mirror of
https://github.com/sockspls/badfish
synced 2025-04-29 16:23:09 +00:00

No functional changes, altough a bit of code reshuffle. Signed-off-by: Marco Costalba <mcostalba@gmail.com>
351 lines
11 KiB
C++
351 lines
11 KiB
C++
/*
|
|
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
|
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
|
Copyright (C) 2008 Marco Costalba
|
|
|
|
Stockfish is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Stockfish is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
////
|
|
//// Includes
|
|
////
|
|
|
|
#include <cassert>
|
|
#include <map>
|
|
|
|
#include "material.h"
|
|
|
|
|
|
////
|
|
//// Local definitions
|
|
////
|
|
|
|
namespace {
|
|
|
|
const Value BishopPairMidgameBonus = Value(100);
|
|
const Value BishopPairEndgameBonus = Value(100);
|
|
|
|
Key KNNKMaterialKey, KKNNMaterialKey;
|
|
|
|
}
|
|
|
|
////
|
|
//// Classes
|
|
////
|
|
|
|
|
|
/// See header for a class description. It is declared here to avoid
|
|
/// to include <map> in the header file.
|
|
|
|
class EndgameFunctions {
|
|
|
|
public:
|
|
EndgameFunctions();
|
|
EndgameEvaluationFunction* getEEF(Key key) const;
|
|
ScalingFunction* getESF(Key key, Color* c) const;
|
|
|
|
private:
|
|
void add(Key k, EndgameEvaluationFunction* f);
|
|
void add(Key k, Color c, ScalingFunction* f);
|
|
|
|
struct ScalingInfo
|
|
{
|
|
Color col;
|
|
ScalingFunction* fun;
|
|
};
|
|
|
|
std::map<Key, EndgameEvaluationFunction*> EEFmap;
|
|
std::map<Key, ScalingInfo> ESFmap;
|
|
};
|
|
|
|
|
|
////
|
|
//// Functions
|
|
////
|
|
|
|
|
|
/// Constructor for the MaterialInfoTable class
|
|
|
|
MaterialInfoTable::MaterialInfoTable(unsigned int numOfEntries) {
|
|
|
|
size = numOfEntries;
|
|
entries = new MaterialInfo[size];
|
|
funcs = new EndgameFunctions();
|
|
if (!entries || !funcs)
|
|
{
|
|
std::cerr << "Failed to allocate " << (numOfEntries * sizeof(MaterialInfo))
|
|
<< " bytes for material hash table." << std::endl;
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
clear();
|
|
}
|
|
|
|
|
|
/// Destructor for the MaterialInfoTable class
|
|
|
|
MaterialInfoTable::~MaterialInfoTable() {
|
|
|
|
delete [] entries;
|
|
delete funcs;
|
|
}
|
|
|
|
|
|
/// MaterialInfoTable::clear() clears a material hash table by setting
|
|
/// all entries to 0.
|
|
|
|
void MaterialInfoTable::clear() {
|
|
|
|
memset(entries, 0, size * sizeof(MaterialInfo));
|
|
}
|
|
|
|
|
|
/// MaterialInfoTable::get_material_info() takes a position object as input,
|
|
/// computes or looks up a MaterialInfo object, and returns a pointer to it.
|
|
/// If the material configuration is not already present in the table, it
|
|
/// is stored there, so we don't have to recompute everything when the
|
|
/// same material configuration occurs again.
|
|
|
|
MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) {
|
|
|
|
Key key = pos.get_material_key();
|
|
int index = key & (size - 1);
|
|
MaterialInfo* mi = entries + index;
|
|
|
|
// If mi->key matches the position's material hash key, it means that we
|
|
// have analysed this material configuration before, and we can simply
|
|
// return the information we found the last time instead of recomputing it.
|
|
if (mi->key == key)
|
|
return mi;
|
|
|
|
// Clear the MaterialInfo object, and set its key
|
|
mi->clear();
|
|
mi->key = key;
|
|
|
|
// A special case before looking for a specialized evaluation function
|
|
// KNN vs K is a draw.
