1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-29 16:23:09 +00:00
BadFish/src/material.cpp
Marco Costalba 6e8bd8bf2d Final touches to material.cpp
No functional changes, altough a bit of code reshuffle.

Signed-off-by: Marco Costalba <mcostalba@gmail.com>
2008-11-01 12:46:54 +01:00

351 lines
11 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008 Marco Costalba
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
////
//// Includes
////
#include <cassert>
#include <map>
#include "material.h"
////
//// Local definitions
////
namespace {
const Value BishopPairMidgameBonus = Value(100);
const Value BishopPairEndgameBonus = Value(100);
Key KNNKMaterialKey, KKNNMaterialKey;
}
////
//// Classes
////
/// See header for a class description. It is declared here to avoid
/// to include <map> in the header file.
class EndgameFunctions {
public:
EndgameFunctions();
EndgameEvaluationFunction* getEEF(Key key) const;
ScalingFunction* getESF(Key key, Color* c) const;
private:
void add(Key k, EndgameEvaluationFunction* f);
void add(Key k, Color c, ScalingFunction* f);
struct ScalingInfo
{
Color col;
ScalingFunction* fun;
};
std::map<Key, EndgameEvaluationFunction*> EEFmap;
std::map<Key, ScalingInfo> ESFmap;
};
////
//// Functions
////
/// Constructor for the MaterialInfoTable class
MaterialInfoTable::MaterialInfoTable(unsigned int numOfEntries) {
size = numOfEntries;
entries = new MaterialInfo[size];
funcs = new EndgameFunctions();
if (!entries || !funcs)
{
std::cerr << "Failed to allocate " << (numOfEntries * sizeof(MaterialInfo))
<< " bytes for material hash table." << std::endl;
exit(EXIT_FAILURE);
}
clear();
}
/// Destructor for the MaterialInfoTable class
MaterialInfoTable::~MaterialInfoTable() {
delete [] entries;
delete funcs;
}
/// MaterialInfoTable::clear() clears a material hash table by setting
/// all entries to 0.
void MaterialInfoTable::clear() {
memset(entries, 0, size * sizeof(MaterialInfo));
}
/// MaterialInfoTable::get_material_info() takes a position object as input,
/// computes or looks up a MaterialInfo object, and returns a pointer to it.
/// If the material configuration is not already present in the table, it
/// is stored there, so we don't have to recompute everything when the
/// same material configuration occurs again.
MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) {
Key key = pos.get_material_key();
int index = key & (size - 1);
MaterialInfo* mi = entries + index;
// If mi->key matches the position's material hash key, it means that we
// have analysed this material configuration before, and we can simply
// return the information we found the last time instead of recomputing it.
if (mi->key == key)
return mi;
// Clear the MaterialInfo object, and set its key
mi->clear();
mi->key = key;
// A special case before looking for a specialized evaluation function
// KNN vs K is a draw.
if (key == KNNKMaterialKey || key == KKNNMaterialKey)
{
mi->factor[WHITE] = mi->factor[BLACK] = 0;
return mi;
}
// Let's look if we have a specialized evaluation function for this
// particular material configuration.
if ((mi->evaluationFunction = funcs->getEEF(key)) != NULL)
return mi;
else if ( pos.non_pawn_material(BLACK) == Value(0)
&& pos.piece_count(BLACK, PAWN) == 0
&& pos.non_pawn_material(WHITE) >= RookValueEndgame)
{
mi->evaluationFunction = &EvaluateKXK;
return mi;
}
else if ( pos.non_pawn_material(WHITE) == Value(0)
&& pos.piece_count(WHITE, PAWN) == 0
&& pos.non_pawn_material(BLACK) >= RookValueEndgame)
{
mi->evaluationFunction = &EvaluateKKX;
return mi;
}
// OK, we didn't find any special evaluation function for the current
// material configuration. Is there a suitable scaling function?
//
// The code below is rather messy, and it could easily get worse later,
// if we decide to add more special cases. We face problems when there
// are several conflicting applicable scaling functions and we need to
// decide which one to use.
