1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-30 16:53:09 +00:00
BadFish/src/endgame.cpp
protonspring a5e3b4edde Consolidate all attacks bitboards
This is a non-functional simplification that simplifies getting attacks bitboards.

* consolidates all attacks to attacks_bb (remove Position::attacks_from(..)).
* attacks_bb<PieceType>(square) gets pseudo attacks
* attacks_bb<PieceType>(square, bitboard) gets attacks considering occupied squares in the bitboard).
* pawn_attacks_bb(Color, Square) gets pawn attacks like other pawn attack bitboards.
* Wraps all access to PawnAttacks arrays and PseudoAttacks arrays and adds asserts as appropriate.

Passed STC
LLR: 2.95 (-2.94,2.94) {-1.50,0.50}
Total: 90208 W: 17533 L: 17482 D: 55193
Ptnml(0-2): 1412, 10232, 21798, 10217, 1445
https://tests.stockfishchess.org/tests/view/5ece996275787cc0c05d9790

closes https://github.com/official-stockfish/Stockfish/pull/2703

No functional change
2020-05-30 20:30:31 +02:00

741 lines
27 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
Copyright (C) 2015-2020 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <cassert>
#include "bitboard.h"
#include "endgame.h"
#include "movegen.h"
namespace {
// Used to drive the king towards the edge of the board
// in KX vs K and KQ vs KR endgames.
inline int push_to_edge(Square s) {
int rd = edge_distance(rank_of(s)), fd = edge_distance(file_of(s));
return 90 - (7 * fd * fd / 2 + 7 * rd * rd / 2);
}
// Used to drive the king towards A1H8 corners in KBN vs K endgames.
inline int push_to_corner(Square s) {
return abs(7 - rank_of(s) - file_of(s));
}
// Drive a piece close to or away from another piece
inline int push_close(Square s1, Square s2) { return 140 - 20 * distance(s1, s2); }
inline int push_away(Square s1, Square s2) { return 120 - push_close(s1, s2); }
#ifndef NDEBUG
bool verify_material(const Position& pos, Color c, Value npm, int pawnsCnt) {
return pos.non_pawn_material(c) == npm && pos.count<PAWN>(c) == pawnsCnt;
}
#endif
// Map the square as if strongSide is white and strongSide's only pawn
// is on the left half of the board.
Square normalize(const Position& pos, Color strongSide, Square sq) {
assert(pos.count<PAWN>(strongSide) == 1);
if (file_of(pos.square<PAWN>(strongSide)) >= FILE_E)
sq = flip_file(sq);
return strongSide == WHITE ? sq : flip_rank(sq);
}
} // namespace
namespace Endgames {
std::pair<Map<Value>, Map<ScaleFactor>> maps;
void init() {
add<KPK>("KPK");
add<KNNK>("KNNK");
add<KBNK>("KBNK");
add<KRKP>("KRKP");
add<KRKB>("KRKB");
add<KRKN>("KRKN");
add<KQKP>("KQKP");
add<KQKR>("KQKR");
add<KNNKP>("KNNKP");
add<KRPKR>("KRPKR");
add<KRPKB>("KRPKB");
add<KBPKB>("KBPKB");
add<KBPKN>("KBPKN");
add<KBPPKB>("KBPPKB");
add<KRPPKRP>("KRPPKRP");
}
}
/// Mate with KX vs K. This function is used to evaluate positions with
/// king and plenty of material vs a lone king. It simply gives the
/// attacking side a bonus for driving the defending king towards the edge
/// of the board, and for keeping the distance between the two kings small.