|
|
if (key == KNNKMaterialKey || key == KKNNMaterialKey)
|
|
{
|
|
mi->factor[WHITE] = mi->factor[BLACK] = 0;
|
|
return mi;
|
|
}
|
|
|
|
// Let's look if we have a specialized evaluation function for this
|
|
// particular material configuration.
|
|
if ((mi->evaluationFunction = funcs->getEEF(key)) != NULL)
|
|
return mi;
|
|
|
|
else if ( pos.non_pawn_material(BLACK) == Value(0)
|
|
&& pos.piece_count(BLACK, PAWN) == 0
|
|
&& pos.non_pawn_material(WHITE) >= RookValueEndgame)
|
|
{
|
|
mi->evaluationFunction = &EvaluateKXK;
|
|
return mi;
|
|
}
|
|
else if ( pos.non_pawn_material(WHITE) == Value(0)
|
|
&& pos.piece_count(WHITE, PAWN) == 0
|
|
&& pos.non_pawn_material(BLACK) >= RookValueEndgame)
|
|
{
|
|
mi->evaluationFunction = &EvaluateKKX;
|
|
return mi;
|
|
}
|
|
|
|
// OK, we didn't find any special evaluation function for the current
|
|
// material configuration. Is there a suitable scaling function?
|
|
//
|
|
// The code below is rather messy, and it could easily get worse later,
|
|
// if we decide to add more special cases. We face problems when there
|
|
// are several conflicting applicable scaling functions and we need to
|
|
// decide which one to use.
|
|
Color c;
|
|
ScalingFunction* sf;
|
|
|
|
if ((sf = funcs->getESF(key, &c)) != NULL)
|
|
{
|
|
mi->scalingFunction[c] = sf;
|
|
return mi;
|
|
}
|
|
|
|
if ( pos.non_pawn_material(WHITE) == BishopValueMidgame
|
|
&& pos.piece_count(WHITE, BISHOP) == 1
|
|
&& pos.piece_count(WHITE, PAWN) >= 1)
|
|
mi->scalingFunction[WHITE] = &ScaleKBPK;
|
|
|
|
if ( pos.non_pawn_material(BLACK) == BishopValueMidgame
|
|
&& pos.piece_count(BLACK, BISHOP) == 1
|
|
&& pos.piece_count(BLACK, PAWN) >= 1)
|
|
mi->scalingFunction[BLACK] = &ScaleKKBP;
|
|
|
|
if ( pos.piece_count(WHITE, PAWN) == 0
|
|
&& pos.non_pawn_material(WHITE) == QueenValueMidgame
|
|
&& pos.piece_count(WHITE, QUEEN) == 1
|
|
&& pos.piece_count(BLACK, ROOK) == 1
|
|
&& pos.piece_count(BLACK, PAWN) >= 1)
|
|
mi->scalingFunction[WHITE] = &ScaleKQKRP;
|
|
|
|
else if ( pos.piece_count(BLACK, PAWN) == 0
|
|
&& pos.non_pawn_material(BLACK) == QueenValueMidgame
|
|
&& pos.piece_count(BLACK, QUEEN) == 1
|
|
&& pos.piece_count(WHITE, ROOK) == 1
|
|
&& pos.piece_count(WHITE, PAWN) >= 1)
|
|
mi->scalingFunction[BLACK] = &ScaleKRPKQ;
|
|
|
|
if (pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) == Value(0))
|
|
{
|
|
if (pos.piece_count(BLACK, PAWN) == 0)
|
|
{
|
|
assert(pos.piece_count(WHITE, PAWN) >= 2);
|
|