Color c;
ScalingFunction* sf;
if ((sf = funcs->getESF(key, &c)) != NULL)
{
mi->scalingFunction[c] = sf;
return mi;
}
if ( pos.non_pawn_material(WHITE) == BishopValueMidgame
&& pos.piece_count(WHITE, BISHOP) == 1
&& pos.piece_count(WHITE, PAWN) >= 1)
mi->scalingFunction[WHITE] = &ScaleKBPK;
if ( pos.non_pawn_material(BLACK) == BishopValueMidgame
&& pos.piece_count(BLACK, BISHOP) == 1
&& pos.piece_count(BLACK, PAWN) >= 1)
mi->scalingFunction[BLACK] = &ScaleKKBP;
if ( pos.piece_count(WHITE, PAWN) == 0
&& pos.non_pawn_material(WHITE) == QueenValueMidgame
&& pos.piece_count(WHITE, QUEEN) == 1
&& pos.piece_count(BLACK, ROOK) == 1
&& pos.piece_count(BLACK, PAWN) >= 1)
mi->scalingFunction[WHITE] = &ScaleKQKRP;
else if ( pos.piece_count(BLACK, PAWN) == 0
&& pos.non_pawn_material(BLACK) == QueenValueMidgame
&& pos.piece_count(BLACK, QUEEN) == 1
&& pos.piece_count(WHITE, ROOK) == 1
&& pos.piece_count(WHITE, PAWN) >= 1)
mi->scalingFunction[BLACK] = &ScaleKRPKQ;
if (pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) == Value(0))
{
if (pos.piece_count(BLACK, PAWN) == 0)
{
assert(pos.piece_count(WHITE, PAWN) >= 2);
mi->scalingFunction[WHITE] = &ScaleKPsK;
}
else if (pos.piece_count(WHITE, PAWN) == 0)
{
assert(pos.piece_count(BLACK, PAWN) >= 2);
mi->scalingFunction[BLACK] = &ScaleKKPs;
}
else if (pos.piece_count(WHITE, PAWN) == 1 && pos.piece_count(BLACK, PAWN) == 1)
{
mi->scalingFunction[WHITE] = &ScaleKPKPw;
mi->scalingFunction[BLACK] = &ScaleKPKPb;
}
}
// Evaluate the material balance
int sign;
Value egValue = Value(0);
Value mgValue = Value(0);
for (c = WHITE, sign = 1; c <= BLACK; c++, sign = -sign)
{
// No pawns makes it difficult to win, even with a material advantage
if ( pos.piece_count(c, PAWN) == 0
&& pos.non_pawn_material(c) - pos.non_pawn_material(opposite_color(c)) <= BishopValueMidgame)
{
if ( pos.non_pawn_material(c) == pos.non_pawn_material(opposite_color(c))
|| pos.non_pawn_material(c) < RookValueMidgame)
mi->factor[c] = 0;
else
{
switch (pos.piece_count(c, BISHOP)) {
case 2:
mi->factor[c] = 32;
break;
case 1:
mi->factor[c] = 12;
break;
case 0:
mi->factor[c] = 6;
break;
}
}
}
// Bishop pair
if (pos.piece_count(c, BISHOP) >= 2)
{
mgValue += sign * BishopPairMidgameBonus;
egValue += sign * BishopPairEndgameBonus;
}
// Knights are stronger when there are many pawns on the board. The
// formula is taken from Larry Kaufman's paper "The Evaluation of Material
// Imbalances in Chess":
// http://mywebpages.comcast.net/danheisman/Articles/evaluation_of_material_imbalance.htm
mgValue += sign * Value(pos.piece_count(c, KNIGHT)*(pos.piece_count(c, PAWN)-5)*16);
egValue += sign * Value(pos.piece_count(c, KNIGHT)*(pos.piece_count(c, PAWN)-5)*16);
// Redundancy of major pieces, again based on Kaufman's paper:
if (pos.piece_count(c, ROOK) >= 1)
{
Value v = Value((pos.piece_count(c, ROOK) - 1) * 32 + pos.piece_count(c, QUEEN) * 16);
mgValue -= sign * v;
egValue -= sign * v;
}
}
mi->mgValue = int16_t(mgValue);
mi->egValue = int16_t(egValue);
return mi;
}
/// EndgameFunctions member definitions. This class is used to store the maps
/// of end game and scaling functions that MaterialInfoTable will query for
/// each key. The maps are constant and are populated only at construction,
/// but are per-thread instead of globals to avoid expensive locks.