template<>
Value Endgame<KXK>::operator()(const Position& pos) const {
assert(verify_material(pos, weakSide, VALUE_ZERO, 0));
assert(!pos.checkers()); // Eval is never called when in check
// Stalemate detection with lone king
if (pos.side_to_move() == weakSide && !MoveList<LEGAL>(pos).size())
return VALUE_DRAW;
Square winnerKSq = pos.square<KING>(strongSide);
Square loserKSq = pos.square<KING>(weakSide);
Value result = pos.non_pawn_material(strongSide)
+ pos.count<PAWN>(strongSide) * PawnValueEg
+ push_to_edge(loserKSq)
+ push_close(winnerKSq, loserKSq);
if ( pos.count<QUEEN>(strongSide)
|| pos.count<ROOK>(strongSide)
||(pos.count<BISHOP>(strongSide) && pos.count<KNIGHT>(strongSide))
|| ( (pos.pieces(strongSide, BISHOP) & ~DarkSquares)
&& (pos.pieces(strongSide, BISHOP) & DarkSquares)))
result = std::min(result + VALUE_KNOWN_WIN, VALUE_TB_WIN_IN_MAX_PLY - 1);
return strongSide == pos.side_to_move() ? result : -result;
}
/// Mate with KBN vs K. This is similar to KX vs K, but we have to drive the
/// defending king towards a corner square that our bishop attacks.
template<>
Value Endgame<KBNK>::operator()(const Position& pos) const {
assert(verify_material(pos, strongSide, KnightValueMg + BishopValueMg, 0));
assert(verify_material(pos, weakSide, VALUE_ZERO, 0));
Square winnerKSq = pos.square<KING>(strongSide);
Square loserKSq = pos.square<KING>(weakSide);
Square bishopSq = pos.square<BISHOP>(strongSide);
// If our bishop does not attack A1/H8, we flip the enemy king square
// to drive to opposite corners (A8/H1).
Value result = (VALUE_KNOWN_WIN + 3520)
+ push_close(winnerKSq, loserKSq)
+ 420 * push_to_corner(opposite_colors(bishopSq, SQ_A1) ? flip_file(loserKSq) : loserKSq);
assert(abs(result) < VALUE_TB_WIN_IN_MAX_PLY);
return strongSide == pos.side_to_move() ? result : -result;
}
/// KP vs K. This endgame is evaluated with the help of a bitbase
template<>
Value Endgame<KPK>::operator()(const Position& pos) const {
assert(verify_material(pos, strongSide, VALUE_ZERO, 1));
assert(verify_material(pos, weakSide, VALUE_ZERO, 0));
// Assume strongSide is white and the pawn is on files A-D
Square wksq = normalize(pos, strongSide, pos.square<KING>(strongSide));
Square bksq = normalize(pos, strongSide, pos.square<KING>(weakSide));
Square psq = normalize(pos, strongSide, pos.square<PAWN>(strongSide));
Color us = strongSide == pos.side_to_move() ? WHITE : BLACK;
if (!Bitbases::probe(wksq, psq, bksq, us))
return VALUE_DRAW;
Value result = VALUE_KNOWN_WIN + PawnValueEg + Value(rank_of(psq));
return strongSide == pos.side_to_move() ? result : -result;
}
/// KR vs KP. This is a somewhat tricky endgame to evaluate precisely without
/// a bitbase. The function below returns drawish scores when the pawn is
/// far advanced with support of the king, while the attacking king is far
/// away.
template<>
Value Endgame<KRKP>::operator()(const Position& pos) const {
assert(verify_material(pos, strongSide, RookValueMg, 0));
assert(verify_material(pos, weakSide, VALUE_ZERO, 1));
Square wksq = relative_square(strongSide, pos.square<KING>(strongSide));
Square bksq = relative_square(strongSide, pos.square<KING>(weakSide));
Square rsq = relative_square(strongSide, pos.square<ROOK>(strongSide));
Square psq = relative_square(strongSide, pos.square<PAWN>(weakSide));
Square queeningSq = make_square(file_of(psq), RANK_1);
Value result;
// If the stronger side's king is in front of the pawn, it's a win
if (forward_file_bb(WHITE, wksq) & psq)
result = RookValueEg - distance(wksq, psq);
// If the weaker side's king is too far from the pawn and the rook,
// it's a win.