mi->scalingFunction[WHITE] = &ScaleKPsK;
|
|
}
|
|
else if (pos.piece_count(WHITE, PAWN) == 0)
|
|
{
|
|
assert(pos.piece_count(BLACK, PAWN) >= 2);
|
|
mi->scalingFunction[BLACK] = &ScaleKKPs;
|
|
}
|
|
else if (pos.piece_count(WHITE, PAWN) == 1 && pos.piece_count(BLACK, PAWN) == 1)
|
|
{
|
|
mi->scalingFunction[WHITE] = &ScaleKPKPw;
|
|
mi->scalingFunction[BLACK] = &ScaleKPKPb;
|
|
}
|
|
}
|
|
|
|
// Evaluate the material balance
|
|
|
|
int sign;
|
|
Value egValue = Value(0);
|
|
Value mgValue = Value(0);
|
|
|
|
for (c = WHITE, sign = 1; c <= BLACK; c++, sign = -sign)
|
|
{
|
|
// No pawns makes it difficult to win, even with a material advantage
|
|
if ( pos.piece_count(c, PAWN) == 0
|
|
&& pos.non_pawn_material(c) - pos.non_pawn_material(opposite_color(c)) <= BishopValueMidgame)
|
|
{
|
|
if ( pos.non_pawn_material(c) == pos.non_pawn_material(opposite_color(c))
|
|
|| pos.non_pawn_material(c) < RookValueMidgame)
|
|
mi->factor[c] = 0;
|
|
else
|
|
{
|
|
switch (pos.piece_count(c, BISHOP)) {
|
|
case 2:
|
|
mi->factor[c] = 32;
|
|
break;
|
|
case 1:
|
|
mi->factor[c] = 12;
|
|
break;
|
|
case 0:
|
|
mi->factor[c] = 6;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Bishop pair
|
|
if (pos.piece_count(c, BISHOP) >= 2)
|
|
{
|
|
mgValue += sign * BishopPairMidgameBonus;
|
|
egValue += sign * BishopPairEndgameBonus;
|
|
}
|
|
|
|
// Knights are stronger when there are many pawns on the board. The
|
|
// formula is taken from Larry Kaufman's paper "The Evaluation of Material
|
|
// Imbalances in Chess":
|
|
// http://mywebpages.comcast.net/danheisman/Articles/evaluation_of_material_imbalance.htm
|
|
mgValue += sign * Value(pos.piece_count(c, KNIGHT)*(pos.piece_count(c, PAWN)-5)*16);
|
|
egValue += sign * Value(pos.piece_count(c, KNIGHT)*(pos.piece_count(c, PAWN)-5)*16);
|
|
|
|
// Redundancy of major pieces, again based on Kaufman's paper:
|
|
if (pos.piece_count(c, ROOK) >= 1)
|
|
{
|
|
Value v = Value((pos.piece_count(c, ROOK) - 1) * 32 + pos.piece_count(c, QUEEN) * 16);
|
|
mgValue -= sign * v;
|
|
egValue -= sign * v;
|
|
}
|
|
}
|
|
mi->mgValue = int16_t(mgValue);
|
|
mi->egValue = int16_t(egValue);
|
|
return mi;
|
|
}
|
|
|
|
|
|
/// EndgameFunctions member definitions. This class is used to store the maps
|
|
/// of end game and scaling functions that MaterialInfoTable will query for
|
|
/// each key. The maps are constant and are populated only at construction,
|
|
/// but are per-thread instead of globals to avoid expensive locks.
