1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-29 16:23:09 +00:00
BadFish/src/material.cpp
Marco Costalba 9f28d8a854 Second take at unifying bitboard representation access
This patch is built on Tord idea to use functions instead of
templates to access position's bitboards. This has the added advantage
that we don't need fallback functions for cases where the piece
type or the color is a variable and not a constant.

Also added Joona suggestion to workaround request for two types
of pieces like bishop_and_queens() and rook_and_queens().

No functionality or performance change.

Signed-off-by: Marco Costalba <mcostalba@gmail.com>
2009-09-04 08:21:06 +01:00

405 lines
14 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2009 Marco Costalba
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
////
//// Includes
////
#include <cassert>
#include <sstream>
#include <map>
#include "material.h"
using namespace std;
////
//// Local definitions
////
namespace {
// Polynomial material balance parameters
const Value RedundantQueenPenalty = Value(320);
const Value RedundantRookPenalty = Value(554);
const int LinearCoefficients[6] = { 1617, -162, -1172, -190, 105, 26 };
const int QuadraticCoefficientsSameColor[][6] = {
{ 7, 7, 7, 7, 7, 7 }, { 39, 2, 7, 7, 7, 7 }, { 35, 271, -4, 7, 7, 7 },
{ 7, 25, 4, 7, 7, 7 }, { -27, -2, 46, 100, 56, 7 }, { 58, 29, 83, 148, -3, -25 } };
const int QuadraticCoefficientsOppositeColor[][6] = {
{ 41, 41, 41, 41, 41, 41 }, { 37, 41, 41, 41, 41, 41 }, { 10, 62, 41, 41, 41, 41 },
{ 57, 64, 39, 41, 41, 41 }, { 50, 40, 23, -22, 41, 41 }, { 106, 101, 3, 151, 171, 41 } };
// Named endgame evaluation and scaling functions, these
// are accessed direcly and not through the function maps.
EvaluationFunction<KmmKm> EvaluateKmmKm(WHITE);
EvaluationFunction<KXK> EvaluateKXK(WHITE), EvaluateKKX(BLACK);
ScalingFunction<KBPsK> ScaleKBPsK(WHITE), ScaleKKBPs(BLACK);
ScalingFunction<KQKRPs> ScaleKQKRPs(WHITE), ScaleKRPsKQ(BLACK);
ScalingFunction<KPsK> ScaleKPsK(WHITE), ScaleKKPs(BLACK);
ScalingFunction<KPKP> ScaleKPKPw(WHITE), ScaleKPKPb(BLACK);
typedef EndgameEvaluationFunctionBase EF;
typedef EndgameScalingFunctionBase SF;
}
////
//// Classes
////
/// EndgameFunctions class stores endgame evaluation and scaling functions
/// in two std::map. Because STL library is not guaranteed to be thread
/// safe even for read access, the maps, although with identical content,
/// are replicated for each thread. This is faster then using locks.
class EndgameFunctions {
public:
EndgameFunctions();
~EndgameFunctions();
template<class T> T* get(Key key) const;
private:
template<class T> void add(const string& keyCode);
static Key buildKey(const string& keyCode);
static const string swapColors(const string& keyCode);
// Here we store two maps, for evaluate and scaling functions
pair<map<Key, EF*>, map<Key, SF*> > maps;
// Maps accessing functions returning const and non-const references
template<typename T> const map<Key, T*>& get() const { return maps.first; }
template<typename T> map<Key, T*>& get() { return maps.first; }
};
// Explicit specializations of a member function shall be declared in
// the namespace of which the class template is a member.
template<> const map<Key, SF*>&
EndgameFunctions::get<SF>() const { return maps.second; }
template<> map<Key, SF*>&
EndgameFunctions::get<SF>() { return maps.second; }
////
//// Functions
////
/// MaterialInfoTable c'tor and d'tor, called once by each thread
MaterialInfoTable::MaterialInfoTable(unsigned int numOfEntries) {
size = numOfEntries;
entries = new MaterialInfo[size];
funcs = new EndgameFunctions();
if (!entries || !funcs)
{
cerr << "Failed to allocate " << numOfEntries * sizeof(MaterialInfo)
<< " bytes for material hash table." << endl;
Application::exit_with_failure();
}
}
MaterialInfoTable::~MaterialInfoTable() {
delete funcs;
delete [] entries;
}
/// MaterialInfoTable::get_material_info() takes a position object as input,
/// computes or looks up a MaterialInfo object, and returns a pointer to it.
/// If the material configuration is not already present in the table, it
/// is stored there, so we don't have to recompute everything when the
/// same material configuration occurs again.
MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) {
Key key = pos.get_material_key();
int index = key & (size - 1);
MaterialInfo* mi = entries + index;
// If mi->key matches the position's material hash key, it means that we
// have analysed this material configuration before, and we can simply
// return the information we found the last time instead of recomputing it.
if (mi->key == key)
return mi;
// Clear the MaterialInfo object, and set its key
mi->clear();
mi->key = key;
// Let's look if we have a specialized evaluation function for this
// particular material configuration. First we look for a fixed
// configuration one, then a generic one if previous search failed.
if ((mi->evaluationFunction = funcs->get<EF>(key)) != NULL)
return mi;
else if ( pos.non_pawn_material(BLACK) == Value(0)
&& pos.piece_count(BLACK, PAWN) == 0
&& pos.non_pawn_material(WHITE) >= RookValueMidgame)
{
mi->evaluationFunction = &EvaluateKXK;
return mi;
}
else if ( pos.non_pawn_material(WHITE) == Value(0)
&& pos.piece_count(WHITE, PAWN) == 0
&& pos.non_pawn_material(BLACK) >= RookValueMidgame)
{
mi->evaluationFunction = &EvaluateKKX;
return mi;
}
else if ( pos.pieces(PAWN) == EmptyBoardBB
&& pos.pieces(ROOK) == EmptyBoardBB
&& pos.pieces(QUEEN) == EmptyBoardBB)
{
// Minor piece endgame with at least one minor piece per side and
// no pawns. Note that the case KmmK is already handled by KXK.
assert((pos.pieces(KNIGHT, WHITE) | pos.pieces(BISHOP, WHITE)));
assert((pos.pieces(KNIGHT, BLACK) | pos.pieces(BISHOP, BLACK)));
if ( pos.piece_count(WHITE, BISHOP) + pos.piece_count(WHITE, KNIGHT) <= 2
&& pos.piece_count(BLACK, BISHOP) + pos.piece_count(BLACK, KNIGHT) <= 2)
{
mi->evaluationFunction = &EvaluateKmmKm;
return mi;
}
}
// OK, we didn't find any special evaluation function for the current
// material configuration. Is there a suitable scaling function?
//
// The code below is rather messy, and it could easily get worse later,
// if we decide to add more special cases. We face problems when there
// are several conflicting applicable scaling functions and we need to
// decide which one to use.
SF* sf;
if ((sf = funcs->get<SF>(key)) != NULL)
{
mi->scalingFunction[sf->color()] = sf;
return mi;
}
// Generic scaling functions that refer to more then one material
// distribution. Should be probed after the specialized ones.
// Note that these ones don't return after setting the function.
if ( pos.non_pawn_material(WHITE) == BishopValueMidgame
&& pos.piece_count(WHITE, BISHOP) == 1
&& pos.piece_count(WHITE, PAWN) >= 1)
mi->scalingFunction[WHITE] = &ScaleKBPsK;
if ( pos.non_pawn_material(BLACK) == BishopValueMidgame
&& pos.piece_count(BLACK, BISHOP) == 1
&& pos.piece_count(BLACK, PAWN) >= 1)
mi->scalingFunction[BLACK] = &ScaleKKBPs;
if ( pos.piece_count(WHITE, PAWN) == 0
&& pos.non_pawn_material(WHITE) == QueenValueMidgame
&& pos.piece_count(WHITE, QUEEN) == 1
&& pos.piece_count(BLACK, ROOK) == 1
&& pos.piece_count(BLACK, PAWN) >= 1)
mi->scalingFunction[WHITE] = &ScaleKQKRPs;
else if ( pos.piece_count(BLACK, PAWN) == 0
&& pos.non_pawn_material(BLACK) == QueenValueMidgame
&& pos.piece_count(BLACK, QUEEN) == 1
&& pos.piece_count(WHITE, ROOK) == 1
&& pos.piece_count(WHITE, PAWN) >= 1)
mi->scalingFunction[BLACK] = &ScaleKRPsKQ;
if (pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) == Value(0))
{
if (pos.piece_count(BLACK, PAWN) == 0)
{
assert(pos.piece_count(WHITE, PAWN) >= 2);
mi->scalingFunction[WHITE] = &ScaleKPsK;
}
else if (pos.piece_count(WHITE, PAWN) == 0)
{
assert(pos.piece_count(BLACK, PAWN) >= 2);
mi->scalingFunction[BLACK] = &ScaleKKPs;
}
else if (pos.piece_count(WHITE, PAWN) == 1 && pos.piece_count(BLACK, PAWN) == 1)
{
// This is a special case because we set scaling functions
// for both colors instead of only one.
