1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-05-01 01:03:09 +00:00
BadFish/src/bitboard.h
Joost VandeVondele af110e02ec Remove classical evaluation
since the introduction of NNUE (first released with Stockfish 12), we
have maintained the classical evaluation as part of SF in frozen form.
The idea that this code could lead to further inputs to the NN or
search did not materialize. Now, after five releases, this PR removes
the classical evaluation from SF. Even though this evaluation is
probably the best of its class, it has become unimportant for the
engine's strength, and there is little need to maintain this
code (roughly 25% of SF) going forward, or to expend resources on
trying to improve its integration in the NNUE eval.

Indeed, it had still a very limited use in the current SF, namely
for the evaluation of positions that are nearly decided based on
material difference, where the speed of the classical evaluation
outweights its inaccuracies. This impact on strength is small,
roughly 2Elo, and probably decreasing in importance as the TC grows.

Potentially, removal of this code could lead to the development of
techniques to have faster, but less accurate NN evaluation,
for certain positions.

STC
https://tests.stockfishchess.org/tests/view/64a320173ee09aa549c52157
Elo: -2.35 ± 1.1 (95%) LOS: 0.0%
Total: 100000 W: 24916 L: 25592 D: 49492
Ptnml(0-2): 287, 12123, 25841, 11477, 272
nElo: -4.62 ± 2.2 (95%) PairsRatio: 0.95

LTC
https://tests.stockfishchess.org/tests/view/64a320293ee09aa549c5215b
 Elo: -1.74 ± 1.0 (95%) LOS: 0.0%
Total: 100000 W: 25010 L: 25512 D: 49478
Ptnml(0-2): 44, 11069, 28270, 10579, 38
nElo: -3.72 ± 2.2 (95%) PairsRatio: 0.96

VLTC SMP
https://tests.stockfishchess.org/tests/view/64a3207c3ee09aa549c52168
 Elo: -1.70 ± 0.9 (95%) LOS: 0.0%
Total: 100000 W: 25673 L: 26162 D: 48165
Ptnml(0-2): 8, 9455, 31569, 8954, 14
nElo: -3.95 ± 2.2 (95%) PairsRatio: 0.95

