1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-30 00:33:09 +00:00
BadFish/src/search.cpp
Marco Costalba b5d38ad1e5 Initialize futilityMargin in EvalInfo c'tor
This is less prone to bugs because now it's up to the
compiler don't forget this important initialization.

No functional change.

Signed-off-by: Marco Costalba <mcostalba@gmail.com>
2010-01-17 13:24:40 +01:00

3080 lines
99 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2009 Marco Costalba
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
////
//// Includes
////
#include <cassert>
#include <cstring>
#include <fstream>
#include <iostream>
#include <sstream>
#include "book.h"
#include "evaluate.h"
#include "history.h"
#include "misc.h"
#include "movegen.h"
#include "movepick.h"
#include "lock.h"
#include "san.h"
#include "search.h"
#include "thread.h"
#include "tt.h"
#include "ucioption.h"
using std::cout;
using std::endl;
////
//// Local definitions
////
namespace {
/// Types
// IterationInfoType stores search results for each iteration
//
// Because we use relatively small (dynamic) aspiration window,
// there happens many fail highs and fail lows in root. And
// because we don't do researches in those cases, "value" stored
// here is not necessarily exact. Instead in case of fail high/low
// we guess what the right value might be and store our guess
// as a "speculated value" and then move on. Speculated values are
// used just to calculate aspiration window width, so also if are
// not exact is not big a problem.
struct IterationInfoType {
IterationInfoType(Value v = Value(0), Value sv = Value(0))
: value(v), speculatedValue(sv) {}
Value value, speculatedValue;
};
// The BetaCounterType class is used to order moves at ply one.
// Apart for the first one that has its score, following moves
// normally have score -VALUE_INFINITE, so are ordered according
// to the number of beta cutoffs occurred under their subtree during
// the last iteration. The counters are per thread variables to avoid
// concurrent accessing under SMP case.
struct BetaCounterType {
BetaCounterType();
void clear();
void add(Color us, Depth d, int threadID);
void read(Color us, int64_t& our, int64_t& their);
};
// The RootMove class is used for moves at the root at the tree. For each
// root move, we store a score, a node count, and a PV (really a refutation
// in the case of moves which fail low).
struct RootMove {
RootMove() { nodes = cumulativeNodes = ourBeta = theirBeta = 0ULL; }
// RootMove::operator<() is the comparison function used when
// sorting the moves. A move m1 is considered to be better
// than a move m2 if it has a higher score, or if the moves
// have equal score but m1 has the higher node count.
bool operator<(const RootMove& m) const {
return score != m.score ? score < m.score : theirBeta <= m.theirBeta;
}
Move move;
Value score;
int64_t nodes, cumulativeNodes, ourBeta, theirBeta;
Move pv[PLY_MAX_PLUS_2];
};
// The RootMoveList class is essentially an array of RootMove objects, with
// a handful of methods for accessing the data in the individual moves.
class RootMoveList {
public:
RootMoveList(Position& pos, Move searchMoves[]);
int move_count() const { return count; }
Move get_move(int moveNum) const { return moves[moveNum].move; }
Value get_move_score(int moveNum) const { return moves[moveNum].score; }
void set_move_score(int moveNum, Value score) { moves[moveNum].score = score; }
Move get_move_pv(int moveNum, int i) const { return moves[moveNum].pv[i]; }
int64_t get_move_cumulative_nodes(int moveNum) const { return moves[moveNum].cumulativeNodes; }
void set_move_nodes(int moveNum, int64_t nodes);
void set_beta_counters(int moveNum, int64_t our, int64_t their);
void set_move_pv(int moveNum, const Move pv[]);
void sort();
void sort_multipv(int n);
private:
static const int MaxRootMoves = 500;
RootMove moves[MaxRootMoves];
int count;
};
/// Constants
// Search depth at iteration 1
const Depth InitialDepth = OnePly;
// Depth limit for selective search
const Depth SelectiveDepth = 7 * OnePly;
// Use internal iterative deepening?
const bool UseIIDAtPVNodes = true;
const bool UseIIDAtNonPVNodes = true;
// Internal iterative deepening margin. At Non-PV moves, when
// UseIIDAtNonPVNodes is true, we do an internal iterative deepening
// search when the static evaluation is at most IIDMargin below beta.
const Value IIDMargin = Value(0x100);
// Easy move margin. An easy move candidate must be at least this much
// better than the second best move.
