
|
template<>
|
|
Score evaluate_pieces<KING, WHITE, false>(const Position&, EvalInfo&, Score*, Bitboard*) { return SCORE_ZERO; }
|
|
template<>
|
|
Score evaluate_pieces<KING, WHITE, true>(const Position&, EvalInfo&, Score*, Bitboard*) { return SCORE_ZERO; }
|
|
|
|
|
|
// evaluate_king() assigns bonuses and penalties to a king of a given color
|
|
|
|
template<Color Us, bool Trace>
|
|
Score evaluate_king(const Position& pos, const EvalInfo& ei) {
|
|
|
|
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
|
|
|
Bitboard undefended, b, b1, b2, safe;
|
|
int attackUnits;
|
|
const Square ksq = pos.king_square(Us);
|
|
|
|
// King shelter and enemy pawns storm
|
|
Score score = ei.pi->king_safety<Us>(pos, ksq);
|
|
|
|
// Main king safety evaluation
|
|
if (ei.kingAttackersCount[Them])
|
|
{
|
|
// Find the attacked squares around the king which have no defenders
|
|
// apart from the king itself
|
|
undefended = ei.attackedBy[Them][ALL_PIECES]
|
|
& ei.attackedBy[Us][KING]
|
|
& ~( ei.attackedBy[Us][PAWN] | ei.attackedBy[Us][KNIGHT]
|
|
| ei.attackedBy[Us][BISHOP] | ei.attackedBy[Us][ROOK]
|
|
| ei.attackedBy[Us][QUEEN]);
|
|
|
|
// Initialize the 'attackUnits' variable, which is used later on as an
|
|
// index into the KingDanger[] array. The initial value is based on the
|
|
// number and types of the enemy's attacking pieces, the number of
|
|
// attacked and undefended squares around our king and the quality of
|
|
// the pawn shelter (current 'score' value).
|
|
attackUnits = std::min(74, ei.kingAttackersCount[Them] * ei.kingAttackersWeight[Them])
|
|
+ 8 * ei.kingAdjacentZoneAttacksCount[Them]
|
|
+ 25 * popcount<Max15>(undefended)
|
|
+ 11 * (ei.pinnedPieces[Us] != 0)
|
|
- mg_value(score) / 8
|
|
- !pos.count<QUEEN>(Them) * 60;
|
|
|
|
// Analyse the enemy's safe queen contact checks. Firstly, find the
|
|
// undefended squares around the king reachable by the enemy queen...
|
|
b = undefended & ei.attackedBy[Them][QUEEN] & ~pos.pieces(Them);
|
|
if (b)
|
|
{
|
|
// ...and then remove squares not supported by another enemy piece
|
|
b &= ei.attackedBy[Them][PAWN] | ei.attackedBy[Them][KNIGHT]
|
|
| ei.attackedBy[Them][BISHOP] | ei.attackedBy[Them][ROOK];
|
|
|
|
if (b)
|
|
attackUnits += QueenContactCheck * popcount<Max15>(b);
|
|
}
|
|
|
|
// Analyse the enemy's safe rook contact checks. Firstly, find the
|
|
// undefended squares around the king reachable by the enemy rooks...
