1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-30 08:43:09 +00:00
BadFish/src/movegen.cpp
Marco Costalba a5fce1958b Fix generation of check blocking promotion
A promotion move is not considered a possible evasion as it could be.

Bug introduced by patch

Convert also generate_pawn_blocking_evasions() to new API (7/5/2009)

Bug spotted by Kenny Dail.

Signed-off-by: Marco Costalba <mcostalba@gmail.com>
2009-07-06 09:41:22 +01:00

966 lines
32 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2009 Marco Costalba
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
////
//// Includes
////
#include <cassert>
#include "bitcount.h"
#include "movegen.h"
// Simple macro to wrap a very common while loop, no facny, no flexibility,
// hardcoded list name 'mlist' and from square 'from'.
#define SERIALIZE_MOVES(b) while (b) (*mlist++).move = make_move(from, pop_1st_bit(&b))
////
//// Local definitions
////
namespace {
enum CastlingSide {
KING_SIDE,
QUEEN_SIDE
};
enum MoveType {
CAPTURE,
NON_CAPTURE
};
// Functions
bool castling_is_check(const Position&, CastlingSide);
// Helper templates
template<CastlingSide Side>
MoveStack* generate_castle_moves(const Position& pos, MoveStack* mlist);
template<Color Us>
MoveStack* generate_pawn_blocking_evasions(const Position&, Bitboard, Bitboard, MoveStack*);
template<Color Us>
MoveStack* generate_pawn_captures(const Position& pos, MoveStack* mlist);
template<Color Us, SquareDelta Diagonal>
MoveStack* generate_pawn_captures_diagonal(MoveStack* mlist, Bitboard pawns, Bitboard enemyPieces);
template<Color Us>
MoveStack* generate_pawn_noncaptures(const Position& pos, MoveStack* mlist);
template<Color Us>
MoveStack* generate_pawn_checks(const Position&, Bitboard, Square, MoveStack*);
template<Color Us, SquareDelta Direction>
inline Bitboard move_pawns(Bitboard p) {
if (Direction == DELTA_N)
return Us == WHITE ? p << 8 : p >> 8;
else if (Direction == DELTA_NE)
return Us == WHITE ? p << 9 : p >> 7;
else if (Direction == DELTA_NW)
return Us == WHITE ? p << 7 : p >> 9;
else
return p;
}
// Template generate_piece_checks() with specializations
template<PieceType>
MoveStack* generate_piece_checks(const Position&, MoveStack*, Color, Bitboard, Square);
template<>
inline MoveStack* generate_piece_checks<PAWN>(const Position& p, MoveStack* m, Color us, Bitboard dc, Square ksq) {
return (us == WHITE ? generate_pawn_checks<WHITE>(p, dc, ksq, m)
: generate_pawn_checks<BLACK>(p, dc, ksq, m));
}
// Template generate_piece_moves() with specializations and overloads
template<PieceType>
MoveStack* generate_piece_moves(const Position&, MoveStack*, Color us, Bitboard);
template<>
MoveStack* generate_piece_moves<KING>(const Position&, MoveStack*, Color, Bitboard);
template<PieceType Piece, MoveType Type>
inline MoveStack* generate_piece_moves(const Position& p, MoveStack* m, Color us) {
assert(Piece == PAWN);
if (Type == CAPTURE)
return (us == WHITE ? generate_pawn_captures<WHITE>(p, m)
: generate_pawn_captures<BLACK>(p, m));
else
return (us == WHITE ? generate_pawn_noncaptures<WHITE>(p, m)
: generate_pawn_noncaptures<BLACK>(p, m));
}
template<PieceType>
MoveStack* generate_piece_moves(const Position&, MoveStack*, Color us, Bitboard, Bitboard);
template<>
inline MoveStack* generate_piece_moves<PAWN>(const Position& p, MoveStack* m,
Color us, Bitboard t, Bitboard pnd) {
return (us == WHITE ? generate_pawn_blocking_evasions<WHITE>(p, pnd, t, m)
: generate_pawn_blocking_evasions<BLACK>(p, pnd, t, m));
}
}
////
//// Functions
////
/// generate_captures generates() all pseudo-legal captures and queen
/// promotions. The return value is the number of moves generated.