else if ( distance(bksq, psq) >= 3 + (pos.side_to_move() == weakSide)
&& distance(bksq, rsq) >= 3)
result = RookValueEg - distance(wksq, psq);
// If the pawn is far advanced and supported by the defending king,
// the position is drawish
else if ( rank_of(bksq) <= RANK_3
&& distance(bksq, psq) == 1
&& rank_of(wksq) >= RANK_4
&& distance(wksq, psq) > 2 + (pos.side_to_move() == strongSide))
result = Value(80) - 8 * distance(wksq, psq);
else
result = Value(200) - 8 * ( distance(wksq, psq + SOUTH)
- distance(bksq, psq + SOUTH)
- distance(psq, queeningSq));
return strongSide == pos.side_to_move() ? result : -result;
}
/// KR vs KB. This is very simple, and always returns drawish scores. The
/// score is slightly bigger when the defending king is close to the edge.
template<>
Value Endgame<KRKB>::operator()(const Position& pos) const {
assert(verify_material(pos, strongSide, RookValueMg, 0));
assert(verify_material(pos, weakSide, BishopValueMg, 0));
Value result = Value(push_to_edge(pos.square<KING>(weakSide)));
return strongSide == pos.side_to_move() ? result : -result;
}
/// KR vs KN. The attacking side has slightly better winning chances than
/// in KR vs KB, particularly if the king and the knight are far apart.
template<>
Value Endgame<KRKN>::operator()(const Position& pos) const {
assert(verify_material(pos, strongSide, RookValueMg, 0));
assert(verify_material(pos, weakSide, KnightValueMg, 0));
Square bksq = pos.square<KING>(weakSide);
Square bnsq = pos.square<KNIGHT>(weakSide);
Value result = Value(push_to_edge(bksq) + push_away(bksq, bnsq));
return strongSide == pos.side_to_move() ? result : -result;
}
/// KQ vs KP. In general, this is a win for the stronger side, but there are a
/// few important exceptions. A pawn on 7th rank and on the A,C,F or H files
/// with a king positioned next to it can be a draw, so in that case, we only
/// use the distance between the kings.
template<>
Value Endgame<KQKP>::operator()(const Position& pos) const {
assert(verify_material(pos, strongSide, QueenValueMg, 0));
assert(verify_material(pos, weakSide, VALUE_ZERO, 1));
Square winnerKSq = pos.square<KING>(strongSide);
Square loserKSq = pos.square<KING>(weakSide);
Square pawnSq = pos.square<PAWN>(weakSide);
Value result = Value(push_close(winnerKSq, loserKSq));
if ( relative_rank(weakSide, pawnSq) != RANK_7
|| distance(loserKSq, pawnSq) != 1
|| ((FileBBB | FileDBB | FileEBB | FileGBB) & pawnSq))
result += QueenValueEg - PawnValueEg;
return strongSide == pos.side_to_move() ? result : -result;
}
/// KQ vs KR. This is almost identical to KX vs K: We give the attacking
/// king a bonus for having the kings close together, and for forcing the
/// defending king towards the edge. If we also take care to avoid null move for
/// the defending side in the search, this is usually sufficient to win KQ vs KR.
template<>
Value Endgame<KQKR>::operator()(const Position& pos) const {
assert(verify_material(pos, strongSide, QueenValueMg, 0));
assert(verify_material(pos, weakSide, RookValueMg, 0));
Square winnerKSq = pos.square<KING>(strongSide);
Square loserKSq = pos.square<KING>(weakSide);
Value result = QueenValueEg
- RookValueEg
+ push_to_edge(loserKSq)
+ push_close(winnerKSq, loserKSq);
return strongSide == pos.side_to_move() ? result : -result;
}
/// KNN vs KP. Very drawish, but there are some mate opportunities if we can
// press the weakSide King to a corner before the pawn advances too much.