|
|
b = undefended & ei.attackedBy[Them][ROOK] & ~pos.pieces(Them);
|
|
|
|
// Consider only squares where the enemy's rook gives check
|
|
b &= PseudoAttacks[ROOK][ksq];
|
|
|
|
if (b)
|
|
{
|
|
// ...and then remove squares not supported by another enemy piece
|
|
b &= ( ei.attackedBy[Them][PAWN] | ei.attackedBy[Them][KNIGHT]
|
|
| ei.attackedBy[Them][BISHOP] | ei.attackedBy[Them][QUEEN]);
|
|
|
|
if (b)
|
|
attackUnits += RookContactCheck * popcount<Max15>(b);
|
|
}
|
|
|
|
// Analyse the enemy's safe distance checks for sliders and knights
|
|
safe = ~(ei.attackedBy[Us][ALL_PIECES] | pos.pieces(Them));
|
|
|
|
b1 = pos.attacks_from<ROOK >(ksq) & safe;
|
|
b2 = pos.attacks_from<BISHOP>(ksq) & safe;
|
|
|
|
// Enemy queen safe checks
|
|
b = (b1 | b2) & ei.attackedBy[Them][QUEEN];
|
|
if (b)
|
|
attackUnits += QueenCheck * popcount<Max15>(b);
|
|
|
|
// Enemy rooks safe checks
|
|
b = b1 & ei.attackedBy[Them][ROOK];
|
|
if (b)
|
|
attackUnits += RookCheck * popcount<Max15>(b);
|
|
|
|
// Enemy bishops safe checks
|
|
b = b2 & ei.attackedBy[Them][BISHOP];
|
|
if (b)
|
|
attackUnits += BishopCheck * popcount<Max15>(b);
|
|
|
|
// Enemy knights safe checks
|
|
b = pos.attacks_from<KNIGHT>(ksq) & ei.attackedBy[Them][KNIGHT] & safe;
|
|
if (b)
|
|
attackUnits += KnightCheck * popcount<Max15>(b);
|
|
|
|
// Finally, extract the king danger score from the KingDanger[]
|
|
// array and subtract the score from evaluation.
|
|
score -= KingDanger[std::max(std::min(attackUnits, 399), 0)];
|
|
}
|
|
|
|
if (Trace)
|
|
Tracing::write(KING, Us, score);
|
|
|
|
return score;
|
|
}
|
|
|
|
|
|
// evaluate_threats() assigns bonuses according to the type of attacking piece
|
|
// and the type of attacked one.
|
|
|
|
template<Color Us, bool Trace>
|
|
Score evaluate_threats(const Position& pos, const EvalInfo& ei) {
|
|
|
|
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
|
const Square Up = (Us == WHITE ? DELTA_N : DELTA_S);
|
|
const Square Left = (Us == WHITE ? DELTA_NW : DELTA_SE);
|
|
const Square Right = (Us == WHITE ? DELTA_NE : DELTA_SW);
|
|
const Bitboard TRank2BB = (Us == WHITE ? Rank2BB : Rank7BB);
|
|
const Bitboard TRank7BB = (Us == WHITE ? Rank7BB : Rank2BB);
|
|
|
|
enum { Defended, Weak };
|
|
enum { Minor, Major };
|
|
|
|
Bitboard b, weak, defended, safe_pawns, safe_pawn_threats, unsafe_pawn_threats;
|
|
Score score = SCORE_ZERO;
|
|
|
|
// Pawn Threats
|
|
b = ei.attackedBy[Us][PAWN] & (pos.pieces(Them) ^ pos.pieces(Them, PAWN));
|
|
|
|
if (b)
|
|
{
|
|
safe_pawns = pos.pieces(Us, PAWN) & (~ei.attackedBy[Them][ALL_PIECES] | ei.attackedBy[Us][ALL_PIECES]);
|
|
safe_pawn_threats = (shift_bb<Right>(safe_pawns) | shift_bb<Left>(safe_pawns)) & (pos.pieces(Them) ^ pos.pieces(Them, PAWN));
|
|
unsafe_pawn_threats = b ^ safe_pawn_threats;
|
|
|
|
// Unsafe pawn threats
|
|
if (unsafe_pawn_threats)
|
|
score += ThreatenedByHangingPawn;
|
|
|
|
// Evaluate safe pawn threats
|
|
while (safe_pawn_threats)
|
|
score += ThreatenedByPawn[type_of(pos.piece_on(pop_lsb(&safe_pawn_threats)))];
|
|
}
|
|
|
|
// Non-pawn enemies defended by a pawn
|
|
defended = (pos.pieces(Them) ^ pos.pieces(Them, PAWN)) & ei.attackedBy[Them][PAWN];
|
|
|
|
// Add a bonus according to the kind of attacking pieces