int generate_captures(const Position& pos, MoveStack* mlist) {
assert(pos.is_ok());
assert(!pos.is_check());
Color us = pos.side_to_move();
Bitboard target = pos.pieces_of_color(opposite_color(us));
MoveStack* mlist_start = mlist;
mlist = generate_piece_moves<QUEEN>(pos, mlist, us, target);
mlist = generate_piece_moves<ROOK>(pos, mlist, us, target);
mlist = generate_piece_moves<BISHOP>(pos, mlist, us, target);
mlist = generate_piece_moves<KNIGHT>(pos, mlist, us, target);
mlist = generate_piece_moves<PAWN, CAPTURE>(pos, mlist, us);
mlist = generate_piece_moves<KING>(pos, mlist, us, target);
return int(mlist - mlist_start);
}
/// generate_noncaptures() generates all pseudo-legal non-captures and
/// underpromotions. The return value is the number of moves generated.
int generate_noncaptures(const Position& pos, MoveStack* mlist) {
assert(pos.is_ok());
assert(!pos.is_check());
Color us = pos.side_to_move();
Bitboard target = pos.empty_squares();
MoveStack* mlist_start = mlist;
mlist = generate_piece_moves<PAWN, NON_CAPTURE>(pos, mlist, us);
mlist = generate_piece_moves<KNIGHT>(pos, mlist, us, target);
mlist = generate_piece_moves<BISHOP>(pos, mlist, us, target);
mlist = generate_piece_moves<ROOK>(pos, mlist, us, target);
mlist = generate_piece_moves<QUEEN>(pos, mlist, us, target);
mlist = generate_piece_moves<KING>(pos, mlist, us, target);
mlist = generate_castle_moves<KING_SIDE>(pos, mlist);
mlist = generate_castle_moves<QUEEN_SIDE>(pos, mlist);
return int(mlist - mlist_start);
}
/// generate_non_capture_checks() generates all pseudo-legal non-capturing,
/// non-promoting checks. It returns the number of generated moves.
int generate_non_capture_checks(const Position& pos, MoveStack* mlist, Bitboard dc) {
assert(pos.is_ok());
assert(!pos.is_check());
Color us = pos.side_to_move();
Square ksq = pos.king_square(opposite_color(us));
MoveStack* mlist_start = mlist;
assert(pos.piece_on(ksq) == piece_of_color_and_type(opposite_color(us), KING));
// Pieces moves
mlist = generate_piece_checks<PAWN>(pos, mlist, us, dc, ksq);
mlist = generate_piece_checks<KNIGHT>(pos, mlist, us, dc, ksq);
mlist = generate_piece_checks<BISHOP>(pos, mlist, us, dc, ksq);
mlist = generate_piece_checks<ROOK>(pos, mlist, us, dc, ksq);
mlist = generate_piece_checks<QUEEN>(pos, mlist, us, dc, ksq);
mlist = generate_piece_checks<KING>(pos, mlist, us, dc, ksq);
// Castling moves that give check. Very rare but nice to have!
if ( pos.can_castle_queenside(us)
&& (square_rank(ksq) == square_rank(pos.king_square(us)) || square_file(ksq) == FILE_D)
&& castling_is_check(pos, QUEEN_SIDE))
mlist = generate_castle_moves<QUEEN_SIDE>(pos, mlist);
if ( pos.can_castle_kingside(us)
&& (square_rank(ksq) == square_rank(pos.king_square(us)) || square_file(ksq) == FILE_F)
&& castling_is_check(pos, KING_SIDE))
mlist = generate_castle_moves<KING_SIDE>(pos, mlist);
return int(mlist - mlist_start);
}
/// generate_evasions() generates all check evasions when the side to move is
/// in check. Unlike the other move generation functions, this one generates
/// only legal moves. It returns the number of generated moves.
int generate_evasions(const Position& pos, MoveStack* mlist, Bitboard pinned) {
assert(pos.is_ok());
assert(pos.is_check());
Square from, to;
Color us = pos.side_to_move();
Color them = opposite_color(us);
Square ksq = pos.king_square(us);
MoveStack* mlist_start = mlist;
assert(pos.piece_on(ksq) == piece_of_color_and_type(us, KING));
// The bitboard of occupied pieces without our king
Bitboard b_noKing = pos.occupied_squares();
clear_bit(&b_noKing, ksq);
// Find squares attacked by slider checkers, we will
// remove them from king evasions set so to avoid a couple
// of cycles in the slow king evasions legality check loop
// and to be able to use square_is_attacked().