EndgameFunctions::EndgameFunctions() {
typedef Key ZM[2][8][16];
const ZM& z = Position::zobMaterial;
static const Color W = WHITE;
static const Color B = BLACK;
KNNKMaterialKey = z[W][KNIGHT][1] ^ z[W][KNIGHT][2];
KKNNMaterialKey = z[B][KNIGHT][1] ^ z[B][KNIGHT][2];
add(z[W][PAWN][1], &EvaluateKPK);
add(z[B][PAWN][1], &EvaluateKKP);
add(z[W][BISHOP][1] ^ z[W][KNIGHT][1], &EvaluateKBNK);
add(z[B][BISHOP][1] ^ z[B][KNIGHT][1], &EvaluateKKBN);
add(z[W][ROOK][1] ^ z[B][PAWN][1], &EvaluateKRKP);
add(z[W][PAWN][1] ^ z[B][ROOK][1], &EvaluateKPKR);
add(z[W][ROOK][1] ^ z[B][BISHOP][1], &EvaluateKRKB);
add(z[W][BISHOP][1] ^ z[B][ROOK][1], &EvaluateKBKR);
add(z[W][ROOK][1] ^ z[B][KNIGHT][1], &EvaluateKRKN);
add(z[W][KNIGHT][1] ^ z[B][ROOK][1], &EvaluateKNKR);
add(z[W][QUEEN][1] ^ z[B][ROOK][1], &EvaluateKQKR);
add(z[W][ROOK][1] ^ z[B][QUEEN][1], &EvaluateKRKQ);
add(z[W][KNIGHT][1] ^ z[W][PAWN][1], W, &ScaleKNPK);
add(z[B][KNIGHT][1] ^ z[B][PAWN][1], B, &ScaleKKNP);
add(z[W][ROOK][1] ^ z[W][PAWN][1] ^ z[B][ROOK][1] , W, &ScaleKRPKR);
add(z[W][ROOK][1] ^ z[B][ROOK][1] ^ z[B][PAWN][1] , B, &ScaleKRKRP);
add(z[W][BISHOP][1] ^ z[W][PAWN][1] ^ z[B][BISHOP][1], W, &ScaleKBPKB);
add(z[W][BISHOP][1] ^ z[B][BISHOP][1] ^ z[B][PAWN][1] , B, &ScaleKBKBP);
add(z[W][BISHOP][1] ^ z[W][PAWN][1] ^ z[B][KNIGHT][1], W, &ScaleKBPKN);
add(z[W][KNIGHT][1] ^ z[B][BISHOP][1] ^ z[B][PAWN][1] , B, &ScaleKNKBP);
add(z[W][ROOK][1] ^ z[W][PAWN][1] ^ z[W][PAWN][2] ^ z[B][ROOK][1] ^ z[B][PAWN][1], W, &ScaleKRPPKRP);
add(z[W][ROOK][1] ^ z[W][PAWN][1] ^ z[B][ROOK][1] ^ z[B][PAWN][1] ^ z[B][PAWN][2], B, &ScaleKRPKRPP);
}
void EndgameFunctions::add(Key k, EndgameEvaluationFunction* f) {
EEFmap.insert(std::pair<Key, EndgameEvaluationFunction*>(k, f));
}
void EndgameFunctions::add(Key k, Color c, ScalingFunction* f) {
ScalingInfo s = {c, f};
ESFmap.insert(std::pair<Key, ScalingInfo>(k, s));
}
EndgameEvaluationFunction* EndgameFunctions::getEEF(Key key) const {
std::map<Key, EndgameEvaluationFunction*>::const_iterator it(EEFmap.find(key));
return (it != EEFmap.end() ? it->second : NULL);
}
ScalingFunction* EndgameFunctions::getESF(Key key, Color* c) const {
std::map<Key, ScalingInfo>::const_iterator it(ESFmap.find(key));
if (it == ESFmap.end())
return NULL;
*c = it->second.col;
return it->second.fun;
}