|
|
if (defended)
|
|
{
|
|
b = defended & (ei.attackedBy[Us][KNIGHT] | ei.attackedBy[Us][BISHOP]);
|
|
while (b)
|
|
score += Threat[Defended][Minor][type_of(pos.piece_on(pop_lsb(&b)))];
|
|
|
|
b = defended & (ei.attackedBy[Us][ROOK]);
|
|
while (b)
|
|
score += Threat[Defended][Major][type_of(pos.piece_on(pop_lsb(&b)))];
|
|
}
|
|
|
|
// Enemies not defended by a pawn and under our attack
|
|
weak = pos.pieces(Them)
|
|
& ~ei.attackedBy[Them][PAWN]
|
|
& ei.attackedBy[Us][ALL_PIECES];
|
|
|
|
// Add a bonus according to the kind of attacking pieces
|
|
if (weak)
|
|
{
|
|
b = weak & (ei.attackedBy[Us][KNIGHT] | ei.attackedBy[Us][BISHOP]);
|
|
while (b)
|
|
score += Threat[Weak][Minor][type_of(pos.piece_on(pop_lsb(&b)))];
|
|
|
|
b = weak & (ei.attackedBy[Us][ROOK] | ei.attackedBy[Us][QUEEN]);
|
|
while (b)
|
|
score += Threat[Weak][Major][type_of(pos.piece_on(pop_lsb(&b)))];
|
|
|
|
b = weak & ~ei.attackedBy[Them][ALL_PIECES];
|
|
if (b)
|
|
score += Hanging * popcount<Max15>(b);
|
|
|
|
b = weak & ei.attackedBy[Us][KING];
|
|
if (b)
|
|
score += more_than_one(b) ? KingOnMany : KingOnOne;
|
|
}
|
|
|
|
// Add a small bonus for safe pawn pushes
|
|
b = pos.pieces(Us, PAWN) & ~TRank7BB;
|
|
b = shift_bb<Up>(b | (shift_bb<Up>(b & TRank2BB) & ~pos.pieces()));
|
|
|
|
b &= ~pos.pieces()
|
|
& ~ei.attackedBy[Them][PAWN]
|
|
& (ei.attackedBy[Us][ALL_PIECES] | ~ei.attackedBy[Them][ALL_PIECES]);
|
|
|
|
if (b)
|
|
score += popcount<Full>(b) * PawnSafePush;
|
|
|
|
// Add another bonus if the pawn push attacks an enemy piece
|
|
b = (shift_bb<Left>(b) | shift_bb<Right>(b))
|
|
& pos.pieces(Them)
|
|
& ~ei.attackedBy[Us][PAWN];
|
|
|
|
if (b)
|
|
score += popcount<Max15>(b) * PawnAttackThreat;
|
|
|
|
if (Trace)
|
|
Tracing::write(Tracing::THREAT, Us, score);
|
|
|
|
return score;
|
|
}
|
|
|
|
|
|
// evaluate_passed_pawns() evaluates the passed pawns of the given color
|
|
|
|
template<Color Us, bool Trace>
|
|
Score evaluate_passed_pawns(const Position& pos, const EvalInfo& ei) {
|
|
|
|
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
|
|
|
Bitboard b, squaresToQueen, defendedSquares, unsafeSquares;
|
|
Score score = SCORE_ZERO;
|
|
|
|
b = ei.pi->passed_pawns(Us);
|
|
|
|
while (b)
|
|
{
|
|
Square s = pop_lsb(&b);
|
|
|
|
assert(pos.pawn_passed(Us, s));
|
|
|
|
int r = relative_rank(Us, s) - RANK_2;
|
|
int rr = r * (r - 1);
|
|
|
|
// Base bonus based on rank
|
|
Value mbonus = Value(17 * rr), ebonus = Value(7 * (rr + r + 1));
|
|
|
|
if (rr)
|
|
{
|
|
Square blockSq = s + pawn_push(Us);
|
|
|
|
// Adjust bonus based on the king's proximity
|
|
ebonus += distance(pos.king_square(Them), blockSq) * 5 * rr
|
|
- distance(pos.king_square(Us ), blockSq) * 2 * rr;
|
|
|
|
// If blockSq is not the queening square then consider also a second push
|
|
if (relative_rank(Us, blockSq) != RANK_8)
|
|
ebonus -= distance(pos.king_square(Us), blockSq + pawn_push(Us)) * rr;
|
|
|
|
// If the pawn is free to advance, then increase the bonus
|
|
if (pos.empty(blockSq))
|
|
{
|
|
// If there is a rook or queen attacking/defending the pawn from behind,
|
|
// consider all the squaresToQueen. Otherwise consider only the squares
|
|
// in the pawn's path attacked or occupied by the enemy.