template<>
Value Endgame<KNNKP>::operator()(const Position& pos) const {
assert(verify_material(pos, strongSide, 2 * KnightValueMg, 0));
assert(verify_material(pos, weakSide, VALUE_ZERO, 1));
Value result = PawnValueEg
+ 2 * push_to_edge(pos.square<KING>(weakSide))
- 10 * relative_rank(weakSide, pos.square<PAWN>(weakSide));
return strongSide == pos.side_to_move() ? result : -result;
}
/// Some cases of trivial draws
template<> Value Endgame<KNNK>::operator()(const Position&) const { return VALUE_DRAW; }
/// KB and one or more pawns vs K. It checks for draws with rook pawns and
/// a bishop of the wrong color. If such a draw is detected, SCALE_FACTOR_DRAW
/// is returned. If not, the return value is SCALE_FACTOR_NONE, i.e. no scaling
/// will be used.
template<>
ScaleFactor Endgame<KBPsK>::operator()(const Position& pos) const {
assert(pos.non_pawn_material(strongSide) == BishopValueMg);
assert(pos.count<PAWN>(strongSide) >= 1);
// No assertions about the material of weakSide, because we want draws to
// be detected even when the weaker side has some pawns.
Bitboard strongPawns = pos.pieces(strongSide, PAWN);
Bitboard allPawns = pos.pieces(PAWN);
// All strongSide pawns are on a single rook file?
if (!(strongPawns & ~FileABB) || !(strongPawns & ~FileHBB))
{
Square bishopSq = pos.square<BISHOP>(strongSide);
Square queeningSq = relative_square(strongSide, make_square(file_of(lsb(strongPawns)), RANK_8));
Square weakKingSq = pos.square<KING>(weakSide);
if ( opposite_colors(queeningSq, bishopSq)
&& distance(queeningSq, weakKingSq) <= 1)
return SCALE_FACTOR_DRAW;
}
// If all the pawns are on the same B or G file, then it's potentially a draw
if ((!(allPawns & ~FileBBB) || !(allPawns & ~FileGBB))
&& pos.non_pawn_material(weakSide) == 0
&& pos.count<PAWN>(weakSide) >= 1)
{
// Get the least advanced weakSide pawn
Square weakPawnSq = frontmost_sq(strongSide, pos.pieces(weakSide, PAWN));
Square strongKingSq = pos.square<KING>(strongSide);
Square weakKingSq = pos.square<KING>(weakSide);
Square bishopSq = pos.square<BISHOP>(strongSide);
// There's potential for a draw if our pawn is blocked on the 7th rank,
// the bishop cannot attack it or they only have one pawn left
if ( relative_rank(strongSide, weakPawnSq) == RANK_7
&& (strongPawns & (weakPawnSq + pawn_push(weakSide)))
&& (opposite_colors(bishopSq, weakPawnSq) || !more_than_one(strongPawns)))
{
int strongKingDist = distance(weakPawnSq, strongKingSq);
int weakKingDist = distance(weakPawnSq, weakKingSq);
// It's a draw if the weak king is on its back two ranks, within 2
// squares of the blocking pawn and the strong king is not
// closer. (I think this rule only fails in practically
// unreachable positions such as 5k1K/6p1/6P1/8/8/3B4/8/8 w
// and positions where qsearch will immediately correct the
// problem such as 8/4k1p1/6P1/1K6/3B4/8/8/8 w)
if ( relative_rank(strongSide, weakKingSq) >= RANK_7
&& weakKingDist <= 2
&& weakKingDist <= strongKingDist)
return SCALE_FACTOR_DRAW;
}
}
return SCALE_FACTOR_NONE;
}
/// KQ vs KR and one or more pawns. It tests for fortress draws with a rook on
/// the third rank defended by a pawn.