Bitboard checkers = pos.checkers();
Bitboard checkersAttacks = EmptyBoardBB;
Bitboard b = checkers & (pos.queens() | pos.bishops());
while (b)
{
from = pop_1st_bit(&b);
checkersAttacks |= bishop_attacks_bb(from, b_noKing);
}
b = checkers & (pos.queens() | pos.rooks());
while (b)
{
from = pop_1st_bit(&b);
checkersAttacks |= rook_attacks_bb(from, b_noKing);
}
// Generate evasions for king
Bitboard b1 = pos.piece_attacks<KING>(ksq) & ~pos.pieces_of_color(us) & ~checkersAttacks;
while (b1)
{
to = pop_1st_bit(&b1);
// Note that we can use square_is_attacked() only because we
// have already removed slider checkers.
if (!pos.square_is_attacked(to, them))
(*mlist++).move = make_move(ksq, to);
}
// Generate evasions for other pieces only if not double check. We use a
// simple bit twiddling hack here rather than calling count_1s in order to
// save some time (we know that pos.checkers() has at most two nonzero bits).
if (!(checkers & (checkers - 1))) // Only one bit set?
{
Square checksq = first_1(checkers);
assert(pos.color_of_piece_on(checksq) == them);
// Generate captures of the checking piece
// Pawn captures
b1 = pos.pawn_attacks(them, checksq) & pos.pawns(us) & ~pinned;
while (b1)
{
from = pop_1st_bit(&b1);
if (relative_rank(us, checksq) == RANK_8)
{
(*mlist++).move = make_promotion_move(from, checksq, QUEEN);
(*mlist++).move = make_promotion_move(from, checksq, ROOK);
(*mlist++).move = make_promotion_move(from, checksq, BISHOP);
(*mlist++).move = make_promotion_move(from, checksq, KNIGHT);
} else
(*mlist++).move = make_move(from, checksq);
}
// Pieces captures
b1 = ( (pos.piece_attacks<KNIGHT>(checksq) & pos.knights(us))
| (pos.piece_attacks<BISHOP>(checksq) & pos.bishops_and_queens(us))
| (pos.piece_attacks<ROOK>(checksq) & pos.rooks_and_queens(us)) ) & ~pinned;
while (b1)
{
from = pop_1st_bit(&b1);
(*mlist++).move = make_move(from, checksq);
}
// Blocking check evasions are possible only if the checking piece is
// a slider.
if (checkers & pos.sliders())
{
Bitboard blockSquares = squares_between(checksq, ksq);
assert((pos.occupied_squares() & blockSquares) == EmptyBoardBB);
if (blockSquares != EmptyBoardBB)
{
mlist = generate_piece_moves<PAWN>(pos, mlist, us, blockSquares, pinned);
mlist = generate_piece_moves<KNIGHT>(pos, mlist, us, blockSquares, pinned);
mlist = generate_piece_moves<BISHOP>(pos, mlist, us, blockSquares, pinned);
mlist = generate_piece_moves<ROOK>(pos, mlist, us, blockSquares, pinned);
mlist = generate_piece_moves<QUEEN>(pos, mlist, us, blockSquares, pinned);
}
}
// Finally, the special case of en passant captures. An en passant
// capture can only be a check evasion if the check is not a discovered
// check. If pos.ep_square() is set, the last move made must have been
// a double pawn push. If, furthermore, the checking piece is a pawn,
// an en passant check evasion may be possible.
if (pos.ep_square() != SQ_NONE && (checkers & pos.pawns(them)))
{
to = pos.ep_square();
b1 = pos.pawn_attacks(them, to) & pos.pawns(us);
// The checking pawn cannot be a discovered (bishop) check candidate
// otherwise we were in check also before last double push move.
assert(!bit_is_set(pos.discovered_check_candidates(them), checksq));
assert(count_1s(b1) == 1 || count_1s(b1) == 2);
b1 &= ~pinned;
while (b1)
{
from = pop_1st_bit(&b1);
// Move is always legal because checking pawn is not a discovered
// check candidate and our capturing pawn has been already tested
// against pinned pieces.