|
|
defendedSquares = unsafeSquares = squaresToQueen = forward_bb(Us, s);
|
|
|
|
Bitboard bb = forward_bb(Them, s) & pos.pieces(ROOK, QUEEN) & pos.attacks_from<ROOK>(s);
|
|
|
|
if (!(pos.pieces(Us) & bb))
|
|
defendedSquares &= ei.attackedBy[Us][ALL_PIECES];
|
|
|
|
if (!(pos.pieces(Them) & bb))
|
|
unsafeSquares &= ei.attackedBy[Them][ALL_PIECES] | pos.pieces(Them);
|
|
|
|
// If there aren't any enemy attacks, assign a big bonus. Otherwise
|
|
// assign a smaller bonus if the block square isn't attacked.
|
|
int k = !unsafeSquares ? 15 : !(unsafeSquares & blockSq) ? 9 : 0;
|
|
|
|
// If the path to queen is fully defended, assign a big bonus.
|
|
// Otherwise assign a smaller bonus if the block square is defended.
|
|
if (defendedSquares == squaresToQueen)
|
|
k += 6;
|
|
|
|
else if (defendedSquares & blockSq)
|
|
k += 4;
|
|
|
|
mbonus += k * rr, ebonus += k * rr;
|
|
}
|
|
else if (pos.pieces(Us) & blockSq)
|
|
mbonus += rr * 3 + r * 2 + 3, ebonus += rr + r * 2;
|
|
} // rr != 0
|
|
|
|
if (pos.count<PAWN>(Us) < pos.count<PAWN>(Them))
|
|
ebonus += ebonus / 4;
|
|
|
|
score += make_score(mbonus, ebonus);
|
|
}
|
|
|
|
if (Trace)
|
|
Tracing::write(Tracing::PASSED, Us, score * Weights[PassedPawns]);
|
|
|
|
// Add the scores to the middlegame and endgame eval
|
|
return score * Weights[PassedPawns];
|
|
}
|
|
|
|
|
|
// evaluate_space() computes the space evaluation for a given side. The
|
|
// space evaluation is a simple bonus based on the number of safe squares
|
|
// available for minor pieces on the central four files on ranks 2--4. Safe
|
|
// squares one, two or three squares behind a friendly pawn are counted
|
|
// twice. Finally, the space bonus is multiplied by a weight. The aim is to
|
|
// improve play on game opening.
|
|
template<Color Us>
|
|
Score evaluate_space(const Position& pos, const EvalInfo& ei) {
|
|
|
|
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
|
|
|
// Find the safe squares for our pieces inside the area defined by
|
|
// SpaceMask[]. A square is unsafe if it is attacked by an enemy
|
|
// pawn, or if it is undefended and attacked by an enemy piece.