template<>
ScaleFactor Endgame<KQKRPs>::operator()(const Position& pos) const {
assert(verify_material(pos, strongSide, QueenValueMg, 0));
assert(pos.count<ROOK>(weakSide) == 1);
assert(pos.count<PAWN>(weakSide) >= 1);
Square kingSq = pos.square<KING>(weakSide);
Square rsq = pos.square<ROOK>(weakSide);
if ( relative_rank(weakSide, kingSq) <= RANK_2
&& relative_rank(weakSide, pos.square<KING>(strongSide)) >= RANK_4
&& relative_rank(weakSide, rsq) == RANK_3
&& ( pos.pieces(weakSide, PAWN)
& attacks_bb<KING>(kingSq)
& pawn_attacks_bb(strongSide, rsq)))
return SCALE_FACTOR_DRAW;
return SCALE_FACTOR_NONE;
}
/// KRP vs KR. This function knows a handful of the most important classes of
/// drawn positions, but is far from perfect. It would probably be a good idea
/// to add more knowledge in the future.
///
/// It would also be nice to rewrite the actual code for this function,
/// which is mostly copied from Glaurung 1.x, and isn't very pretty.
template<>
ScaleFactor Endgame<KRPKR>::operator()(const Position& pos) const {
assert(verify_material(pos, strongSide, RookValueMg, 1));
assert(verify_material(pos, weakSide, RookValueMg, 0));
// Assume strongSide is white and the pawn is on files A-D
Square wksq = normalize(pos, strongSide, pos.square<KING>(strongSide));
Square bksq = normalize(pos, strongSide, pos.square<KING>(weakSide));
Square wrsq = normalize(pos, strongSide, pos.square<ROOK>(strongSide));
Square wpsq = normalize(pos, strongSide, pos.square<PAWN>(strongSide));
Square brsq = normalize(pos, strongSide, pos.square<ROOK>(weakSide));
File f = file_of(wpsq);
Rank r = rank_of(wpsq);
Square queeningSq = make_square(f, RANK_8);
int tempo = (pos.side_to_move() == strongSide);
// If the pawn is not too far advanced and the defending king defends the
// queening square, use the third-rank defence.
if ( r <= RANK_5
&& distance(bksq, queeningSq) <= 1
&& wksq <= SQ_H5
&& (rank_of(brsq) == RANK_6 || (r <= RANK_3 && rank_of(wrsq) != RANK_6)))
return SCALE_FACTOR_DRAW;
// The defending side saves a draw by checking from behind in case the pawn
// has advanced to the 6th rank with the king behind.
if ( r == RANK_6
&& distance(bksq, queeningSq) <= 1
&& rank_of(wksq) + tempo <= RANK_6
&& (rank_of(brsq) == RANK_1 || (!tempo && distance<File>(brsq, wpsq) >= 3)))
return SCALE_FACTOR_DRAW;
if ( r >= RANK_6
&& bksq == queeningSq
&& rank_of(brsq) == RANK_1
&& (!tempo || distance(wksq, wpsq) >= 2))
return SCALE_FACTOR_DRAW;
// White pawn on a7 and rook on a8 is a draw if black's king is on g7 or h7
// and the black rook is behind the pawn.
if ( wpsq == SQ_A7
&& wrsq == SQ_A8
&& (bksq == SQ_H7 || bksq == SQ_G7)
&& file_of(brsq) == FILE_A
&& (rank_of(brsq) <= RANK_3 || file_of(wksq) >= FILE_D || rank_of(wksq) <= RANK_5))
return SCALE_FACTOR_DRAW;
// If the defending king blocks the pawn and the attacking king is too far
// away, it's a draw.
if ( r <= RANK_5
&& bksq == wpsq + NORTH
&& distance(wksq, wpsq) - tempo >= 2
&& distance(wksq, brsq) - tempo >= 2)
return SCALE_FACTOR_DRAW;
// Pawn on the 7th rank supported by the rook from behind usually wins if the
// attacking king is closer to the queening square than the defending king,
// and the defending king cannot gain tempi by threatening the attacking rook.