(*mlist++).move = make_ep_move(from, to);
}
}
}
return int(mlist - mlist_start);
}
/// generate_legal_moves() computes a complete list of legal moves in the
/// current position. This function is not very fast, and should be used
/// only in situations where performance is unimportant. It wouldn't be
/// very hard to write an efficient legal move generator, but for the moment
/// we don't need it.
int generate_legal_moves(const Position& pos, MoveStack* mlist) {
assert(pos.is_ok());
Bitboard pinned = pos.pinned_pieces(pos.side_to_move());
if (pos.is_check())
return generate_evasions(pos, mlist, pinned);
// Generate pseudo-legal moves
int n = generate_captures(pos, mlist);
n += generate_noncaptures(pos, mlist + n);
// Remove illegal moves from the list
for (int i = 0; i < n; i++)
if (!pos.pl_move_is_legal(mlist[i].move, pinned))
mlist[i--].move = mlist[--n].move;
return n;
}
/// move_is_legal() takes a position and a (not necessarily pseudo-legal)
/// move and a pinned pieces bitboard as input, and tests whether
/// the move is legal. If the move is legal, the move itself is
/// returned. If not, the function returns false. This function must
/// only be used when the side to move is not in check.
bool move_is_legal(const Position& pos, const Move m, Bitboard pinned) {
assert(pos.is_ok());
assert(!pos.is_check());
assert(move_is_ok(m));
assert(pinned == pos.pinned_pieces(pos.side_to_move()));
Color us = pos.side_to_move();
Square from = move_from(m);
Piece pc = pos.piece_on(from);
// If the from square is not occupied by a piece belonging to the side to
// move, the move is obviously not legal.
if (color_of_piece(pc) != us)
return false;
Color them = opposite_color(us);
Square to = move_to(m);
// En passant moves
if (move_is_ep(m))
{
// The piece must be a pawn and destination square must be the
// en passant square.
if ( type_of_piece(pc) != PAWN
|| to != pos.ep_square())
return false;
assert(pos.square_is_empty(to));
assert(pos.piece_on(to - pawn_push(us)) == piece_of_color_and_type(them, PAWN));
// The move is pseudo-legal, check if it is also legal
return pos.pl_move_is_legal(m, pinned);
}
// Castling moves
if (move_is_short_castle(m))
{
// The piece must be a king and side to move must still have
// the right to castle kingside.
if ( type_of_piece(pc) != KING
||!pos.can_castle_kingside(us))
return false;
assert(from == pos.king_square(us));
assert(to == pos.initial_kr_square(us));
assert(pos.piece_on(to) == piece_of_color_and_type(us, ROOK));
Square g1 = relative_square(us, SQ_G1);
Square f1 = relative_square(us, SQ_F1);
Square s;
bool illegal = false;
// Check if any of the squares between king and rook
// is occupied or under attack.
for (s = Min(from, g1); s <= Max(from, g1); s++)
if ( (s != from && s != to && !pos.square_is_empty(s))
|| pos.square_is_attacked(s, them))
illegal = true;
// Check if any of the squares between king and rook
// is occupied.
for (s = Min(to, f1); s <= Max(to, f1); s++)
if (s != from && s != to && !pos.square_is_empty(s))
illegal = true;
return !illegal;
}
if (move_is_long_castle(m))
{
// The piece must be a king and side to move must still have
// the right to castle kingside.
if ( type_of_piece(pc) != KING
||!pos.can_castle_queenside(us))
return false;
assert(from == pos.king_square(us));
assert(to == pos.initial_qr_square(us));
assert(pos.piece_on(to) == piece_of_color_and_type(us, ROOK));
Square c1 = relative_square(us, SQ_C1);
Square d1 = relative_square(us, SQ_D1);
Square s;
bool illegal = false;
for (s = Min(from, c1); s <= Max(from, c1); s++)
if( (s != from && s != to && !pos.square_is_empty(s))
|| pos.square_is_attacked(s, them))
illegal = true;
for (s = Min(to, d1); s <= Max(to, d1); s++)
if(s != from && s != to && !pos.square_is_empty(s))
illegal = true;
if ( square_file(to) == FILE_B
&& ( pos.piece_on(to + DELTA_W) == piece_of_color_and_type(them, ROOK)
|| pos.piece_on(to + DELTA_W) == piece_of_color_and_type(them, QUEEN)))
illegal = true;
return !illegal;
}
// Normal moves
// The destination square cannot be occupied by a friendly piece
if (pos.color_of_piece_on(to) == us)
return false;
// Proceed according to the type of the moving piece.