const Value EasyMoveMargin = Value(0x200);
// Problem margin. If the score of the first move at iteration N+1 has
// dropped by more than this since iteration N, the boolean variable
// "Problem" is set to true, which will make the program spend some extra
// time looking for a better move.
const Value ProblemMargin = Value(0x28);
// No problem margin. If the boolean "Problem" is true, and a new move
// is found at the root which is less than NoProblemMargin worse than the
// best move from the previous iteration, Problem is set back to false.
const Value NoProblemMargin = Value(0x14);
// Null move margin. A null move search will not be done if the static
// evaluation of the position is more than NullMoveMargin below beta.
const Value NullMoveMargin = Value(0x200);
// If the TT move is at least SingleReplyMargin better then the
// remaining ones we will extend it.
const Value SingleReplyMargin = Value(0x20);
// Margins for futility pruning in the quiescence search, and at frontier
// and near frontier nodes.
const Value FutilityMarginQS = Value(0x80);
// Each move futility margin is decreased
const Value IncrementalFutilityMargin = Value(0x8);
// Depth limit for razoring
const Depth RazorDepth = 4 * OnePly;
/// Variables initialized by UCI options
// Minimum number of full depth (i.e. non-reduced) moves at PV and non-PV nodes
int LMRPVMoves, LMRNonPVMoves;
// Depth limit for use of dynamic threat detection
Depth ThreatDepth;
// Last seconds noise filtering (LSN)
const bool UseLSNFiltering = true;
const int LSNTime = 4000; // In milliseconds
const Value LSNValue = value_from_centipawns(200);
bool loseOnTime = false;
// Extensions. Array index 0 is used at non-PV nodes, index 1 at PV nodes.
Depth CheckExtension[2], SingleEvasionExtension[2], PawnPushTo7thExtension[2];
Depth PassedPawnExtension[2], PawnEndgameExtension[2], MateThreatExtension[2];
// Iteration counters
int Iteration;
BetaCounterType BetaCounter;
// Scores and number of times the best move changed for each iteration
IterationInfoType IterationInfo[PLY_MAX_PLUS_2];
int BestMoveChangesByIteration[PLY_MAX_PLUS_2];
// MultiPV mode
int MultiPV;
// Time managment variables
int RootMoveNumber;
int SearchStartTime;
int MaxNodes, MaxDepth;
int MaxSearchTime, AbsoluteMaxSearchTime, ExtraSearchTime, ExactMaxTime;
bool UseTimeManagement, InfiniteSearch, PonderSearch, StopOnPonderhit;
bool AbortSearch, Quit;
bool FailHigh, FailLow, Problem;
// Show current line?
bool ShowCurrentLine;
// Log file
bool UseLogFile;
std::ofstream LogFile;
// MP related variables
int ActiveThreads = 1;
Depth MinimumSplitDepth;
int MaxThreadsPerSplitPoint;
Thread Threads[THREAD_MAX];
Lock MPLock;
Lock IOLock;
bool AllThreadsShouldExit = false;
SplitPoint SplitPointStack[THREAD_MAX][ACTIVE_SPLIT_POINTS_MAX];
bool Idle = true;
#if !defined(_MSC_VER)
pthread_cond_t WaitCond;
pthread_mutex_t WaitLock;
#else
HANDLE SitIdleEvent[THREAD_MAX];
#endif
// Node counters, used only by thread[0] but try to keep in different
// cache lines (64 bytes each) from the heavy SMP read accessed variables.