if ( r == RANK_7
&& f != FILE_A
&& file_of(wrsq) == f
&& wrsq != queeningSq
&& (distance(wksq, queeningSq) < distance(bksq, queeningSq) - 2 + tempo)
&& (distance(wksq, queeningSq) < distance(bksq, wrsq) + tempo))
return ScaleFactor(SCALE_FACTOR_MAX - 2 * distance(wksq, queeningSq));
// Similar to the above, but with the pawn further back
if ( f != FILE_A
&& file_of(wrsq) == f
&& wrsq < wpsq
&& (distance(wksq, queeningSq) < distance(bksq, queeningSq) - 2 + tempo)
&& (distance(wksq, wpsq + NORTH) < distance(bksq, wpsq + NORTH) - 2 + tempo)
&& ( distance(bksq, wrsq) + tempo >= 3
|| ( distance(wksq, queeningSq) < distance(bksq, wrsq) + tempo
&& (distance(wksq, wpsq + NORTH) < distance(bksq, wrsq) + tempo))))
return ScaleFactor( SCALE_FACTOR_MAX
- 8 * distance(wpsq, queeningSq)
- 2 * distance(wksq, queeningSq));
// If the pawn is not far advanced and the defending king is somewhere in
// the pawn's path, it's probably a draw.
if (r <= RANK_4 && bksq > wpsq)
{
if (file_of(bksq) == file_of(wpsq))
return ScaleFactor(10);
if ( distance<File>(bksq, wpsq) == 1
&& distance(wksq, bksq) > 2)
return ScaleFactor(24 - 2 * distance(wksq, bksq));
}
return SCALE_FACTOR_NONE;
}
template<>
ScaleFactor Endgame<KRPKB>::operator()(const Position& pos) const {
assert(verify_material(pos, strongSide, RookValueMg, 1));
assert(verify_material(pos, weakSide, BishopValueMg, 0));
// Test for a rook pawn
if (pos.pieces(PAWN) & (FileABB | FileHBB))
{
Square ksq = pos.square<KING>(weakSide);
Square bsq = pos.square<BISHOP>(weakSide);
Square psq = pos.square<PAWN>(strongSide);
Rank rk = relative_rank(strongSide, psq);
Direction push = pawn_push(strongSide);
// If the pawn is on the 5th rank and the pawn (currently) is on
// the same color square as the bishop then there is a chance of
// a fortress. Depending on the king position give a moderate
// reduction or a stronger one if the defending king is near the
// corner but not trapped there.
if (rk == RANK_5 && !opposite_colors(bsq, psq))
{
int d = distance(psq + 3 * push, ksq);
if (d <= 2 && !(d == 0 && ksq == pos.square<KING>(strongSide) + 2 * push))
return ScaleFactor(24);
else
return ScaleFactor(48);
}
// When the pawn has moved to the 6th rank we can be fairly sure
// it's drawn if the bishop attacks the square in front of the
// pawn from a reasonable distance and the defending king is near
// the corner
if ( rk == RANK_6
&& distance(psq + 2 * push, ksq) <= 1
&& (attacks_bb<BISHOP>(bsq) & (psq + push))
&& distance<File>(bsq, psq) >= 2)
return ScaleFactor(8);
}
return SCALE_FACTOR_NONE;
}
/// KRPP vs KRP. There is just a single rule: if the stronger side has no passed
/// pawns and the defending king is actively placed, the position is drawish.
template<>
ScaleFactor Endgame<KRPPKRP>::operator()(const Position& pos) const {
assert(verify_material(pos, strongSide, RookValueMg, 2));
assert(verify_material(pos, weakSide, RookValueMg, 1));
Square wpsq1 = pos.squares<PAWN>(strongSide)[0];
Square wpsq2 = pos.squares<PAWN>(strongSide)[1];
Square bksq = pos.square<KING>(weakSide);
// Does the stronger side have a passed pawn?