|
|
Bitboard safe = SpaceMask[Us]
|
|
& ~pos.pieces(Us, PAWN)
|
|
& ~ei.attackedBy[Them][PAWN]
|
|
& (ei.attackedBy[Us][ALL_PIECES] | ~ei.attackedBy[Them][ALL_PIECES]);
|
|
|
|
// Find all squares which are at most three squares behind some friendly pawn
|
|
Bitboard behind = pos.pieces(Us, PAWN);
|
|
behind |= (Us == WHITE ? behind >> 8 : behind << 8);
|
|
behind |= (Us == WHITE ? behind >> 16 : behind << 16);
|
|
|
|
// Since SpaceMask[Us] is fully on our half of the board
|
|
assert(unsigned(safe >> (Us == WHITE ? 32 : 0)) == 0);
|
|
|
|
// Count safe + (behind & safe) with a single popcount
|
|
int bonus = popcount<Full>((Us == WHITE ? safe << 32 : safe >> 32) | (behind & safe));
|
|
int weight = pos.count<KNIGHT>(Us) + pos.count<BISHOP>(Us)
|
|
+ pos.count<KNIGHT>(Them) + pos.count<BISHOP>(Them);
|
|
|
|
return make_score(bonus * weight * weight, 0);
|
|
}
|
|
|
|
|
|
// do_evaluate() is the evaluation entry point, called directly from evaluate()
|
|
|
|
template<bool Trace>
|
|
Value do_evaluate(const Position& pos) {
|
|
|
|
assert(!pos.checkers());
|
|
|
|
EvalInfo ei;
|
|
Score score, mobility[2] = { SCORE_ZERO, SCORE_ZERO };
|
|
|
|
// Initialize score by reading the incrementally updated scores included
|
|
// in the position object (material + piece square tables).
|
|
// Score is computed from the point of view of white.
|
|
score = pos.psq_score();
|
|
|
|
// Probe the material hash table
|
|
ei.mi = Material::probe(pos);
|
|
score += ei.mi->imbalance();
|
|
|
|
// If we have a specialized evaluation function for the current material
|
|
// configuration, call it and return.
|
|
if (ei.mi->specialized_eval_exists())
|
|
return ei.mi->evaluate(pos);
|
|
|
|
// Probe the pawn hash table
|
|
ei.pi = Pawns::probe(pos);
|
|
score += ei.pi->pawns_score() * Weights[PawnStructure];
|
|
|
|
// Initialize attack and king safety bitboards
|
|
init_eval_info<WHITE>(pos, ei);
|
|
init_eval_info<BLACK>(pos, ei);
|
|
|
|
ei.attackedBy[WHITE][ALL_PIECES] |= ei.attackedBy[WHITE][KING];
|
|
ei.attackedBy[BLACK][ALL_PIECES] |= ei.attackedBy[BLACK][KING];
|
|
|
|
// Do not include in mobility squares protected by enemy pawns or occupied by our pawns or king
|
|
Bitboard mobilityArea[] = { ~(ei.attackedBy[BLACK][PAWN] | pos.pieces(WHITE, PAWN, KING)),
|
|
~(ei.attackedBy[WHITE][PAWN] | pos.pieces(BLACK, PAWN, KING)) };
|
|
|
|
// Evaluate pieces and mobility
|
|
score += evaluate_pieces<KNIGHT, WHITE, Trace>(pos, ei, mobility, mobilityArea);
|
|
score += (mobility[WHITE] - mobility[BLACK]) * Weights[Mobility];
|
|
|
|
// Evaluate kings after all other pieces because we need complete attack
|
|
// information when computing the king safety evaluation.
|
|
score += evaluate_king<WHITE, Trace>(pos, ei)
|
|
- evaluate_king<BLACK, Trace>(pos, ei);
|
|
|
|
// Evaluate tactical threats, we need full attack information including king
|
|
score += evaluate_threats<WHITE, Trace>(pos, ei)
|
|
- evaluate_threats<BLACK, Trace>(pos, ei);
|
|
|
|
// Evaluate passed pawns, we need full attack information including king
|
|
score += evaluate_passed_pawns<WHITE, Trace>(pos, ei)
|
|
- evaluate_passed_pawns<BLACK, Trace>(pos, ei);
|
|
|
|
// If both sides have only pawns, score for potential unstoppable pawns
|
|
if (!pos.non_pawn_material(WHITE) && !pos.non_pawn_material(BLACK))
|
|
{
|
|
Bitboard b;
|
|
if ((b = ei.pi->passed_pawns(WHITE)) != 0)
|
|
score += int(relative_rank(WHITE, frontmost_sq(WHITE, b))) * Unstoppable;
|
|
|
|
if ((b = ei.pi->passed_pawns(BLACK)) != 0)
|
|
score -= int(relative_rank(BLACK, frontmost_sq(BLACK, b))) * Unstoppable;
|
|
}
|
|
|
|
// Evaluate space for both sides, only during opening
|
|
if (pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) >= 11756)
|
|
score += (evaluate_space<WHITE>(pos, ei) - evaluate_space<BLACK>(pos, ei)) * Weights[Space];
|
|
|
|
// Scale winning side if position is more drawish than it appears
|
|
Color strongSide = eg_value(score) > VALUE_DRAW ? WHITE : BLACK;
|
|
ScaleFactor sf = ei.mi->scale_factor(pos, strongSide);
|
|
|
|
// If we don't already have an unusual scale factor, check for certain
|
|
// types of endgames, and use a lower scale for those.