closes https://github.com/official-stockfish/Stockfish/pull/4674

Bench: 1444646
2023-07-11 22:56:49 +02:00

443 lines
13 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2023 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef BITBOARD_H_INCLUDED
#define BITBOARD_H_INCLUDED
#include <string>
#include "types.h"
namespace Stockfish {
namespace Bitboards {
void init();
std::string pretty(Bitboard b);
} // namespace Stockfish::Bitboards
constexpr Bitboard AllSquares = ~Bitboard(0);
constexpr Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL;
constexpr Bitboard FileABB = 0x0101010101010101ULL;
constexpr Bitboard FileBBB = FileABB << 1;
constexpr Bitboard FileCBB = FileABB << 2;
constexpr Bitboard FileDBB = FileABB << 3;
constexpr Bitboard FileEBB = FileABB << 4;
constexpr Bitboard FileFBB = FileABB << 5;
constexpr Bitboard FileGBB = FileABB << 6;
constexpr Bitboard FileHBB = FileABB << 7;
constexpr Bitboard Rank1BB = 0xFF;
constexpr Bitboard Rank2BB = Rank1BB << (8 * 1);
constexpr Bitboard Rank3BB = Rank1BB << (8 * 2);
constexpr Bitboard Rank4BB = Rank1BB << (8 * 3);
constexpr Bitboard Rank5BB = Rank1BB << (8 * 4);
constexpr Bitboard Rank6BB = Rank1BB << (8 * 5);
constexpr Bitboard Rank7BB = Rank1BB << (8 * 6);
constexpr Bitboard Rank8BB = Rank1BB << (8 * 7);
constexpr Bitboard QueenSide = FileABB | FileBBB | FileCBB | FileDBB;
constexpr Bitboard CenterFiles = FileCBB | FileDBB | FileEBB | FileFBB;
constexpr Bitboard KingSide = FileEBB | FileFBB | FileGBB | FileHBB;
constexpr Bitboard Center = (FileDBB | FileEBB) & (Rank4BB | Rank5BB);
constexpr Bitboard KingFlank[FILE_NB] = {
QueenSide ^ FileDBB, QueenSide, QueenSide,
CenterFiles, CenterFiles,
KingSide, KingSide, KingSide ^ FileEBB
};
extern uint8_t PopCnt16[1 << 16];
extern uint8_t SquareDistance[SQUARE_NB][SQUARE_NB];
extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
extern Bitboard LineBB[SQUARE_NB][SQUARE_NB];
extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
extern Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
/// Magic holds all magic bitboards relevant data for a single square
struct Magic {
Bitboard mask;
Bitboard magic;
Bitboard* attacks;
unsigned shift;
// Compute the attack's index using the 'magic bitboards' approach
unsigned index(Bitboard occupied) const {
if (HasPext)
return unsigned(pext(occupied, mask));
if (Is64Bit)
return unsigned(((occupied & mask) * magic) >> shift);
unsigned lo = unsigned(occupied) & unsigned(mask);
unsigned hi = unsigned(occupied >> 32) & unsigned(mask >> 32);
return (lo * unsigned(magic) ^ hi * unsigned(magic >> 32)) >> shift;
}
};
extern Magic RookMagics[SQUARE_NB];
extern Magic BishopMagics[SQUARE_NB];
inline Bitboard square_bb(Square s) {
assert(is_ok(s));
return (1ULL << s);
}
/// Overloads of bitwise operators between a Bitboard and a Square for testing
/// whether a given bit is set in a bitboard, and for setting and clearing bits.
inline Bitboard operator&( Bitboard b, Square s) { return b & square_bb(s); }
inline Bitboard operator|( Bitboard b, Square s) { return b | square_bb(s); }
inline Bitboard operator^( Bitboard b, Square s) { return b ^ square_bb(s); }
inline Bitboard& operator|=(Bitboard& b, Square s) { return b |= square_bb(s); }
inline Bitboard& operator^=(Bitboard& b, Square s) { return b ^= square_bb(s); }
inline Bitboard operator&(Square s, Bitboard b) { return b & s; }
inline Bitboard operator|(Square s, Bitboard b) { return b | s; }
inline Bitboard operator^(Square s, Bitboard b) { return b ^ s; }
inline Bitboard operator|(Square s1, Square s2) { return square_bb(s1) | s2; }
constexpr bool more_than_one(Bitboard b) {
return b & (b - 1);
}
constexpr bool opposite_colors(Square s1, Square s2) {
return (s1 + rank_of(s1) + s2 + rank_of(s2)) & 1;
}
/// rank_bb() and file_bb() return a bitboard representing all the squares on
/// the given file or rank.
constexpr Bitboard rank_bb(Rank r) {
return Rank1BB << (8 * r);
}
constexpr Bitboard rank_bb(Square s) {
return rank_bb(rank_of(s));
}
constexpr Bitboard file_bb(File f) {
return FileABB << f;