if (pos.pawn_passed(strongSide, wpsq1) || pos.pawn_passed(strongSide, wpsq2))
return SCALE_FACTOR_NONE;
Rank r = std::max(relative_rank(strongSide, wpsq1), relative_rank(strongSide, wpsq2));
if ( distance<File>(bksq, wpsq1) <= 1
&& distance<File>(bksq, wpsq2) <= 1
&& relative_rank(strongSide, bksq) > r)
{
assert(r > RANK_1 && r < RANK_7);
return ScaleFactor(7 * r);
}
return SCALE_FACTOR_NONE;
}
/// K and two or more pawns vs K. There is just a single rule here: If all pawns
/// are on the same rook file and are blocked by the defending king, it's a draw.
template<>
ScaleFactor Endgame<KPsK>::operator()(const Position& pos) const {
assert(pos.non_pawn_material(strongSide) == VALUE_ZERO);
assert(pos.count<PAWN>(strongSide) >= 2);
assert(verify_material(pos, weakSide, VALUE_ZERO, 0));
Square ksq = pos.square<KING>(weakSide);
Bitboard pawns = pos.pieces(strongSide, PAWN);
// If all pawns are ahead of the king on a single rook file, it's a draw.
if (!((pawns & ~FileABB) || (pawns & ~FileHBB)) &&
!(pawns & ~passed_pawn_span(weakSide, ksq)))
return SCALE_FACTOR_DRAW;
return SCALE_FACTOR_NONE;
}
/// KBP vs KB. There are two rules: if the defending king is somewhere along the
/// path of the pawn, and the square of the king is not of the same color as the
/// stronger side's bishop, it's a draw. If the two bishops have opposite color,
/// it's almost always a draw.
template<>
ScaleFactor Endgame<KBPKB>::operator()(const Position& pos) const {
assert(verify_material(pos, strongSide, BishopValueMg, 1));
assert(verify_material(pos, weakSide, BishopValueMg, 0));
Square pawnSq = pos.square<PAWN>(strongSide);
Square strongBishopSq = pos.square<BISHOP>(strongSide);
Square weakBishopSq = pos.square<BISHOP>(weakSide);
Square weakKingSq = pos.square<KING>(weakSide);
// Case 1: Defending king blocks the pawn, and cannot be driven away
if ( (forward_file_bb(strongSide, pawnSq) & weakKingSq)
&& ( opposite_colors(weakKingSq, strongBishopSq)
|| relative_rank(strongSide, weakKingSq) <= RANK_6))
return SCALE_FACTOR_DRAW;
// Case 2: Opposite colored bishops
if (opposite_colors(strongBishopSq, weakBishopSq))
return SCALE_FACTOR_DRAW;
return SCALE_FACTOR_NONE;
}
/// KBPP vs KB. It detects a few basic draws with opposite-colored bishops
template<>
ScaleFactor Endgame<KBPPKB>::operator()(const Position& pos) const {
assert(verify_material(pos, strongSide, BishopValueMg, 2));
assert(verify_material(pos, weakSide, BishopValueMg, 0));
Square wbsq = pos.square<BISHOP>(strongSide);
Square bbsq = pos.square<BISHOP>(weakSide);
if (!opposite_colors(wbsq, bbsq))
return SCALE_FACTOR_NONE;
Square ksq = pos.square<KING>(weakSide);
Square psq1 = pos.squares<PAWN>(strongSide)[0];
Square psq2 = pos.squares<PAWN>(strongSide)[1];
Square blockSq1, blockSq2;
if (relative_rank(strongSide, psq1) > relative_rank(strongSide, psq2))
{
blockSq1 = psq1 + pawn_push(strongSide);
blockSq2 = make_square(file_of(psq2), rank_of(psq1));
}
else
{
blockSq1 = psq2 + pawn_push(strongSide);
blockSq2 = make_square(file_of(psq1), rank_of(psq2));
}
switch (distance<File>(psq1, psq2))
{
case 0:
// Both pawns are on the same file. It's an easy draw if the defender firmly
// controls some square in the frontmost pawn's path.
