mirror of
https://github.com/sockspls/badfish
synced 2025-04-30 00:33:09 +00:00
474 lines
16 KiB
C++
474 lines
16 KiB
C++
/*
|
|
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
|
Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file)
|
|
|
|
Stockfish is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Stockfish is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
// Code for calculating NNUE evaluation function
|
|
|
|
#include "evaluate_nnue.h"
|
|
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <fstream>
|
|
#include <iomanip>
|
|
#include <iostream>
|
|
#include <sstream>
|
|
#include <string_view>
|
|
|
|
#include "../evaluate.h"
|
|
#include "../misc.h"
|
|
#include "../position.h"
|
|
#include "../types.h"
|
|
#include "../uci.h"
|
|
#include "nnue_accumulator.h"
|
|
#include "nnue_common.h"
|
|
|
|
namespace Stockfish::Eval::NNUE {
|
|
|
|
// Input feature converter
|
|
LargePagePtr<FeatureTransformer<TransformedFeatureDimensionsBig, &StateInfo::accumulatorBig>>
|
|
featureTransformerBig;
|
|
LargePagePtr<FeatureTransformer<TransformedFeatureDimensionsSmall, &StateInfo::accumulatorSmall>>
|
|
featureTransformerSmall;
|
|
|
|
// Evaluation function
|
|
AlignedPtr<Network<TransformedFeatureDimensionsBig, L2Big, L3Big>> networkBig[LayerStacks];
|
|
AlignedPtr<Network<TransformedFeatureDimensionsSmall, L2Small, L3Small>> networkSmall[LayerStacks];
|
|
|
|
// Evaluation function file names
|
|
std::string fileName[2];
|
|
std::string netDescription[2];
|
|
|
|
namespace Detail {
|
|
|
|
// Initialize the evaluation function parameters
|
|
template<typename T>
|
|
void initialize(AlignedPtr<T>& pointer) {
|
|
|
|
pointer.reset(reinterpret_cast<T*>(std_aligned_alloc(alignof(T), sizeof(T))));
|
|
std::memset(pointer.get(), 0, sizeof(T));
|
|
}
|
|
|
|
template<typename T>
|
|
void initialize(LargePagePtr<T>& pointer) {
|
|
|
|
static_assert(alignof(T) <= 4096,
|
|
"aligned_large_pages_alloc() may fail for such a big alignment requirement of T");
|
|
pointer.reset(reinterpret_cast<T*>(aligned_large_pages_alloc(sizeof(T))));
|
|
std::memset(pointer.get(), 0, sizeof(T));
|
|
}
|
|
|
|
// Read evaluation function parameters
|
|
template<typename T>
|
|
bool read_parameters(std::istream& stream, T& reference) {
|
|
|
|
std::uint32_t header;
|
|
header = read_little_endian<std::uint32_t>(stream);
|
|
if (!stream || header != T::get_hash_value())
|
|
return false;
|
|
return reference.read_parameters(stream);
|
|
}
|
|
|
|
// Write evaluation function parameters
|
|
template<typename T>
|
|
bool write_parameters(std::ostream& stream, const T& reference) {
|
|
|
|
write_little_endian<std::uint32_t>(stream, T::get_hash_value());
|
|
return reference.write_parameters(stream);
|
|
}
|
|
|
|
} // namespace Detail
|
|
|
|
|
|
// Initialize the evaluation function parameters
|
|
static void initialize(NetSize netSize) {
|
|
|
|
if (netSize == Small)
|
|
{
|
|
Detail::initialize(featureTransformerSmall);
|
|
for (std::size_t i = 0; i < LayerStacks; ++i)
|
|
Detail::initialize(networkSmall[i]);
|
|
}
|
|
else
|
|
{
|
|
Detail::initialize(featureTransformerBig);
|
|