if (type_of_piece(pc) == PAWN)
{
// Move direction must be compatible with pawn color
int direction = to - from;
if ((us == WHITE) != (direction > 0))
return false;
// If the destination square is on the 8/1th rank, the move must
// be a promotion.
if ( ( (square_rank(to) == RANK_8 && us == WHITE)
||(square_rank(to) == RANK_1 && us != WHITE))
&& !move_is_promotion(m))
return false;
// Proceed according to the square delta between the source and
// destionation squares.
switch (direction)
{
case DELTA_NW:
case DELTA_NE:
case DELTA_SW:
case DELTA_SE:
// Capture. The destination square must be occupied by an enemy
// piece (en passant captures was handled earlier).
if (pos.color_of_piece_on(to) != them)
return false;
break;
case DELTA_N:
case DELTA_S:
// Pawn push. The destination square must be empty.
if (!pos.square_is_empty(to))
return false;
break;
case DELTA_NN:
// Double white pawn push. The destination square must be on the fourth
// rank, and both the destination square and the square between the
// source and destination squares must be empty.
if ( square_rank(to) != RANK_4
|| !pos.square_is_empty(to)
|| !pos.square_is_empty(from + DELTA_N))
return false;
break;
case DELTA_SS:
// Double black pawn push. The destination square must be on the fifth
// rank, and both the destination square and the square between the
// source and destination squares must be empty.
if ( square_rank(to) != RANK_5
|| !pos.square_is_empty(to)
|| !pos.square_is_empty(from + DELTA_S))
return false;
break;
default:
return false;
}
// The move is pseudo-legal, check if it is also legal
return pos.pl_move_is_legal(m, pinned);
}
// Luckly we can handle all the other pieces in one go
return ( pos.piece_attacks_square(pos.piece_on(from), from, to)
&& pos.pl_move_is_legal(m, pinned)
&& !move_is_promotion(m));
}
namespace {
template<PieceType Piece>
MoveStack* generate_piece_moves(const Position& pos, MoveStack* mlist, Color us, Bitboard target) {
Square from;
Bitboard b;
for (int i = 0, e = pos.piece_count(us, Piece); i < e; i++)
{
from = pos.piece_list(us, Piece, i);
b = pos.piece_attacks<Piece>(from) & target;
SERIALIZE_MOVES(b);
}
return mlist;
}
template<PieceType Piece>
MoveStack* generate_piece_moves(const Position& pos, MoveStack* mlist,
Color us, Bitboard target, Bitboard pinned) {
Square from;
Bitboard b;
for (int i = 0, e = pos.piece_count(us, Piece); i < e; i++)
{
from = pos.piece_list(us, Piece, i);
if (pinned && bit_is_set(pinned, from))
continue;
b = pos.piece_attacks<Piece>(from) & target;
SERIALIZE_MOVES(b);
}
return mlist;
}
template<>
MoveStack* generate_piece_moves<KING>(const Position& pos, MoveStack* mlist, Color us, Bitboard target) {
Bitboard b;
Square from = pos.king_square(us);
b = pos.piece_attacks<KING>(from) & target;
SERIALIZE_MOVES(b);
return mlist;
}
template<Color Us, SquareDelta Diagonal>
MoveStack* generate_pawn_captures_diagonal(MoveStack* mlist, Bitboard pawns, Bitboard enemyPieces) {
// Calculate our parametrized parameters at compile time
const Bitboard TRank8BB = (Us == WHITE ? Rank8BB : Rank1BB);
const Bitboard TFileABB = (Diagonal == DELTA_NE ? FileABB : FileHBB);
const SquareDelta TDELTA_NE = (Us == WHITE ? DELTA_NE : DELTA_SE);
const SquareDelta TDELTA_NW = (Us == WHITE ? DELTA_NW : DELTA_SW);
const SquareDelta TTDELTA_NE = (Diagonal == DELTA_NE ? TDELTA_NE : TDELTA_NW);
Square to;
// Captures in the a1-h8 (a8-h1 for black) diagonal or in the h1-a8 (h8-a1 for black)
Bitboard b1 = move_pawns<Us, Diagonal>(pawns) & ~TFileABB & enemyPieces;
// Capturing promotions
Bitboard b2 = b1 & TRank8BB;
while (b2)