int NodesSincePoll;
int NodesBetweenPolls = 30000;
// History table
History H;
/// Functions
Value id_loop(const Position& pos, Move searchMoves[]);
Value root_search(Position& pos, SearchStack ss[], RootMoveList& rml, Value alpha, Value beta);
Value search_pv(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID);
Value search(Position& pos, SearchStack ss[], Value beta, Depth depth, int ply, bool allowNullmove, int threadID, Move excludedMove = MOVE_NONE);
Value qsearch(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID);
void sp_search(SplitPoint* sp, int threadID);
void sp_search_pv(SplitPoint* sp, int threadID);
void init_node(SearchStack ss[], int ply, int threadID);
void update_pv(SearchStack ss[], int ply);
void sp_update_pv(SearchStack* pss, SearchStack ss[], int ply);
bool connected_moves(const Position& pos, Move m1, Move m2);
bool value_is_mate(Value value);
bool move_is_killer(Move m, const SearchStack& ss);
Depth extension(const Position&, Move, bool, bool, bool, bool, bool, bool*);
bool ok_to_do_nullmove(const Position& pos);
bool ok_to_prune(const Position& pos, Move m, Move threat);
bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply);
Value refine_eval(const TTEntry* tte, Value defaultEval, int ply);
void update_history(const Position& pos, Move move, Depth depth, Move movesSearched[], int moveCount);
void update_killers(Move m, SearchStack& ss);
bool fail_high_ply_1();
int current_search_time();
int nps();
void poll();
void ponderhit();
void print_current_line(SearchStack ss[], int ply, int threadID);
void wait_for_stop_or_ponderhit();
void init_ss_array(SearchStack ss[]);
void idle_loop(int threadID, SplitPoint* waitSp);
void init_split_point_stack();
void destroy_split_point_stack();
bool thread_should_stop(int threadID);
bool thread_is_available(int slave, int master);
bool idle_thread_exists(int master);
bool split(const Position& pos, SearchStack* ss, int ply,
Value *alpha, Value *beta, Value *bestValue,
const Value futilityValue, Depth depth, int *moves,
MovePicker *mp, int master, bool pvNode);
void wake_sleeping_threads();
#if !defined(_MSC_VER)
void *init_thread(void *threadID);
#else
DWORD WINAPI init_thread(LPVOID threadID);
#endif
}
////
//// Functions
////
//FIXME: HACK
static double lnArray[512];
inline double ln(int i)
{
return lnArray[i];
}
/// perft() is our utility to verify move generation is bug free. All the legal
/// moves up to given depth are generated and counted and the sum returned.
int perft(Position& pos, Depth depth)
{
Move move;
int sum = 0;
MovePicker mp = MovePicker(pos, MOVE_NONE, depth, H);
// If we are at the last ply we don't need to do and undo
// the moves, just to count them.
if (depth <= OnePly) // Replace with '<' to test also qsearch
{
while (mp.get_next_move()) sum++;
return sum;
}
// Loop through all legal moves
CheckInfo ci(pos);
while ((move = mp.get_next_move()) != MOVE_NONE)
{
StateInfo st;
pos.do_move(move, st, ci, pos.move_is_check(move, ci));
sum += perft(pos, depth - OnePly);
pos.undo_move(move);
}
return sum;
}
/// think() is the external interface to Stockfish's search, and is called when
/// the program receives the UCI 'go' command. It initializes various
/// search-related global variables, and calls root_search(). It returns false
/// when a quit command is received during the search.
bool think(const Position& pos, bool infinite, bool ponder, int side_to_move,
int time[], int increment[], int movesToGo, int maxDepth,
int maxNodes, int maxTime, Move searchMoves[]) {
// Initialize global search variables
Idle = StopOnPonderhit = AbortSearch = Quit = false;
FailHigh = FailLow = Problem = false;
NodesSincePoll = 0;
SearchStartTime = get_system_time();
ExactMaxTime = maxTime;
MaxDepth = maxDepth;
MaxNodes = maxNodes;
InfiniteSearch = infinite;
PonderSearch = ponder;
UseTimeManagement = !ExactMaxTime && !MaxDepth && !MaxNodes && !InfiniteSearch;
// Look for a book move, only during games, not tests
if (UseTimeManagement && !ponder && get_option_value_bool("OwnBook"))
{
Move bookMove;
if (get_option_value_string("Book File") != OpeningBook.file_name())
OpeningBook.open(get_option_value_string("Book File"));
bookMove = OpeningBook.get_move(pos);
if (bookMove != MOVE_NONE)
{
cout << "bestmove " << bookMove << endl;
return true;
}
}
for (int i = 0; i < THREAD_MAX; i++)
{
Threads[i].nodes = 0ULL;