for (std::size_t i = 0; i < LayerStacks; ++i)
|
|
Detail::initialize(networkBig[i]);
|
|
}
|
|
}
|
|
|
|
// Read network header
|
|
static bool read_header(std::istream& stream, std::uint32_t* hashValue, std::string* desc) {
|
|
std::uint32_t version, size;
|
|
|
|
version = read_little_endian<std::uint32_t>(stream);
|
|
*hashValue = read_little_endian<std::uint32_t>(stream);
|
|
size = read_little_endian<std::uint32_t>(stream);
|
|
if (!stream || version != Version)
|
|
return false;
|
|
desc->resize(size);
|
|
stream.read(&(*desc)[0], size);
|
|
return !stream.fail();
|
|
}
|
|
|
|
// Write network header
|
|
static bool write_header(std::ostream& stream, std::uint32_t hashValue, const std::string& desc) {
|
|
write_little_endian<std::uint32_t>(stream, Version);
|
|
write_little_endian<std::uint32_t>(stream, hashValue);
|
|
write_little_endian<std::uint32_t>(stream, std::uint32_t(desc.size()));
|
|
stream.write(&desc[0], desc.size());
|
|
return !stream.fail();
|
|
}
|
|
|
|
// Read network parameters
|
|
static bool read_parameters(std::istream& stream, NetSize netSize) {
|
|
|
|
std::uint32_t hashValue;
|
|
if (!read_header(stream, &hashValue, &netDescription[netSize]))
|
|
return false;
|
|
if (hashValue != HashValue[netSize])
|
|
return false;
|
|
if (netSize == Big && !Detail::read_parameters(stream, *featureTransformerBig))
|
|
return false;
|
|
if (netSize == Small && !Detail::read_parameters(stream, *featureTransformerSmall))
|
|
return false;
|
|
for (std::size_t i = 0; i < LayerStacks; ++i)
|
|
{
|
|
if (netSize == Big && !Detail::read_parameters(stream, *(networkBig[i])))
|
|
return false;
|
|
if (netSize == Small && !Detail::read_parameters(stream, *(networkSmall[i])))
|
|
return false;
|
|
}
|
|
return stream && stream.peek() == std::ios::traits_type::eof();
|
|
}
|
|
|
|
// Write network parameters
|
|
static bool write_parameters(std::ostream& stream, NetSize netSize) {
|
|
|
|
if (!write_header(stream, HashValue[netSize], netDescription[netSize]))
|
|
return false;
|
|
if (netSize == Big && !Detail::write_parameters(stream, *featureTransformerBig))
|
|
return false;
|
|
if (netSize == Small && !Detail::write_parameters(stream, *featureTransformerSmall))
|
|
return false;
|
|
for (std::size_t i = 0; i < LayerStacks; ++i)
|
|
{
|
|
if (netSize == Big && !Detail::write_parameters(stream, *(networkBig[i])))
|
|
return false;
|
|
if (netSize == Small && !Detail::write_parameters(stream, *(networkSmall[i])))
|
|
return false;
|
|
}
|
|
return bool(stream);
|
|
}
|
|
|
|
void hint_common_parent_position(const Position& pos) {
|
|
|
|
int simpleEval = simple_eval(pos, pos.side_to_move());
|
|
if (std::abs(simpleEval) > 1050)
|
|
featureTransformerSmall->hint_common_access(pos);
|
|
else
|
|
featureTransformerBig->hint_common_access(pos);
|
|
}
|
|
|
|
// Evaluation function. Perform differential calculation.
|
|
template<NetSize Net_Size>
|
|
Value evaluate(const Position& pos, bool adjusted, int* complexity) {
|
|
|
|
// We manually align the arrays on the stack because with gcc < 9.3
|
|
// overaligning stack variables with alignas() doesn't work correctly.