{
to = pop_1st_bit(&b2);
(*mlist++).move = make_promotion_move(to - TTDELTA_NE, to, QUEEN);
}
// Capturing non-promotions
b2 = b1 & ~TRank8BB;
while (b2)
{
to = pop_1st_bit(&b2);
(*mlist++).move = make_move(to - TTDELTA_NE, to);
}
return mlist;
}
template<Color Us>
MoveStack* generate_pawn_captures(const Position& pos, MoveStack* mlist) {
// Calculate our parametrized parameters at compile time
const Color Them = (Us == WHITE ? BLACK : WHITE);
const Bitboard TRank8BB = (Us == WHITE ? Rank8BB : Rank1BB);
const SquareDelta TDELTA_N = (Us == WHITE ? DELTA_N : DELTA_S);
Square to;
Bitboard pawns = pos.pawns(Us);
Bitboard enemyPieces = pos.pieces_of_color(opposite_color(Us));
// Standard captures and capturing promotions in both directions
mlist = generate_pawn_captures_diagonal<Us, DELTA_NE>(mlist, pawns, enemyPieces);
mlist = generate_pawn_captures_diagonal<Us, DELTA_NW>(mlist, pawns, enemyPieces);
// Non-capturing promotions
Bitboard b1 = move_pawns<Us, DELTA_N>(pawns) & pos.empty_squares() & TRank8BB;
while (b1)
{
to = pop_1st_bit(&b1);
(*mlist++).move = make_promotion_move(to - TDELTA_N, to, QUEEN);
}
// En passant captures
if (pos.ep_square() != SQ_NONE)
{
assert(Us != WHITE || square_rank(pos.ep_square()) == RANK_6);
assert(Us != BLACK || square_rank(pos.ep_square()) == RANK_3);
b1 = pawns & pos.pawn_attacks(Them, pos.ep_square());
assert(b1 != EmptyBoardBB);
while (b1)
{
to = pop_1st_bit(&b1);
(*mlist++).move = make_ep_move(to, pos.ep_square());
}
}
return mlist;
}
template<Color Us>
MoveStack* generate_pawn_noncaptures(const Position& pos, MoveStack* mlist) {
// Calculate our parametrized parameters at compile time
const Bitboard TRank8BB = (Us == WHITE ? Rank8BB : Rank1BB);
const Bitboard TRank3BB = (Us == WHITE ? Rank3BB : Rank6BB);
const SquareDelta TDELTA_NE = (Us == WHITE ? DELTA_NE : DELTA_SE);
const SquareDelta TDELTA_NW = (Us == WHITE ? DELTA_NW : DELTA_SW);
const SquareDelta TDELTA_N = (Us == WHITE ? DELTA_N : DELTA_S);
Bitboard b1, b2;
Square to;
Bitboard pawns = pos.pawns(Us);
Bitboard enemyPieces = pos.pieces_of_color(opposite_color(Us));
Bitboard emptySquares = pos.empty_squares();
// Underpromotion captures in the a1-h8 (a8-h1 for black) direction
b1 = move_pawns<Us, DELTA_NE>(pawns) & ~FileABB & enemyPieces & TRank8BB;
while (b1)
{
to = pop_1st_bit(&b1);
(*mlist++).move = make_promotion_move(to - TDELTA_NE, to, ROOK);
(*mlist++).move = make_promotion_move(to - TDELTA_NE, to, BISHOP);
(*mlist++).move = make_promotion_move(to - TDELTA_NE, to, KNIGHT);
}
// Underpromotion captures in the h1-a8 (h8-a1 for black) direction
b1 = move_pawns<Us, DELTA_NW>(pawns) & ~FileHBB & enemyPieces & TRank8BB;
while (b1)
{
to = pop_1st_bit(&b1);
(*mlist++).move = make_promotion_move(to - TDELTA_NW, to, ROOK);
(*mlist++).move = make_promotion_move(to - TDELTA_NW, to, BISHOP);
(*mlist++).move = make_promotion_move(to - TDELTA_NW, to, KNIGHT);
}
// Single pawn pushes
b1 = move_pawns<Us, DELTA_N>(pawns) & emptySquares;
b2 = b1 & TRank8BB;
while (b2)
{
to = pop_1st_bit(&b2);
(*mlist++).move = make_promotion_move(to - TDELTA_N, to, ROOK);
(*mlist++).move = make_promotion_move(to - TDELTA_N, to, BISHOP);
(*mlist++).move = make_promotion_move(to - TDELTA_N, to, KNIGHT);
}
b2 = b1 & ~TRank8BB;
while (b2)
{
to = pop_1st_bit(&b2);
(*mlist++).move = make_move(to - TDELTA_N, to);
}
// Double pawn pushes
b2 = move_pawns<Us, DELTA_N>(b1 & TRank3BB) & emptySquares;
while (b2)
{
to = pop_1st_bit(&b2);
(*mlist++).move = make_move(to - TDELTA_N - TDELTA_N, to);
}
return mlist;
}
template<Color Us>