}
constexpr Bitboard file_bb(Square s) {
return file_bb(file_of(s));
}
/// shift() moves a bitboard one or two steps as specified by the direction D
template<Direction D>
constexpr Bitboard shift(Bitboard b) {
return D == NORTH ? b << 8 : D == SOUTH ? b >> 8
: D == NORTH+NORTH? b <<16 : D == SOUTH+SOUTH? b >>16
: D == EAST ? (b & ~FileHBB) << 1 : D == WEST ? (b & ~FileABB) >> 1
: D == NORTH_EAST ? (b & ~FileHBB) << 9 : D == NORTH_WEST ? (b & ~FileABB) << 7
: D == SOUTH_EAST ? (b & ~FileHBB) >> 7 : D == SOUTH_WEST ? (b & ~FileABB) >> 9
: 0;
}
/// pawn_attacks_bb() returns the squares attacked by pawns of the given color
/// from the squares in the given bitboard.
template<Color C>
constexpr Bitboard pawn_attacks_bb(Bitboard b) {
return C == WHITE ? shift<NORTH_WEST>(b) | shift<NORTH_EAST>(b)
: shift<SOUTH_WEST>(b) | shift<SOUTH_EAST>(b);
}
inline Bitboard pawn_attacks_bb(Color c, Square s) {
assert(is_ok(s));
return PawnAttacks[c][s];
}
/// pawn_double_attacks_bb() returns the squares doubly attacked by pawns of the
/// given color from the squares in the given bitboard.
template<Color C>
constexpr Bitboard pawn_double_attacks_bb(Bitboard b) {
return C == WHITE ? shift<NORTH_WEST>(b) & shift<NORTH_EAST>(b)
: shift<SOUTH_WEST>(b) & shift<SOUTH_EAST>(b);
}
/// adjacent_files_bb() returns a bitboard representing all the squares on the
/// adjacent files of a given square.
constexpr Bitboard adjacent_files_bb(Square s) {
return shift<EAST>(file_bb(s)) | shift<WEST>(file_bb(s));
}
/// line_bb() returns a bitboard representing an entire line (from board edge
/// to board edge) that intersects the two given squares. If the given squares
/// are not on a same file/rank/diagonal, the function returns 0. For instance,
/// line_bb(SQ_C4, SQ_F7) will return a bitboard with the A2-G8 diagonal.
inline Bitboard line_bb(Square s1, Square s2) {
assert(is_ok(s1) && is_ok(s2));
return LineBB[s1][s2];
}
/// between_bb(s1, s2) returns a bitboard representing the squares in the semi-open
/// segment between the squares s1 and s2 (excluding s1 but including s2). If the
/// given squares are not on a same file/rank/diagonal, it returns s2. For instance,
/// between_bb(SQ_C4, SQ_F7) will return a bitboard with squares D5, E6 and F7, but
/// between_bb(SQ_E6, SQ_F8) will return a bitboard with the square F8. This trick
/// allows to generate non-king evasion moves faster: the defending piece must either
/// interpose itself to cover the check or capture the checking piece.
inline Bitboard between_bb(Square s1, Square s2) {
assert(is_ok(s1) && is_ok(s2));
return BetweenBB[s1][s2];
}
/// forward_ranks_bb() returns a bitboard representing the squares on the ranks in
/// front of the given one, from the point of view of the given color. For instance,
/// forward_ranks_bb(BLACK, SQ_D3) will return the 16 squares on ranks 1 and 2.
constexpr Bitboard forward_ranks_bb(Color c, Square s) {
return c == WHITE ? ~Rank1BB << 8 * relative_rank(WHITE, s)
: ~Rank8BB >> 8 * relative_rank(BLACK, s);
}
/// forward_file_bb() returns a bitboard representing all the squares along the
/// line in front of the given one, from the point of view of the given color.
constexpr Bitboard forward_file_bb(Color c, Square s) {
return forward_ranks_bb(c, s) & file_bb(s);
}
/// pawn_attack_span() returns a bitboard representing all the squares that can
/// be attacked by a pawn of the given color when it moves along its file, starting
/// from the given square.
constexpr Bitboard pawn_attack_span(Color c, Square s) {
return forward_ranks_bb(c, s) & adjacent_files_bb(s);
}
/// passed_pawn_span() returns a bitboard which can be used to test if a pawn of
/// the given color and on the given square is a passed pawn.
constexpr Bitboard passed_pawn_span(Color c, Square s) {
return pawn_attack_span(c, s) | forward_file_bb(c, s);
}
/// aligned() returns true if the squares s1, s2 and s3 are aligned either on a
/// straight or on a diagonal line.
inline bool aligned(Square s1, Square s2, Square s3) {
return line_bb(s1, s2) & s3;
}