|
|
|
|
constexpr uint64_t alignment = CacheLineSize;
|
|
constexpr int delta = 24;
|
|
|
|
#if defined(ALIGNAS_ON_STACK_VARIABLES_BROKEN)
|
|
TransformedFeatureType
|
|
transformedFeaturesUnaligned[FeatureTransformer < Small ? TransformedFeatureDimensionsSmall
|
|
: TransformedFeatureDimensionsBig,
|
|
nullptr
|
|
> ::BufferSize + alignment / sizeof(TransformedFeatureType)];
|
|
|
|
auto* transformedFeatures = align_ptr_up<alignment>(&transformedFeaturesUnaligned[0]);
|
|
#else
|
|
|
|
alignas(alignment) TransformedFeatureType
|
|
transformedFeatures[FeatureTransformer < Net_Size == Small ? TransformedFeatureDimensionsSmall
|
|
: TransformedFeatureDimensionsBig,
|
|
nullptr > ::BufferSize];
|
|
#endif
|
|
|
|
ASSERT_ALIGNED(transformedFeatures, alignment);
|
|
|
|
const int bucket = (pos.count<ALL_PIECES>() - 1) / 4;
|
|
const auto psqt = Net_Size == Small
|
|
? featureTransformerSmall->transform(pos, transformedFeatures, bucket)
|
|
: featureTransformerBig->transform(pos, transformedFeatures, bucket);
|
|
const auto positional = Net_Size == Small ? networkSmall[bucket]->propagate(transformedFeatures)
|
|
: networkBig[bucket]->propagate(transformedFeatures);
|
|
|
|
if (complexity)
|
|
*complexity = std::abs(psqt - positional) / OutputScale;
|
|
|
|
// Give more value to positional evaluation when adjusted flag is set
|
|
if (adjusted)
|
|
return static_cast<Value>(((1024 - delta) * psqt + (1024 + delta) * positional)
|
|
/ (1024 * OutputScale));
|
|
else
|
|
return static_cast<Value>((psqt + positional) / OutputScale);
|
|
}
|
|
|
|
template Value evaluate<Big>(const Position& pos, bool adjusted, int* complexity);
|
|
template Value evaluate<Small>(const Position& pos, bool adjusted, int* complexity);
|
|
|
|
struct NnueEvalTrace {
|
|
static_assert(LayerStacks == PSQTBuckets);
|
|
|
|
Value psqt[LayerStacks];
|
|
Value positional[LayerStacks];
|
|
std::size_t correctBucket;
|
|
};
|
|
|
|
static NnueEvalTrace trace_evaluate(const Position& pos) {
|
|
|
|
// We manually align the arrays on the stack because with gcc < 9.3
|
|
// overaligning stack variables with alignas() doesn't work correctly.
|
|
constexpr uint64_t alignment = CacheLineSize;
|
|
|
|
#if defined(ALIGNAS_ON_STACK_VARIABLES_BROKEN)
|
|
TransformedFeatureType transformedFeaturesUnaligned
|
|
[FeatureTransformer<TransformedFeatureDimensionsBig, nullptr>::BufferSize
|
|
+ alignment / sizeof(TransformedFeatureType)];
|
|
|
|
auto* transformedFeatures = align_ptr_up<alignment>(&transformedFeaturesUnaligned[0]);
|
|
#else
|
|
alignas(alignment) TransformedFeatureType
|
|
transformedFeatures[FeatureTransformer<TransformedFeatureDimensionsBig, nullptr>::BufferSize];
|
|
#endif
|
|
|
|
ASSERT_ALIGNED(transformedFeatures, alignment);
|
|
|
|
NnueEvalTrace t{};
|
|
t.correctBucket = (pos.count<ALL_PIECES>() - 1) / 4;
|
|
for (IndexType bucket = 0; bucket < LayerStacks; ++bucket)
|
|
{
|
|
const auto materialist = featureTransformerBig->transform(pos, transformedFeatures, bucket);
|
|
const auto positional = networkBig[bucket]->propagate(transformedFeatures);
|
|
|
|
t.psqt[bucket] = static_cast<Value>(materialist / OutputScale);
|
|
t.positional[bucket] = static_cast<Value>(positional / OutputScale);
|
|
}
|
|
|
|
return t;
|
|
}
|
|
|
|
constexpr std::string_view PieceToChar(" PNBRQK pnbrqk");
|
|
|
|
|
|
// Converts a Value into (centi)pawns and writes it in a buffer.