MoveStack* generate_pawn_checks(const Position& pos, Bitboard dc, Square ksq, MoveStack* mlist)
{
// Calculate our parametrized parameters at compile time
const Color Them = (Us == WHITE ? BLACK : WHITE);
const Bitboard TRank8BB = (Us == WHITE ? Rank8BB : Rank1BB);
const Bitboard TRank3BB = (Us == WHITE ? Rank3BB : Rank6BB);
const SquareDelta TDELTA_N = (Us == WHITE ? DELTA_N : DELTA_S);
const SquareDelta TDELTA_S = (Us == WHITE ? DELTA_S : DELTA_N);
Bitboard b1, b2, b3;
Bitboard pawns = pos.pawns(Us);
if (dc & pawns)
{
Bitboard empty = pos.empty_squares();
// Pawn moves which gives discovered check. This is possible only if the
// pawn is not on the same file as the enemy king, because we don't
// generate captures.
b1 = pawns & ~file_bb(ksq);
// Discovered checks, single pawn pushes, no promotions
b2 = b3 = move_pawns<Us, DELTA_N>(b1 & dc) & empty & ~TRank8BB;
while (b3)
{
Square to = pop_1st_bit(&b3);
(*mlist++).move = make_move(to - TDELTA_N, to);
}
// Discovered checks, double pawn pushes
b3 = move_pawns<Us, DELTA_N>(b2 & TRank3BB) & empty;
while (b3)
{
Square to = pop_1st_bit(&b3);
(*mlist++).move = make_move(to - TDELTA_N - TDELTA_N, to);
}
}
// Direct checks. These are possible only for pawns on neighboring files
// and in the two ranks that, after the push, are in front of the enemy king.
b1 = pawns & neighboring_files_bb(ksq) & ~dc;
// We can get false positives if (ksq + x) is not in [0,63] range but
// is not a problem, they will be filtered out later.
b2 = b1 & (rank_bb(ksq + 2 * TDELTA_S) | rank_bb(ksq + 3 * TDELTA_S));
if (!b2)
return mlist;
// Direct checks, single pawn pushes
Bitboard empty = pos.empty_squares();
b2 = move_pawns<Us, DELTA_N>(b1) & empty;
b3 = b2 & pos.pawn_attacks(Them, ksq);
while (b3)
{
Square to = pop_1st_bit(&b3);
(*mlist++).move = make_move(to - TDELTA_N, to);
}
// Direct checks, double pawn pushes
b3 = move_pawns<Us, DELTA_N>(b2 & TRank3BB) & empty & pos.pawn_attacks(Them, ksq);
while (b3)
{
Square to = pop_1st_bit(&b3);
(*mlist++).move = make_move(to - TDELTA_N - TDELTA_N, to);
}
return mlist;
}
template<PieceType Piece>
MoveStack* generate_piece_checks(const Position& pos, MoveStack* mlist, Color us,
Bitboard dc, Square ksq) {
Bitboard target = pos.pieces_of_color_and_type(us, Piece);
// Discovered checks
Bitboard b = target & dc;
while (b)
{
Square from = pop_1st_bit(&b);
Bitboard bb = pos.piece_attacks<Piece>(from) & pos.empty_squares();
if (Piece == KING)
bb &= ~QueenPseudoAttacks[ksq];
SERIALIZE_MOVES(bb);
}
// Direct checks
b = target & ~dc;
if (Piece != KING || b)
{
Bitboard checkSqs = pos.piece_attacks<Piece>(ksq) & pos.empty_squares();
if (!checkSqs)
return mlist;
while (b)
{
Square from = pop_1st_bit(&b);
if ( (Piece == QUEEN && !(QueenPseudoAttacks[from] & checkSqs))
|| (Piece == ROOK && !(RookPseudoAttacks[from] & checkSqs))
|| (Piece == BISHOP && !(BishopPseudoAttacks[from] & checkSqs)))
continue;
Bitboard bb = pos.piece_attacks<Piece>(from) & checkSqs;
SERIALIZE_MOVES(bb);
}
}
return mlist;
}
template<Color Us>
MoveStack* generate_pawn_blocking_evasions(const Position& pos, Bitboard pinned,
Bitboard blockSquares, MoveStack* mlist) {
// Calculate our parametrized parameters at compile time
const Rank TRANK_8 = (Us == WHITE ? RANK_8 : RANK_1);
const Bitboard TRank3BB = (Us == WHITE ? Rank3BB : Rank6BB);
const SquareDelta TDELTA_N = (Us == WHITE ? DELTA_N : DELTA_S);
Square to;
// Find non-pinned pawns and push them one square
Bitboard b1 = move_pawns<Us, DELTA_N>(pos.pawns(Us) & ~pinned);
// We don't have to AND with empty squares here,
// because the blocking squares will always be empty.
