mirror of
https://github.com/sockspls/badfish
synced 2025-05-02 09:39:36 +00:00

This patch allows more aggressive futility/see based pruning for PV nodes with low delta and non-pv nodes. Fixes some white space issues. Passed STC https://tests.stockfishchess.org/tests/view/61a5ed33d16c530b5dcc27cc LLR: 2.95 (-2.94,2.94) <0.00,2.50> Total: 182088 W: 47121 L: 46584 D: 88383 Ptnml(0-2): 551, 20687, 48037, 21212, 557 Passed LTC https://tests.stockfishchess.org/tests/view/61a74dfdbd5c4360bcded0ac LLR: 2.94 (-2.94,2.94) <0.50,3.00> Total: 87136 W: 22494 L: 22103 D: 42539 Ptnml(0-2): 38, 8918, 25272, 9295, 45 closes https://github.com/official-stockfish/Stockfish/pull/3828 closes https://github.com/official-stockfish/Stockfish/pull/3829 bench 4332259
237 lines
7.6 KiB
C++
237 lines
7.6 KiB
C++
/*
|
|
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
|
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
|
|
|
|
Stockfish is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Stockfish is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef MISC_H_INCLUDED
|
|
#define MISC_H_INCLUDED
|
|
|
|
#include <cassert>
|
|
#include <chrono>
|
|
#include <ostream>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <cstdint>
|
|
|
|
#include "types.h"
|
|
|
|
namespace Stockfish {
|
|
|
|
std::string engine_info(bool to_uci = false);
|
|
std::string compiler_info();
|
|
void prefetch(void* addr);
|
|
void start_logger(const std::string& fname);
|
|
void* std_aligned_alloc(size_t alignment, size_t size);
|
|
void std_aligned_free(void* ptr);
|
|
void* aligned_large_pages_alloc(size_t size); // memory aligned by page size, min alignment: 4096 bytes
|
|
void aligned_large_pages_free(void* mem); // nop if mem == nullptr
|
|
|
|
void dbg_hit_on(bool b);
|
|
void dbg_hit_on(bool c, bool b);
|
|
void dbg_mean_of(int v);
|
|
void dbg_print();
|
|
|
|
typedef std::chrono::milliseconds::rep TimePoint; // A value in milliseconds
|
|
static_assert(sizeof(TimePoint) == sizeof(int64_t), "TimePoint should be 64 bits");
|
|
inline TimePoint now() {
|
|
return std::chrono::duration_cast<std::chrono::milliseconds>
|
|
(std::chrono::steady_clock::now().time_since_epoch()).count();
|
|
}
|
|
|
|
template<class Entry, int Size>
|
|
struct HashTable {
|
|
Entry* operator[](Key key) { return &table[(uint32_t)key & (Size - 1)]; }
|
|
|
|
private:
|
|
std::vector<Entry> table = std::vector<Entry>(Size); // Allocate on the heap
|
|
};
|
|
|
|
|
|
enum SyncCout { IO_LOCK, IO_UNLOCK };
|
|
std::ostream& operator<<(std::ostream&, SyncCout);
|
|
|
|
#define sync_cout std::cout << IO_LOCK
|
|
#define sync_endl std::endl << IO_UNLOCK
|
|
|
|
|
|
// align_ptr_up() : get the first aligned element of an array.
|
|
// ptr must point to an array of size at least `sizeof(T) * N + alignment` bytes,
|
|
// where N is the number of elements in the array.
|
|
template <uintptr_t Alignment, typename T>
|
|
T* align_ptr_up(T* ptr)
|
|
{
|
|
static_assert(alignof(T) < Alignment);
|
|
|
|
const uintptr_t ptrint = reinterpret_cast<uintptr_t>(reinterpret_cast<char*>(ptr));
|
|
return reinterpret_cast<T*>(reinterpret_cast<char*>((ptrint + (Alignment - 1)) / Alignment * Alignment));
|
|
}
|
|
|
|
|
|
// IsLittleEndian : true if and only if the binary is compiled on a little endian machine
|
|
static inline const union { uint32_t i; char c[4]; } Le = { 0x01020304 };
|
|
static inline const bool IsLittleEndian = (Le.c[0] == 4);
|
|
|
|
|
|
// RunningAverage : a class to calculate a running average of a series of values.
|
|
// For efficiency, all computations are done with integers.