|
|
// The buffer must have capacity for at least 5 chars.
|
|
static void format_cp_compact(Value v, char* buffer) {
|
|
|
|
buffer[0] = (v < 0 ? '-' : v > 0 ? '+' : ' ');
|
|
|
|
int cp = std::abs(UCI::to_cp(v));
|
|
if (cp >= 10000)
|
|
{
|
|
buffer[1] = '0' + cp / 10000;
|
|
cp %= 10000;
|
|
buffer[2] = '0' + cp / 1000;
|
|
cp %= 1000;
|
|
buffer[3] = '0' + cp / 100;
|
|
buffer[4] = ' ';
|
|
}
|
|
else if (cp >= 1000)
|
|
{
|
|
buffer[1] = '0' + cp / 1000;
|
|
cp %= 1000;
|
|
buffer[2] = '0' + cp / 100;
|
|
cp %= 100;
|
|
buffer[3] = '.';
|
|
buffer[4] = '0' + cp / 10;
|
|
}
|
|
else
|
|
{
|
|
buffer[1] = '0' + cp / 100;
|
|
cp %= 100;
|
|
buffer[2] = '.';
|
|
buffer[3] = '0' + cp / 10;
|
|
cp %= 10;
|
|
buffer[4] = '0' + cp / 1;
|
|
}
|
|
}
|
|
|
|
|
|
// Converts a Value into pawns, always keeping two decimals
|
|
static void format_cp_aligned_dot(Value v, std::stringstream& stream) {
|
|
|
|
const double pawns = std::abs(0.01 * UCI::to_cp(v));
|
|
|
|
stream << (v < 0 ? '-'
|
|
: v > 0 ? '+'
|
|
: ' ')
|
|
<< std::setiosflags(std::ios::fixed) << std::setw(6) << std::setprecision(2) << pawns;
|
|
}
|
|
|
|
|
|
// Returns a string with the value of each piece on a board,
|
|
// and a table for (PSQT, Layers) values bucket by bucket.
|
|
std::string trace(Position& pos) {
|
|
|
|
std::stringstream ss;
|
|
|
|
char board[3 * 8 + 1][8 * 8 + 2];
|
|
std::memset(board, ' ', sizeof(board));
|
|
for (int row = 0; row < 3 * 8 + 1; ++row)
|
|
board[row][8 * 8 + 1] = '\0';
|
|
|
|
// A lambda to output one box of the board
|
|
auto writeSquare = [&board](File file, Rank rank, Piece pc, Value value) {
|
|
const int x = int(file) * 8;
|
|
const int y = (7 - int(rank)) * 3;
|
|
for (int i = 1; i < 8; ++i)
|
|
board[y][x + i] = board[y + 3][x + i] = '-';
|
|
for (int i = 1; i < 3; ++i)
|
|
board[y + i][x] = board[y + i][x + 8] = '|';
|
|
board[y][x] = board[y][x + 8] = board[y + 3][x + 8] = board[y + 3][x] = '+';
|
|
if (pc != NO_PIECE)
|
|
board[y + 1][x + 4] = PieceToChar[pc];
|
|
if (value != VALUE_NONE)
|
|
format_cp_compact(value, &board[y + 2][x + 2]);
|
|
};
|
|
|
|
// We estimate the value of each piece by doing a differential evaluation from
|
|
// the current base eval, simulating the removal of the piece from its square.