Bitboard b2 = b1 & blockSquares;
while (b2)
{
to = pop_1st_bit(&b2);
assert(pos.piece_on(to) == EMPTY);
if (square_rank(to) == TRANK_8)
{
(*mlist++).move = make_promotion_move(to - TDELTA_N, to, QUEEN);
(*mlist++).move = make_promotion_move(to - TDELTA_N, to, ROOK);
(*mlist++).move = make_promotion_move(to - TDELTA_N, to, BISHOP);
(*mlist++).move = make_promotion_move(to - TDELTA_N, to, KNIGHT);
} else
(*mlist++).move = make_move(to - TDELTA_N, to);
}
// Double pawn pushes
b2 = b1 & pos.empty_squares() & TRank3BB;
b2 = move_pawns<Us, DELTA_N>(b2) & blockSquares;
while (b2)
{
to = pop_1st_bit(&b2);
assert(pos.piece_on(to) == EMPTY);
assert(Us != WHITE || square_rank(to) == RANK_4);
assert(Us != BLACK || square_rank(to) == RANK_5);
(*mlist++).move = make_move(to - TDELTA_N - TDELTA_N, to);
}
return mlist;
}
template<CastlingSide Side>
MoveStack* generate_castle_moves(const Position& pos, MoveStack* mlist) {
Color us = pos.side_to_move();
if ( (Side == KING_SIDE && pos.can_castle_kingside(us))
||(Side == QUEEN_SIDE && pos.can_castle_queenside(us)))
{
Color them = opposite_color(us);
Square ksq = pos.king_square(us);
assert(pos.piece_on(ksq) == piece_of_color_and_type(us, KING));
Square rsq = (Side == KING_SIDE ? pos.initial_kr_square(us) : pos.initial_qr_square(us));
Square s1 = relative_square(us, Side == KING_SIDE ? SQ_G1 : SQ_C1);
Square s2 = relative_square(us, Side == KING_SIDE ? SQ_F1 : SQ_D1);
Square s;
bool illegal = false;
assert(pos.piece_on(rsq) == piece_of_color_and_type(us, ROOK));
// It is a bit complicated to correctly handle Chess960
for (s = Min(ksq, s1); s <= Max(ksq, s1); s++)
if ( (s != ksq && s != rsq && pos.square_is_occupied(s))
|| pos.square_is_attacked(s, them))
illegal = true;
for (s = Min(rsq, s2); s <= Max(rsq, s2); s++)
if (s != ksq && s != rsq && pos.square_is_occupied(s))
illegal = true;
if ( Side == QUEEN_SIDE
&& square_file(rsq) == FILE_B
&& ( pos.piece_on(relative_square(us, SQ_A1)) == piece_of_color_and_type(them, ROOK)
|| pos.piece_on(relative_square(us, SQ_A1)) == piece_of_color_and_type(them, QUEEN)))
illegal = true;
if (!illegal)
(*mlist++).move = make_castle_move(ksq, rsq);
}
return mlist;
}
bool castling_is_check(const Position& pos, CastlingSide side) {
// After castling opponent king is attacked by the castled rook?
File rookFile = (side == QUEEN_SIDE ? FILE_D : FILE_F);
Color us = pos.side_to_move();
Square ksq = pos.king_square(us);
Bitboard occ = pos.occupied_squares();
clear_bit(&occ, ksq); // Remove our king from the board
Square rsq = make_square(rookFile, square_rank(ksq));
return bit_is_set(rook_attacks_bb(rsq, occ), pos.king_square(opposite_color(us)));
}
}