|
|
if ( ei.mi->game_phase() < PHASE_MIDGAME
|
|
&& (sf == SCALE_FACTOR_NORMAL || sf == SCALE_FACTOR_ONEPAWN))
|
|
{
|
|
if (pos.opposite_bishops())
|
|
{
|
|
// Endgame with opposite-colored bishops and no other pieces (ignoring pawns)
|
|
// is almost a draw, in case of KBP vs KB is even more a draw.
|
|
if ( pos.non_pawn_material(WHITE) == BishopValueMg
|
|
&& pos.non_pawn_material(BLACK) == BishopValueMg)
|
|
sf = more_than_one(pos.pieces(PAWN)) ? ScaleFactor(32) : ScaleFactor(8);
|
|
|
|
// Endgame with opposite-colored bishops, but also other pieces. Still
|
|
// a bit drawish, but not as drawish as with only the two bishops.
|
|
else
|
|
sf = ScaleFactor(50 * sf / SCALE_FACTOR_NORMAL);
|
|
}
|
|
// Endings where weaker side can place his king in front of the opponent's
|
|
// pawns are drawish.
|
|
else if ( abs(eg_value(score)) <= BishopValueEg
|
|
&& ei.pi->pawn_span(strongSide) <= 1
|
|
&& !pos.pawn_passed(~strongSide, pos.king_square(~strongSide)))
|
|
sf = ei.pi->pawn_span(strongSide) ? ScaleFactor(56) : ScaleFactor(38);
|
|
}
|
|
|
|
// Interpolate between a middlegame and a (scaled by 'sf') endgame score
|
|
Value v = mg_value(score) * int(ei.mi->game_phase())
|
|
+ eg_value(score) * int(PHASE_MIDGAME - ei.mi->game_phase()) * sf / SCALE_FACTOR_NORMAL;
|
|
|
|
v /= int(PHASE_MIDGAME);
|
|
|
|
// In case of tracing add all single evaluation terms for both white and black
|
|
if (Trace)
|
|
{
|
|
Tracing::write(Tracing::MATERIAL, pos.psq_score());
|
|
Tracing::write(Tracing::IMBALANCE, ei.mi->imbalance());
|
|
Tracing::write(PAWN, ei.pi->pawns_score());
|
|
Tracing::write(Tracing::MOBILITY, mobility[WHITE] * Weights[Mobility]
|
|
, mobility[BLACK] * Weights[Mobility]);
|
|
Tracing::write(Tracing::SPACE, evaluate_space<WHITE>(pos, ei) * Weights[Space]
|
|
, evaluate_space<BLACK>(pos, ei) * Weights[Space]);
|
|
Tracing::write(Tracing::TOTAL, score);
|
|
}
|
|
|
|
return (pos.side_to_move() == WHITE ? v : -v) + Eval::Tempo; // Side to move point of view
|
|
}
|
|
|
|
|
|
// Tracing functions
|
|
|
|
double Tracing::to_cp(Value v) { return double(v) / PawnValueEg; }
|
|
|
|
void Tracing::write(int idx, Color c, Score s) { scores[c][idx] = s; }
|
|
|
|
void Tracing::write(int idx, Score w, Score b) {
|
|
scores[WHITE][idx] = w, scores[BLACK][idx] = b;
|
|
}
|
|
|
|
std::ostream& Tracing::operator<<(std::ostream& os, Term t) {
|
|
|
|
double wScore[] = { to_cp(mg_value(scores[WHITE][t])), to_cp(eg_value(scores[WHITE][t])) };
|
|
double bScore[] = { to_cp(mg_value(scores[BLACK][t])), to_cp(eg_value(scores[BLACK][t])) };
|
|
|
|