|
|
Value base = evaluate<NNUE::Big>(pos);
|
|
base = pos.side_to_move() == WHITE ? base : -base;
|
|
|
|
for (File f = FILE_A; f <= FILE_H; ++f)
|
|
for (Rank r = RANK_1; r <= RANK_8; ++r)
|
|
{
|
|
Square sq = make_square(f, r);
|
|
Piece pc = pos.piece_on(sq);
|
|
Value v = VALUE_NONE;
|
|
|
|
if (pc != NO_PIECE && type_of(pc) != KING)
|
|
{
|
|
auto st = pos.state();
|
|
|
|
pos.remove_piece(sq);
|
|
st->accumulatorBig.computed[WHITE] = false;
|
|
st->accumulatorBig.computed[BLACK] = false;
|
|
|
|
Value eval = evaluate<NNUE::Big>(pos);
|
|
eval = pos.side_to_move() == WHITE ? eval : -eval;
|
|
v = base - eval;
|
|
|
|
pos.put_piece(pc, sq);
|
|
st->accumulatorBig.computed[WHITE] = false;
|
|
st->accumulatorBig.computed[BLACK] = false;
|
|
}
|
|
|
|
writeSquare(f, r, pc, v);
|
|
}
|
|
|
|
ss << " NNUE derived piece values:\n";
|
|
for (int row = 0; row < 3 * 8 + 1; ++row)
|
|
ss << board[row] << '\n';
|
|
ss << '\n';
|
|
|
|
auto t = trace_evaluate(pos);
|
|
|
|
ss << " NNUE network contributions "
|
|
<< (pos.side_to_move() == WHITE ? "(White to move)" : "(Black to move)") << std::endl
|
|
<< "+------------+------------+------------+------------+\n"
|
|
<< "| Bucket | Material | Positional | Total |\n"
|
|
<< "| | (PSQT) | (Layers) | |\n"
|
|
<< "+------------+------------+------------+------------+\n";
|
|
|
|
for (std::size_t bucket = 0; bucket < LayerStacks; ++bucket)
|
|
{
|
|
ss << "| " << bucket << " ";
|
|
ss << " | ";
|
|
format_cp_aligned_dot(t.psqt[bucket], ss);
|
|
ss << " "
|
|
<< " | ";
|
|
format_cp_aligned_dot(t.positional[bucket], ss);
|
|
ss << " "
|
|
<< " | ";
|
|
format_cp_aligned_dot(t.psqt[bucket] + t.positional[bucket], ss);
|
|
ss << " "
|
|
<< " |";
|
|
if (bucket == t.correctBucket)
|
|
ss << " <-- this bucket is used";
|
|
ss << '\n';
|
|
}
|
|
|
|
ss << "+------------+------------+------------+------------+\n";
|
|
|
|
return ss.str();
|
|
}
|
|
|
|
|
|
// Load eval, from a file stream or a memory stream
|
|
bool load_eval(const std::string name, std::istream& stream, NetSize netSize) {
|
|
|
|
initialize(netSize);
|
|
fileName[netSize] = name;
|
|
return read_parameters(stream, netSize);
|
|
}
|
|
|
|
// Save eval, to a file stream or a memory stream
|
|
bool save_eval(std::ostream& stream, NetSize netSize) {
|
|
|
|
if (fileName[netSize].empty())
|
|
return false;
|
|
|
|
return write_parameters(stream, netSize);
|
|
}
|
|
|
|
// Save eval, to a file given by its name
|
|
bool save_eval(const std::optional<std::string>& filename, NetSize netSize) {
|
|
|
|
std::string actualFilename;
|
|
std::string msg;
|
|
|
|
if (filename.has_value())
|
|
actualFilename = filename.value();
|
|
else
|
|
{
|
|
if (currentEvalFileName[netSize]
|
|
!= (netSize == Small ? EvalFileDefaultNameSmall : EvalFileDefaultNameBig))
|
|
{
|
|
msg = "Failed to export a net. "
|
|
"A non-embedded net can only be saved if the filename is specified";
|
|
|
|
sync_cout << msg << sync_endl;
|
|
return false;
|
|
}
|
|
actualFilename = (netSize == Small ? EvalFileDefaultNameSmall : EvalFileDefaultNameBig);
|
|
}
|
|
|
|
std::ofstream stream(actualFilename, std::ios_base::binary);
|
|
bool saved = save_eval(stream, netSize);
|
|
|
|
msg = saved ? "Network saved successfully to " + actualFilename : "Failed to export a net";
|
|
|
|
sync_cout << msg << sync_endl;
|
|
return saved;
|
|
}
|
|
|
|
|
|
} // namespace Stockfish::Eval::NNUE
|