Threads[i].failHighPly1 = false;
}
if (button_was_pressed("New Game"))
loseOnTime = false; // Reset at the beginning of a new game
// Read UCI option values
TT.set_size(get_option_value_int("Hash"));
if (button_was_pressed("Clear Hash"))
TT.clear();
bool PonderingEnabled = get_option_value_bool("Ponder");
MultiPV = get_option_value_int("MultiPV");
CheckExtension[1] = Depth(get_option_value_int("Check Extension (PV nodes)"));
CheckExtension[0] = Depth(get_option_value_int("Check Extension (non-PV nodes)"));
SingleEvasionExtension[1] = Depth(get_option_value_int("Single Evasion Extension (PV nodes)"));
SingleEvasionExtension[0] = Depth(get_option_value_int("Single Evasion Extension (non-PV nodes)"));
PawnPushTo7thExtension[1] = Depth(get_option_value_int("Pawn Push to 7th Extension (PV nodes)"));
PawnPushTo7thExtension[0] = Depth(get_option_value_int("Pawn Push to 7th Extension (non-PV nodes)"));
PassedPawnExtension[1] = Depth(get_option_value_int("Passed Pawn Extension (PV nodes)"));
PassedPawnExtension[0] = Depth(get_option_value_int("Passed Pawn Extension (non-PV nodes)"));
PawnEndgameExtension[1] = Depth(get_option_value_int("Pawn Endgame Extension (PV nodes)"));
PawnEndgameExtension[0] = Depth(get_option_value_int("Pawn Endgame Extension (non-PV nodes)"));
MateThreatExtension[1] = Depth(get_option_value_int("Mate Threat Extension (PV nodes)"));
MateThreatExtension[0] = Depth(get_option_value_int("Mate Threat Extension (non-PV nodes)"));
LMRPVMoves = get_option_value_int("Full Depth Moves (PV nodes)") + 1;
LMRNonPVMoves = get_option_value_int("Full Depth Moves (non-PV nodes)") + 1;
ThreatDepth = get_option_value_int("Threat Depth") * OnePly;
Chess960 = get_option_value_bool("UCI_Chess960");
ShowCurrentLine = get_option_value_bool("UCI_ShowCurrLine");
UseLogFile = get_option_value_bool("Use Search Log");
if (UseLogFile)
LogFile.open(get_option_value_string("Search Log Filename").c_str(), std::ios::out | std::ios::app);
MinimumSplitDepth = get_option_value_int("Minimum Split Depth") * OnePly;
MaxThreadsPerSplitPoint = get_option_value_int("Maximum Number of Threads per Split Point");
read_weights(pos.side_to_move());
// Set the number of active threads
int newActiveThreads = get_option_value_int("Threads");
if (newActiveThreads != ActiveThreads)
{
ActiveThreads = newActiveThreads;
init_eval(ActiveThreads);
}
// Wake up sleeping threads
wake_sleeping_threads();
for (int i = 1; i < ActiveThreads; i++)
assert(thread_is_available(i, 0));
// Set thinking time
int myTime = time[side_to_move];
int myIncrement = increment[side_to_move];
if (UseTimeManagement)
{
if (!movesToGo) // Sudden death time control
{
if (myIncrement)
{
MaxSearchTime = myTime / 30 + myIncrement;
AbsoluteMaxSearchTime = Max(myTime / 4, myIncrement - 100);
}
else // Blitz game without increment
{
MaxSearchTime = myTime / 30;
AbsoluteMaxSearchTime = myTime / 8;
}
}
else // (x moves) / (y minutes)
{
if (movesToGo == 1)
{
MaxSearchTime = myTime / 2;
AbsoluteMaxSearchTime = (myTime > 3000)? (myTime - 500) : ((myTime * 3) / 4);
}
else
{
MaxSearchTime = myTime / Min(movesToGo, 20);
AbsoluteMaxSearchTime = Min((4 * myTime) / movesToGo, myTime / 3);
}
}
if (PonderingEnabled)
{
MaxSearchTime += MaxSearchTime / 4;
MaxSearchTime = Min(MaxSearchTime, AbsoluteMaxSearchTime);
}
}
// Set best NodesBetweenPolls interval
if (MaxNodes)
NodesBetweenPolls = Min(MaxNodes, 30000);
else if (myTime && myTime < 1000)
NodesBetweenPolls = 1000;
else if (myTime && myTime < 5000)
NodesBetweenPolls = 5000;
else
NodesBetweenPolls = 30000;
// Write information to search log file
if (UseLogFile)
LogFile << "Searching: " << pos.to_fen() << endl
<< "infinite: " << infinite
<< " ponder: " << ponder
<< " time: " << myTime
<< " increment: " << myIncrement
<< " moves to go: " << movesToGo << endl;
// LSN filtering. Used only for developing purpose. Disabled by default.
if ( UseLSNFiltering
&& loseOnTime)
{
// Step 2. If after last move we decided to lose on time, do it now!
while (SearchStartTime + myTime + 1000 > get_system_time())
/* wait here */;
}
// We're ready to start thinking. Call the iterative deepening loop function
Value v = id_loop(pos, searchMoves);
if (UseLSNFiltering)
{
// Step 1. If this is sudden death game and our position is hopeless,
// decide to lose on time.
if ( !loseOnTime // If we already lost on time, go to step 3.