/// distance() functions return the distance between x and y, defined as the
/// number of steps for a king in x to reach y.
template<typename T1 = Square> inline int distance(Square x, Square y);
template<> inline int distance<File>(Square x, Square y) { return std::abs(file_of(x) - file_of(y)); }
template<> inline int distance<Rank>(Square x, Square y) { return std::abs(rank_of(x) - rank_of(y)); }
template<> inline int distance<Square>(Square x, Square y) { return SquareDistance[x][y]; }
inline int edge_distance(File f) { return std::min(f, File(FILE_H - f)); }
inline int edge_distance(Rank r) { return std::min(r, Rank(RANK_8 - r)); }
/// attacks_bb(Square) returns the pseudo attacks of the give piece type
/// assuming an empty board.
template<PieceType Pt>
inline Bitboard attacks_bb(Square s) {
assert((Pt != PAWN) && (is_ok(s)));
return PseudoAttacks[Pt][s];
}
/// attacks_bb(Square, Bitboard) returns the attacks by the given piece
/// assuming the board is occupied according to the passed Bitboard.
/// Sliding piece attacks do not continue passed an occupied square.
template<PieceType Pt>
inline Bitboard attacks_bb(Square s, Bitboard occupied) {
assert((Pt != PAWN) && (is_ok(s)));
switch (Pt)
{
case BISHOP: return BishopMagics[s].attacks[BishopMagics[s].index(occupied)];
case ROOK : return RookMagics[s].attacks[ RookMagics[s].index(occupied)];
case QUEEN : return attacks_bb<BISHOP>(s, occupied) | attacks_bb<ROOK>(s, occupied);
default : return PseudoAttacks[Pt][s];
}
}
inline Bitboard attacks_bb(PieceType pt, Square s, Bitboard occupied) {
assert((pt != PAWN) && (is_ok(s)));
switch (pt)
{
case BISHOP: return attacks_bb<BISHOP>(s, occupied);
case ROOK : return attacks_bb< ROOK>(s, occupied);
case QUEEN : return attacks_bb<BISHOP>(s, occupied) | attacks_bb<ROOK>(s, occupied);
default : return PseudoAttacks[pt][s];
}
}
/// popcount() counts the number of non-zero bits in a bitboard
inline int popcount(Bitboard b) {
#ifndef USE_POPCNT
union { Bitboard bb; uint16_t u[4]; } v = { b };
return PopCnt16[v.u[0]] + PopCnt16[v.u[1]] + PopCnt16[v.u[2]] + PopCnt16[v.u[3]];
#elif defined(_MSC_VER) || defined(__INTEL_COMPILER)
return (int)_mm_popcnt_u64(b);
#else // Assumed gcc or compatible compiler
return __builtin_popcountll(b);
#endif
}
/// lsb() and msb() return the least/most significant bit in a non-zero bitboard
#if defined(__GNUC__) // GCC, Clang, ICC
inline Square lsb(Bitboard b) {
assert(b);
return Square(__builtin_ctzll(b));
}
inline Square msb(Bitboard b) {
assert(b);
return Square(63 ^ __builtin_clzll(b));
}
#elif defined(_MSC_VER) // MSVC
#ifdef _WIN64 // MSVC, WIN64
inline Square lsb(Bitboard b) {
assert(b);
unsigned long idx;
_BitScanForward64(&idx, b);
return (Square) idx;
}
inline Square msb(Bitboard b) {
assert(b);
unsigned long idx;
_BitScanReverse64(&idx, b);
return (Square) idx;
}
#else // MSVC, WIN32
inline Square lsb(Bitboard b) {
assert(b);
unsigned long idx;
if (b & 0xffffffff) {
_BitScanForward(&idx, int32_t(b));
return Square(idx);
} else {
_BitScanForward(&idx, int32_t(b >> 32));
return Square(idx + 32);
}
}
inline Square msb(Bitboard b) {
assert(b);
unsigned long idx;
if (b >> 32) {
_BitScanReverse(&idx, int32_t(b >> 32));
return Square(idx + 32);
} else {
_BitScanReverse(&idx, int32_t(b));
return Square(idx);
}
}
#endif
#else // Compiler is neither GCC nor MSVC compatible
#error "Compiler not supported."
#endif
/// least_significant_square_bb() returns the bitboard of the least significant
/// square of a non-zero bitboard. It is equivalent to square_bb(lsb(bb)).
inline Bitboard least_significant_square_bb(Bitboard b) {
assert(b);
return b & -b;
}
/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard
inline Square pop_lsb(Bitboard& b) {
assert(b);
const Square s = lsb(b);
b &= b - 1;
return s;
}
/// frontmost_sq() returns the most advanced square for the given color,
/// requires a non-zero bitboard.
inline Square frontmost_sq(Color c, Bitboard b) {
assert(b);
return c == WHITE ? msb(b) : lsb(b);
}
} // namespace Stockfish
#endif // #ifndef BITBOARD_H_INCLUDED