if ( file_of(ksq) == file_of(blockSq1)
&& relative_rank(strongSide, ksq) >= relative_rank(strongSide, blockSq1)
&& opposite_colors(ksq, wbsq))
return SCALE_FACTOR_DRAW;
else
return SCALE_FACTOR_NONE;
case 1:
// Pawns on adjacent files. It's a draw if the defender firmly controls the
// square in front of the frontmost pawn's path, and the square diagonally
// behind this square on the file of the other pawn.
if ( ksq == blockSq1
&& opposite_colors(ksq, wbsq)
&& ( bbsq == blockSq2
|| (attacks_bb<BISHOP>(blockSq2, pos.pieces()) & pos.pieces(weakSide, BISHOP))
|| distance<Rank>(psq1, psq2) >= 2))
return SCALE_FACTOR_DRAW;
else if ( ksq == blockSq2
&& opposite_colors(ksq, wbsq)
&& ( bbsq == blockSq1
|| (attacks_bb<BISHOP>(blockSq1, pos.pieces()) & pos.pieces(weakSide, BISHOP))))
return SCALE_FACTOR_DRAW;
else
return SCALE_FACTOR_NONE;
default:
// The pawns are not on the same file or adjacent files. No scaling.
return SCALE_FACTOR_NONE;
}
}
/// KBP vs KN. There is a single rule: If the defending king is somewhere along
/// the path of the pawn, and the square of the king is not of the same color as
/// the stronger side's bishop, it's a draw.
template<>
ScaleFactor Endgame<KBPKN>::operator()(const Position& pos) const {
assert(verify_material(pos, strongSide, BishopValueMg, 1));
assert(verify_material(pos, weakSide, KnightValueMg, 0));
Square pawnSq = pos.square<PAWN>(strongSide);
Square strongBishopSq = pos.square<BISHOP>(strongSide);
Square weakKingSq = pos.square<KING>(weakSide);
if ( file_of(weakKingSq) == file_of(pawnSq)
&& relative_rank(strongSide, pawnSq) < relative_rank(strongSide, weakKingSq)
&& ( opposite_colors(weakKingSq, strongBishopSq)
|| relative_rank(strongSide, weakKingSq) <= RANK_6))
return SCALE_FACTOR_DRAW;
return SCALE_FACTOR_NONE;
}
/// KP vs KP. This is done by removing the weakest side's pawn and probing the
/// KP vs K bitbase: If the weakest side has a draw without the pawn, it probably
/// has at least a draw with the pawn as well. The exception is when the stronger
/// side's pawn is far advanced and not on a rook file; in this case it is often
/// possible to win (e.g. 8/4k3/3p4/3P4/6K1/8/8/8 w - - 0 1).
template<>
ScaleFactor Endgame<KPKP>::operator()(const Position& pos) const {
assert(verify_material(pos, strongSide, VALUE_ZERO, 1));
assert(verify_material(pos, weakSide, VALUE_ZERO, 1));
// Assume strongSide is white and the pawn is on files A-D
Square wksq = normalize(pos, strongSide, pos.square<KING>(strongSide));
Square bksq = normalize(pos, strongSide, pos.square<KING>(weakSide));
Square psq = normalize(pos, strongSide, pos.square<PAWN>(strongSide));
Color us = strongSide == pos.side_to_move() ? WHITE : BLACK;
// If the pawn has advanced to the fifth rank or further, and is not a
// rook pawn, it's too dangerous to assume that it's at least a draw.
if (rank_of(psq) >= RANK_5 && file_of(psq) != FILE_A)
return SCALE_FACTOR_NONE;
// Probe the KPK bitbase with the weakest side's pawn removed. If it's a draw,
// it's probably at least a draw even with the pawn.
return Bitbases::probe(wksq, psq, bksq, us) ? SCALE_FACTOR_NONE : SCALE_FACTOR_DRAW;
}