|
|
|
|
EndgameFunctions::EndgameFunctions() {
|
|
|
|
typedef Key ZM[2][8][16];
|
|
const ZM& z = Position::zobMaterial;
|
|
|
|
static const Color W = WHITE;
|
|
static const Color B = BLACK;
|
|
|
|
KNNKMaterialKey = z[W][KNIGHT][1] ^ z[W][KNIGHT][2];
|
|
KKNNMaterialKey = z[B][KNIGHT][1] ^ z[B][KNIGHT][2];
|
|
|
|
add(z[W][PAWN][1], &EvaluateKPK);
|
|
add(z[B][PAWN][1], &EvaluateKKP);
|
|
|
|
add(z[W][BISHOP][1] ^ z[W][KNIGHT][1], &EvaluateKBNK);
|
|
add(z[B][BISHOP][1] ^ z[B][KNIGHT][1], &EvaluateKKBN);
|
|
add(z[W][ROOK][1] ^ z[B][PAWN][1], &EvaluateKRKP);
|
|
add(z[W][PAWN][1] ^ z[B][ROOK][1], &EvaluateKPKR);
|
|
add(z[W][ROOK][1] ^ z[B][BISHOP][1], &EvaluateKRKB);
|
|
add(z[W][BISHOP][1] ^ z[B][ROOK][1], &EvaluateKBKR);
|
|
add(z[W][ROOK][1] ^ z[B][KNIGHT][1], &EvaluateKRKN);
|
|
add(z[W][KNIGHT][1] ^ z[B][ROOK][1], &EvaluateKNKR);
|
|
add(z[W][QUEEN][1] ^ z[B][ROOK][1], &EvaluateKQKR);
|
|
add(z[W][ROOK][1] ^ z[B][QUEEN][1], &EvaluateKRKQ);
|
|
|
|
add(z[W][KNIGHT][1] ^ z[W][PAWN][1], W, &ScaleKNPK);
|
|
add(z[B][KNIGHT][1] ^ z[B][PAWN][1], B, &ScaleKKNP);
|
|
|
|
add(z[W][ROOK][1] ^ z[W][PAWN][1] ^ z[B][ROOK][1] , W, &ScaleKRPKR);
|
|
add(z[W][ROOK][1] ^ z[B][ROOK][1] ^ z[B][PAWN][1] , B, &ScaleKRKRP);
|
|
add(z[W][BISHOP][1] ^ z[W][PAWN][1] ^ z[B][BISHOP][1], W, &ScaleKBPKB);
|
|
add(z[W][BISHOP][1] ^ z[B][BISHOP][1] ^ z[B][PAWN][1] , B, &ScaleKBKBP);
|
|
add(z[W][BISHOP][1] ^ z[W][PAWN][1] ^ z[B][KNIGHT][1], W, &ScaleKBPKN);
|
|
add(z[W][KNIGHT][1] ^ z[B][BISHOP][1] ^ z[B][PAWN][1] , B, &ScaleKNKBP);
|
|
|
|
add(z[W][ROOK][1] ^ z[W][PAWN][1] ^ z[W][PAWN][2] ^ z[B][ROOK][1] ^ z[B][PAWN][1], W, &ScaleKRPPKRP);
|
|
add(z[W][ROOK][1] ^ z[W][PAWN][1] ^ z[B][ROOK][1] ^ z[B][PAWN][1] ^ z[B][PAWN][2], B, &ScaleKRPKRPP);
|
|
}
|
|
|
|
void EndgameFunctions::add(Key k, EndgameEvaluationFunction* f) {
|
|
|
|
EEFmap.insert(std::pair<Key, EndgameEvaluationFunction*>(k, f));
|
|
}
|
|
|
|
void EndgameFunctions::add(Key k, Color c, ScalingFunction* f) {
|
|
|
|
ScalingInfo s = {c, f};
|
|
ESFmap.insert(std::pair<Key, ScalingInfo>(k, s));
|
|
}
|
|
|
|
EndgameEvaluationFunction* EndgameFunctions::getEEF(Key key) const {
|
|
|
|
std::map<Key, EndgameEvaluationFunction*>::const_iterator it(EEFmap.find(key));
|
|
return (it != EEFmap.end() ? it->second : NULL);
|
|
}
|
|
|
|
ScalingFunction* EndgameFunctions::getESF(Key key, Color* c) const {
|
|
|
|
std::map<Key, ScalingInfo>::const_iterator it(ESFmap.find(key));
|
|
if (it == ESFmap.end())
|
|
return NULL;
|
|
|
|
*c = it->second.col;
|
|
return it->second.fun;
|
|
}
|