if (t == MATERIAL || t == IMBALANCE || t == Term(PAWN) || t == TOTAL)
|
|
os << " --- --- | --- --- | ";
|
|
else
|
|
os << std::setw(5) << wScore[MG] << " " << std::setw(5) << wScore[EG] << " | "
|
|
<< std::setw(5) << bScore[MG] << " " << std::setw(5) << bScore[EG] << " | ";
|
|
|
|
os << std::setw(5) << wScore[MG] - bScore[MG] << " "
|
|
<< std::setw(5) << wScore[EG] - bScore[EG] << " \n";
|
|
|
|
return os;
|
|
}
|
|
|
|
std::string Tracing::do_trace(const Position& pos) {
|
|
|
|
std::memset(scores, 0, sizeof(scores));
|
|
|
|
Value v = do_evaluate<true>(pos);
|
|
v = pos.side_to_move() == WHITE ? v : -v; // White's point of view
|
|
|
|
std::stringstream ss;
|
|
ss << std::showpoint << std::noshowpos << std::fixed << std::setprecision(2)
|
|
<< " Eval term | White | Black | Total \n"
|
|
<< " | MG EG | MG EG | MG EG \n"
|
|
<< "----------------+-------------+-------------+-------------\n"
|
|
<< " Material | " << Term(MATERIAL)
|
|
<< " Imbalance | " << Term(IMBALANCE)
|
|
<< " Pawns | " << Term(PAWN)
|
|
<< " Knights | " << Term(KNIGHT)
|
|
<< " Bishop | " << Term(BISHOP)
|
|
<< " Rooks | " << Term(ROOK)
|
|
<< " Queens | " << Term(QUEEN)
|
|
<< " Mobility | " << Term(MOBILITY)
|
|
<< " King safety | " << Term(KING)
|
|
<< " Threats | " << Term(THREAT)
|
|
<< " Passed pawns | " << Term(PASSED)
|
|
<< " Space | " << Term(SPACE)
|
|
<< "----------------+-------------+-------------+-------------\n"
|
|
<< " Total | " << Term(TOTAL);
|
|
|
|
ss << "\nTotal Evaluation: " << to_cp(v) << " (white side)\n";
|
|
|
|
return ss.str();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
|
namespace Eval {
|
|
|
|
/// evaluate() is the main evaluation function. It returns a static evaluation
|
|
/// of the position always from the point of view of the side to move.
|
|
|
|
Value evaluate(const Position& pos) {
|
|
return do_evaluate<false>(pos);
|
|
}
|
|
|
|
|
|
/// trace() is like evaluate(), but instead of returning a value, it returns
|
|
/// a string (suitable for outputting to stdout) that contains the detailed
|
|
/// descriptions and values of each evaluation term. It's mainly used for
|
|
/// debugging.
|
|
std::string trace(const Position& pos) {
|
|
return Tracing::do_trace(pos);
|
|
}
|
|
|
|
|
|
/// init() computes evaluation weights, usually at startup
|
|
|
|
void init() {
|
|
|
|
const int MaxSlope = 8700;
|
|
const int Peak = 1280000;
|
|
int t = 0;
|
|
|
|
for (int i = 0; i < 400; ++i)
|
|
{
|
|
t = std::min(Peak, std::min(i * i * 27, t + MaxSlope));
|
|
KingDanger[i] = make_score(t / 1000, 0) * Weights[KingSafety];
|
|
}
|
|
}
|
|
|
|
} // namespace Eval
|