&& myTime < LSNTime
&& myIncrement == 0
&& movesToGo == 0
&& v < -LSNValue)
{
loseOnTime = true;
}
else if (loseOnTime)
{
// Step 3. Now after stepping over the time limit, reset flag for next match.
loseOnTime = false;
}
}
if (UseLogFile)
LogFile.close();
Idle = true;
return !Quit;
}
/// init_threads() is called during startup. It launches all helper threads,
/// and initializes the split point stack and the global locks and condition
/// objects.
#include <cmath> //FIXME: HACK
void init_threads() {
// FIXME: HACK!!
for (int i = 0; i < 512; i++)
lnArray[i] = log(double(i));
volatile int i;
#if !defined(_MSC_VER)
pthread_t pthread[1];
#endif
for (i = 0; i < THREAD_MAX; i++)
Threads[i].activeSplitPoints = 0;
// Initialize global locks
lock_init(&MPLock, NULL);
lock_init(&IOLock, NULL);
init_split_point_stack();
#if !defined(_MSC_VER)
pthread_mutex_init(&WaitLock, NULL);
pthread_cond_init(&WaitCond, NULL);
#else
for (i = 0; i < THREAD_MAX; i++)
SitIdleEvent[i] = CreateEvent(0, FALSE, FALSE, 0);
#endif
// All threads except the main thread should be initialized to idle state
for (i = 1; i < THREAD_MAX; i++)
{
Threads[i].stop = false;
Threads[i].workIsWaiting = false;
Threads[i].idle = true;
Threads[i].running = false;
}
// Launch the helper threads
for (i = 1; i < THREAD_MAX; i++)
{
#if !defined(_MSC_VER)
pthread_create(pthread, NULL, init_thread, (void*)(&i));
#else
DWORD iID[1];
CreateThread(NULL, 0, init_thread, (LPVOID)(&i), 0, iID);
#endif
// Wait until the thread has finished launching
while (!Threads[i].running);
}
}
/// stop_threads() is called when the program exits. It makes all the
/// helper threads exit cleanly.
void stop_threads() {
ActiveThreads = THREAD_MAX; // HACK
Idle = false; // HACK
wake_sleeping_threads();
AllThreadsShouldExit = true;
for (int i = 1; i < THREAD_MAX; i++)
{
Threads[i].stop = true;
while (Threads[i].running);
}
destroy_split_point_stack();
}
/// nodes_searched() returns the total number of nodes searched so far in
/// the current search.
int64_t nodes_searched() {
int64_t result = 0ULL;
for (int i = 0; i < ActiveThreads; i++)
result += Threads[i].nodes;
return result;
}
// SearchStack::init() initializes a search stack. Used at the beginning of a
// new search from the root.
void SearchStack::init(int ply) {
pv[ply] = pv[ply + 1] = MOVE_NONE;
currentMove = threatMove = MOVE_NONE;
reduction = Depth(0);
eval = VALUE_NONE;
}
void SearchStack::initKillers() {
mateKiller = MOVE_NONE;
for (int i = 0; i < KILLER_MAX; i++)
killers[i] = MOVE_NONE;
}
namespace {
// id_loop() is the main iterative deepening loop. It calls root_search
// repeatedly with increasing depth until the allocated thinking time has
// been consumed, the user stops the search, or the maximum search depth is
// reached.
Value id_loop(const Position& pos, Move searchMoves[]) {
Position p(pos);
SearchStack ss[PLY_MAX_PLUS_2];
// searchMoves are verified, copied, scored and sorted
RootMoveList rml(p, searchMoves);
if (rml.move_count() == 0)
{
if (PonderSearch)
wait_for_stop_or_ponderhit();
return pos.is_check()? -VALUE_MATE : VALUE_DRAW;
}
// Print RootMoveList c'tor startup scoring to the standard output,
// so that we print information also for iteration 1.
cout << "info depth " << 1 << "\ninfo depth " << 1
<< " score " << value_to_string(rml.get_move_score(0))
<< " time " << current_search_time()
<< " nodes " << nodes_searched()
<< " nps " << nps()
<< " pv " << rml.get_move(0) << "\n";
// Initialize
TT.new_search();
H.clear();
init_ss_array(ss);
IterationInfo[1] = IterationInfoType(rml.get_move_score(0), rml.get_move_score(0));
Iteration = 1;
// Is one move significantly better than others after initial scoring ?
