mirror of
https://github.com/sockspls/badfish
synced 2025-07-11 19:49:14 +00:00
110 lines
3.3 KiB
C++
110 lines
3.3 KiB
C++
// NNUE評価関数の特徴量変換クラステンプレート
|
|
|
|
#ifndef _NNUE_TRAINER_FEATURES_FACTORIZER_H_
|
|
#define _NNUE_TRAINER_FEATURES_FACTORIZER_H_
|
|
|
|
#if defined(EVAL_NNUE)
|
|
|
|
#include "../../nnue_common.h"
|
|
#include "../trainer.h"
|
|
|
|
namespace Eval {
|
|
|
|
namespace NNUE {
|
|
|
|
namespace Features {
|
|
|
|
// 入力特徴量を学習用特徴量に変換するクラステンプレート
|
|
// デフォルトでは学習用特徴量は元の入力特徴量と同じとし、必要に応じて特殊化する
|
|
template <typename FeatureType>
|
|
class Factorizer {
|
|
public:
|
|
// 学習用特徴量の次元数を取得する
|
|
static constexpr IndexType GetDimensions() {
|
|
return FeatureType::kDimensions;
|
|
}
|
|
|
|
// 学習用特徴量のインデックスと学習率のスケールを取得する
|
|
static void AppendTrainingFeatures(
|
|
IndexType base_index, std::vector<TrainingFeature>* training_features) {
|
|
assert(base_index < FeatureType::kDimensions);
|
|
training_features->emplace_back(base_index);
|
|
}
|
|
};
|
|
|
|
// 学習用特徴量の情報
|
|
struct FeatureProperties {
|
|
bool active;
|
|
IndexType dimensions;
|
|
};
|
|
|
|
// 元の入力特徴量を学習用特徴量に追加する
|
|
template <typename FeatureType>
|
|
IndexType AppendBaseFeature(
|
|
FeatureProperties properties, IndexType base_index,
|
|
std::vector<TrainingFeature>* training_features) {
|
|
assert(properties.dimensions == FeatureType::kDimensions);
|
|
assert(base_index < FeatureType::kDimensions);
|
|
training_features->emplace_back(base_index);
|
|
return properties.dimensions;
|
|
}
|
|
|
|
// 学習率のスケールが0でなければ他の種類の学習用特徴量を引き継ぐ
|
|
template <typename FeatureType>
|
|
IndexType InheritFeaturesIfRequired(
|
|
IndexType index_offset, FeatureProperties properties, IndexType base_index,
|
|
std::vector<TrainingFeature>* training_features) {
|
|
if (!properties.active) {
|
|
return 0;
|
|
}
|
|
assert(properties.dimensions == Factorizer<FeatureType>::GetDimensions());
|
|
assert(base_index < FeatureType::kDimensions);
|
|
const auto start = training_features->size();
|
|
Factorizer<FeatureType>::AppendTrainingFeatures(
|
|
base_index, training_features);
|
|
for (auto i = start; i < training_features->size(); ++i) {
|
|
auto& feature = (*training_features)[i];
|
|
assert(feature.GetIndex() < Factorizer<FeatureType>::GetDimensions());
|
|
feature.ShiftIndex(index_offset);
|
|
}
|
|
return properties.dimensions;
|
|
}
|
|
|
|
// 学習用特徴量を追加せず、必要に応じてインデックスの差分を返す
|
|
// 対応する特徴量がない場合にInheritFeaturesIfRequired()の代わりに呼ぶ
|
|
IndexType SkipFeatures(FeatureProperties properties) {
|
|
if (!properties.active) {
|
|
return 0;
|
|
}
|
|
return properties.dimensions;
|
|
}
|
|
|
|
// 学習用特徴量の次元数を取得する
|
|
template <std::size_t N>
|
|
constexpr IndexType GetActiveDimensions(
|
|
const FeatureProperties (&properties)[N]) {
|
|
static_assert(N > 0, "");
|
|
IndexType dimensions = properties[0].dimensions;
|
|
for (std::size_t i = 1; i < N; ++i) {
|
|
if (properties[i].active) {
|
|
dimensions += properties[i].dimensions;
|
|
}
|
|
}
|
|
return dimensions;
|
|
}
|
|
|
|
// 配列の要素数を取得する
|
|
template <typename T, std::size_t N>
|
|
constexpr std::size_t GetArrayLength(const T (&/*array*/)[N]) {
|
|
return N;
|
|
}
|
|
|
|
} // namespace Features
|
|
|
|
} // namespace NNUE
|
|
|
|
} // namespace Eval
|
|
|
|
#endif // defined(EVAL_NNUE)
|
|
|
|
#endif
|