|
|
class RunningAverage {
|
|
public:
|
|
|
|
// Constructor
|
|
RunningAverage() {}
|
|
|
|
// Reset the running average to rational value p / q
|
|
void set(int64_t p, int64_t q)
|
|
{ average = p * PERIOD * RESOLUTION / q; }
|
|
|
|
// Update average with value v
|
|
void update(int64_t v)
|
|
{ average = RESOLUTION * v + (PERIOD - 1) * average / PERIOD; }
|
|
|
|
// Test if average is strictly greater than rational a / b
|
|
bool is_greater(int64_t a, int64_t b)
|
|
{ return b * average > a * PERIOD * RESOLUTION ; }
|
|
|
|
private :
|
|
static constexpr int64_t PERIOD = 4096;
|
|
static constexpr int64_t RESOLUTION = 1024;
|
|
int64_t average;
|
|
};
|
|
|
|
template <typename T, std::size_t MaxSize>
|
|
class ValueList {
|
|
|
|
public:
|
|
std::size_t size() const { return size_; }
|
|
void resize(std::size_t newSize) { size_ = newSize; }
|
|
void push_back(const T& value) { values_[size_++] = value; }
|
|
T& operator[](std::size_t index) { return values_[index]; }
|
|
T* begin() { return values_; }
|
|
T* end() { return values_ + size_; }
|
|
const T& operator[](std::size_t index) const { return values_[index]; }
|
|
const T* begin() const { return values_; }
|
|
const T* end() const { return values_ + size_; }
|
|
|
|
void swap(ValueList& other) {
|
|
const std::size_t maxSize = std::max(size_, other.size_);
|
|
for (std::size_t i = 0; i < maxSize; ++i) {
|
|
std::swap(values_[i], other.values_[i]);
|
|
}
|
|
std::swap(size_, other.size_);
|
|
}
|
|
|
|
private:
|
|
T values_[MaxSize];
|
|
std::size_t size_ = 0;
|
|
};
|
|
|
|
|
|
/// sigmoid(t, x0, y0, C, P, Q) implements a sigmoid-like function using only integers,
|
|
/// with the following properties:
|
|
///
|
|
/// - sigmoid is centered in (x0, y0)
|
|
/// - sigmoid has amplitude [-P/Q , P/Q] instead of [-1 , +1]
|
|
/// - limit is (y0 - P/Q) when t tends to -infinity
|
|
/// - limit is (y0 + P/Q) when t tends to +infinity
|
|
/// - the slope can be adjusted using C > 0, smaller C giving a steeper sigmoid
|
|
/// - the slope of the sigmoid when t = x0 is P/(Q*C)
|
|
/// - sigmoid is increasing with t when P > 0 and Q > 0
|
|
/// - to get a decreasing sigmoid, call with -t, or change sign of P
|
|
/// - mean value of the sigmoid is y0
|
|
///
|
|
/// Use <https://www.desmos.com/calculator/jhh83sqq92> to draw the sigmoid
|
|
|
|
inline int64_t sigmoid(int64_t t, int64_t x0,
|
|
int64_t y0,
|
|
int64_t C,
|
|
int64_t P,
|
|
int64_t Q)
|
|
{
|
|
assert(C > 0);
|
|
return y0 + P * (t-x0) / (Q * (std::abs(t-x0) + C)) ;
|
|
}
|
|
|
|
|
|
/// xorshift64star Pseudo-Random Number Generator
|
|
/// This class is based on original code written and dedicated
|
|
/// to the public domain by Sebastiano Vigna (2014).
|
|
/// It has the following characteristics:
|
|
///
|
|
/// - Outputs 64-bit numbers
|
|
/// - Passes Dieharder and SmallCrush test batteries
|
|
/// - Does not require warm-up, no zeroland to escape
|
|
/// - Internal state is a single 64-bit integer
|
|
/// - Period is 2^64 - 1
|
|
/// - Speed: 1.60 ns/call (Core i7 @3.40GHz)
|
|
///
|
|
/// For further analysis see
|
|
/// <http://vigna.di.unimi.it/ftp/papers/xorshift.pdf>
|
|
|
|
class PRNG {
|
|
|
|
uint64_t s;
|
|
|
|
uint64_t rand64() {
|
|
|
|
s ^= s >> 12, s ^= s << 25, s ^= s >> 27;
|
|
return s * 2685821657736338717LL;
|
|
}
|
|
|
|
public:
|
|
PRNG(uint64_t seed) : s(seed) { assert(seed); }
|
|
|
|
template<typename T> T rand() { return T(rand64()); }
|
|
|
|
/// Special generator used to fast init magic numbers.
|
|
/// Output values only have 1/8th of their bits set on average.
|
|
template<typename T> T sparse_rand()
|
|
{ return T(rand64() & rand64() & rand64()); }
|
|
};
|
|
|
|
inline uint64_t mul_hi64(uint64_t a, uint64_t b) {
|
|
#if defined(__GNUC__) && defined(IS_64BIT)
|
|
__extension__ typedef unsigned __int128 uint128;
|
|
return ((uint128)a * (uint128)b) >> 64;
|
|
#else
|
|
uint64_t aL = (uint32_t)a, aH = a >> 32;
|
|
uint64_t bL = (uint32_t)b, bH = b >> 32;
|
|
uint64_t c1 = (aL * bL) >> 32;
|
|
uint64_t c2 = aH * bL + c1;
|
|
uint64_t c3 = aL * bH + (uint32_t)c2;
|
|
return aH * bH + (c2 >> 32) + (c3 >> 32);
|
|
#endif
|
|
}
|
|
|
|
/// Under Windows it is not possible for a process to run on more than one
|
|
/// logical processor group. This usually means to be limited to use max 64
|
|
/// cores. To overcome this, some special platform specific API should be
|
|
/// called to set group affinity for each thread. Original code from Texel by
|
|
/// Peter Österlund.
|
|
|
|
namespace WinProcGroup {
|
|
void bindThisThread(size_t idx);
|
|
}
|
|
|
|
namespace CommandLine {
|
|
void init(int argc, char* argv[]);
|
|
|
|
extern std::string binaryDirectory; // path of the executable directory
|
|
extern std::string workingDirectory; // path of the working directory
|
|
}
|
|
|
|
} // namespace Stockfish
|
|
|
|
#endif // #ifndef MISC_H_INCLUDED
|