Move EasyMove = MOVE_NONE;
if ( rml.move_count() == 1
|| rml.get_move_score(0) > rml.get_move_score(1) + EasyMoveMargin)
EasyMove = rml.get_move(0);
// Iterative deepening loop
while (Iteration < PLY_MAX)
{
// Initialize iteration
rml.sort();
Iteration++;
BestMoveChangesByIteration[Iteration] = 0;
if (Iteration <= 5)
ExtraSearchTime = 0;
cout << "info depth " << Iteration << endl;
// Calculate dynamic search window based on previous iterations
Value alpha, beta;
if (MultiPV == 1 && Iteration >= 6 && abs(IterationInfo[Iteration - 1].value) < VALUE_KNOWN_WIN)
{
int prevDelta1 = IterationInfo[Iteration - 1].speculatedValue - IterationInfo[Iteration - 2].speculatedValue;
int prevDelta2 = IterationInfo[Iteration - 2].speculatedValue - IterationInfo[Iteration - 3].speculatedValue;
int delta = Max(2 * abs(prevDelta1) + abs(prevDelta2), ProblemMargin);
alpha = Max(IterationInfo[Iteration - 1].value - delta, -VALUE_INFINITE);
beta = Min(IterationInfo[Iteration - 1].value + delta, VALUE_INFINITE);
}
else
{
alpha = - VALUE_INFINITE;
beta = VALUE_INFINITE;
}
// Search to the current depth
Value value = root_search(p, ss, rml, alpha, beta);
// Write PV to transposition table, in case the relevant entries have
// been overwritten during the search.
TT.insert_pv(p, ss[0].pv);
if (AbortSearch)
break; // Value cannot be trusted. Break out immediately!
//Save info about search result
Value speculatedValue;
bool fHigh = false;
bool fLow = false;
Value delta = value - IterationInfo[Iteration - 1].value;
if (value >= beta)
{
assert(delta > 0);
fHigh = true;
speculatedValue = value + delta;
BestMoveChangesByIteration[Iteration] += 2; // Allocate more time
}
else if (value <= alpha)
{
assert(value == alpha);
assert(delta < 0);
fLow = true;
speculatedValue = value + delta;
BestMoveChangesByIteration[Iteration] += 3; // Allocate more time
} else
speculatedValue = value;
speculatedValue = Min(Max(speculatedValue, -VALUE_INFINITE), VALUE_INFINITE);
IterationInfo[Iteration] = IterationInfoType(value, speculatedValue);
// Drop the easy move if it differs from the new best move
if (ss[0].pv[0] != EasyMove)
EasyMove = MOVE_NONE;
Problem = false;
if (UseTimeManagement)
{
// Time to stop?
bool stopSearch = false;
// Stop search early if there is only a single legal move,
// we search up to Iteration 6 anyway to get a proper score.
if (Iteration >= 6 && rml.move_count() == 1)
stopSearch = true;
// Stop search early when the last two iterations returned a mate score
if ( Iteration >= 6
&& abs(IterationInfo[Iteration].value) >= abs(VALUE_MATE) - 100
&& abs(IterationInfo[Iteration-1].value) >= abs(VALUE_MATE) - 100)
stopSearch = true;
// Stop search early if one move seems to be much better than the rest
int64_t nodes = nodes_searched();
if ( Iteration >= 8
&& !fLow
&& !fHigh
&& EasyMove == ss[0].pv[0]
&& ( ( rml.get_move_cumulative_nodes(0) > (nodes * 85) / 100
&& current_search_time() > MaxSearchTime / 16)
||( rml.get_move_cumulative_nodes(0) > (nodes * 98) / 100
&& current_search_time() > MaxSearchTime / 32)))
stopSearch = true;
// Add some extra time if the best move has changed during the last two iterations
if (Iteration > 5 && Iteration <= 50)
ExtraSearchTime = BestMoveChangesByIteration[Iteration] * (MaxSearchTime / 2)
+ BestMoveChangesByIteration[Iteration-1] * (MaxSearchTime / 3);
// Stop search if most of MaxSearchTime is consumed at the end of the
// iteration. We probably don't have enough time to search the first
// move at the next iteration anyway.