mi->scalingFunction[WHITE] = &ScaleKPKPw;
mi->scalingFunction[BLACK] = &ScaleKPKPb;
}
}
// Compute the space weight
if (pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) >=
2*QueenValueMidgame + 4*RookValueMidgame + 2*KnightValueMidgame)
{
int minorPieceCount = pos.piece_count(WHITE, KNIGHT)
+ pos.piece_count(BLACK, KNIGHT)
+ pos.piece_count(WHITE, BISHOP)
+ pos.piece_count(BLACK, BISHOP);
mi->spaceWeight = minorPieceCount * minorPieceCount;
}
// Evaluate the material balance
const int pieceCount[2][6] = { { pos.piece_count(WHITE, BISHOP) > 1, pos.piece_count(WHITE, PAWN), pos.piece_count(WHITE, KNIGHT),
pos.piece_count(WHITE, BISHOP), pos.piece_count(WHITE, ROOK), pos.piece_count(WHITE, QUEEN) },
{ pos.piece_count(BLACK, BISHOP) > 1, pos.piece_count(BLACK, PAWN), pos.piece_count(BLACK, KNIGHT),
pos.piece_count(BLACK, BISHOP), pos.piece_count(BLACK, ROOK), pos.piece_count(BLACK, QUEEN) } };
Color c, them;
int sign;
int matValue = 0;
for (c = WHITE, sign = 1; c <= BLACK; c++, sign = -sign)
{
// No pawns makes it difficult to win, even with a material advantage
if ( pos.piece_count(c, PAWN) == 0
&& pos.non_pawn_material(c) - pos.non_pawn_material(opposite_color(c)) <= BishopValueMidgame)
{
if ( pos.non_pawn_material(c) == pos.non_pawn_material(opposite_color(c))
|| pos.non_pawn_material(c) < RookValueMidgame)
mi->factor[c] = 0;
else
{
switch (pos.piece_count(c, BISHOP)) {
case 2:
mi->factor[c] = 32;
break;
case 1:
mi->factor[c] = 12;
break;
case 0:
mi->factor[c] = 6;
break;
}
}
}
// Redundancy of major pieces, formula based on Kaufman's paper
// "The Evaluation of Material Imbalances in Chess"
// http://mywebpages.comcast.net/danheisman/Articles/evaluation_of_material_imbalance.htm
if (pieceCount[c][ROOK] >= 1)
matValue -= sign * ((pieceCount[c][ROOK] - 1) * RedundantRookPenalty + pieceCount[c][QUEEN] * RedundantQueenPenalty);
them = opposite_color(c);
// Second-degree polynomial material imbalance by Tord Romstad
//
// We use NO_PIECE_TYPE as a place holder for the bishop pair "extended piece",
// this allow us to be more flexible in defining bishop pair bonuses.
for (int pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; pt1++)
{
int c1 = sign * pieceCount[c][pt1];
if (!c1)
continue;
matValue += c1 * LinearCoefficients[pt1];
for (int pt2 = NO_PIECE_TYPE; pt2 <= pt1; pt2++)
{
matValue += c1 * pieceCount[c][pt2] * QuadraticCoefficientsSameColor[pt1][pt2];
matValue += c1 * pieceCount[them][pt2] * QuadraticCoefficientsOppositeColor[pt1][pt2];
}
}
}
mi->value = int16_t(matValue / 16);
return mi;
}
/// EndgameFunctions member definitions.
EndgameFunctions::EndgameFunctions() {
add<EvaluationFunction<KNNK> >("KNNK");
add<EvaluationFunction<KPK> >("KPK");
add<EvaluationFunction<KBNK> >("KBNK");
add<EvaluationFunction<KRKP> >("KRKP");
add<EvaluationFunction<KRKB> >("KRKB");
add<EvaluationFunction<KRKN> >("KRKN");
add<EvaluationFunction<KQKR> >("KQKR");
add<EvaluationFunction<KBBKN> >("KBBKN");
add<ScalingFunction<KNPK> >("KNPK");
add<ScalingFunction<KRPKR> >("KRPKR");
add<ScalingFunction<KBPKB> >("KBPKB");
add<ScalingFunction<KBPPKB> >("KBPPKB");
add<ScalingFunction<KBPKN> >("KBPKN");
add<ScalingFunction<KRPPKRP> >("KRPPKRP");
add<ScalingFunction<KRPPKRP> >("KRPPKRP");
}
EndgameFunctions::~EndgameFunctions() {
for (map<Key, EF*>::iterator it = maps.first.begin(); it != maps.first.end(); ++it)
delete (*it).second;
for (map<Key, SF*>::iterator it = maps.second.begin(); it != maps.second.end(); ++it)
delete (*it).second;
}
Key EndgameFunctions::buildKey(const string& keyCode) {
assert(keyCode.length() > 0 && keyCode[0] == 'K');
assert(keyCode.length() < 8);
stringstream s;
bool upcase = false;
// Build up a fen string with the given pieces, note that
// the fen string could be of an illegal position.
for (size_t i = 0; i < keyCode.length(); i++)
{
if (keyCode[i] == 'K')
upcase = !upcase;
s << char(upcase? toupper(keyCode[i]) : tolower(keyCode[i]));
}
s << 8 - keyCode.length() << "/8/8/8/8/8/8/8 w -";
return Position(s.str()).get_material_key();
}
const string EndgameFunctions::swapColors(const string& keyCode) {
// Build corresponding key for the opposite color: "KBPKN" -> "KNKBP"
size_t idx = keyCode.find("K", 1);
return keyCode.substr(idx) + keyCode.substr(0, idx);
}
template<class T>
void EndgameFunctions::add(const string& keyCode) {
typedef typename T::Base F;
get<F>().insert(pair<Key, F*>(buildKey(keyCode), new T(WHITE)));
get<F>().insert(pair<Key, F*>(buildKey(swapColors(keyCode)), new T(BLACK)));
}
template<class T>
T* EndgameFunctions::get(Key key) const {
typename map<Key, T*>::const_iterator it(get<T>().find(key));
return (it != get<T>().end() ? it->second : NULL);
}