if (current_search_time() > ((MaxSearchTime + ExtraSearchTime) * 80) / 128)
stopSearch = true;
if (stopSearch)
{
if (!PonderSearch)
break;
else
StopOnPonderhit = true;
}
}
if (MaxDepth && Iteration >= MaxDepth)
break;
}
rml.sort();
// If we are pondering or in infinite search, we shouldn't print the
// best move before we are told to do so.
if (!AbortSearch && (PonderSearch || InfiniteSearch))
wait_for_stop_or_ponderhit();
else
// Print final search statistics
cout << "info nodes " << nodes_searched()
<< " nps " << nps()
<< " time " << current_search_time()
<< " hashfull " << TT.full() << endl;
// Print the best move and the ponder move to the standard output
if (ss[0].pv[0] == MOVE_NONE)
{
ss[0].pv[0] = rml.get_move(0);
ss[0].pv[1] = MOVE_NONE;
}
cout << "bestmove " << ss[0].pv[0];
if (ss[0].pv[1] != MOVE_NONE)
cout << " ponder " << ss[0].pv[1];
cout << endl;
if (UseLogFile)
{
if (dbg_show_mean)
dbg_print_mean(LogFile);
if (dbg_show_hit_rate)
dbg_print_hit_rate(LogFile);
LogFile << "\nNodes: " << nodes_searched()
<< "\nNodes/second: " << nps()
<< "\nBest move: " << move_to_san(p, ss[0].pv[0]);
StateInfo st;
p.do_move(ss[0].pv[0], st);
LogFile << "\nPonder move: " << move_to_san(p, ss[0].pv[1]) << endl;
}
return rml.get_move_score(0);
}
// root_search() is the function which searches the root node. It is
// similar to search_pv except that it uses a different move ordering
// scheme and prints some information to the standard output.
Value root_search(Position& pos, SearchStack ss[], RootMoveList& rml, Value alpha, Value beta) {
Value oldAlpha = alpha;
Value value;
CheckInfo ci(pos);
// Loop through all the moves in the root move list
for (int i = 0; i < rml.move_count() && !AbortSearch; i++)
{
if (alpha >= beta)
{
// We failed high, invalidate and skip next moves, leave node-counters
// and beta-counters as they are and quickly return, we will try to do
// a research at the next iteration with a bigger aspiration window.
rml.set_move_score(i, -VALUE_INFINITE);
continue;
}
int64_t nodes;
Move move;
StateInfo st;
Depth depth, ext, newDepth;
RootMoveNumber = i + 1;
FailHigh = false;
// Save the current node count before the move is searched
nodes = nodes_searched();
// Reset beta cut-off counters
BetaCounter.clear();
// Pick the next root move, and print the move and the move number to
// the standard output.
move = ss[0].currentMove = rml.get_move(i);
if (current_search_time() >= 1000)
cout << "info currmove " << move
<< " currmovenumber " << RootMoveNumber << endl;
// Decide search depth for this move
bool moveIsCheck = pos.move_is_check(move);
bool captureOrPromotion = pos.move_is_capture_or_promotion(move);
bool dangerous;
depth = (Iteration - 2) * OnePly + InitialDepth;
ext = extension(pos, move, true, captureOrPromotion, moveIsCheck, false, false, &dangerous);
newDepth = depth + ext;
// Make the move, and search it
pos.do_move(move, st, ci, moveIsCheck);
if (i < MultiPV)
{
// Aspiration window is disabled in multi-pv case
if (MultiPV > 1)
alpha = -VALUE_INFINITE;
value = -search_pv(pos, ss, -beta, -alpha, newDepth, 1, 0);
// If the value has dropped a lot compared to the last iteration,
// set the boolean variable Problem to true. This variable is used
// for time managment: When Problem is true, we try to complete the
// current iteration before playing a move.
Problem = ( Iteration >= 2
&& value <= IterationInfo[Iteration - 1].value - ProblemMargin);
if (Problem && StopOnPonderhit)
StopOnPonderhit = false;
}
else
{
// Try to reduce non-pv search depth by one ply if move seems not problematic,
// if the move fails high will be re-searched at full depth.
if ( depth >= 3*OnePly // FIXME was newDepth
&& !dangerous
&& !captureOrPromotion
&& !move_is_castle(move))
{
double red = 0.5 + ln(RootMoveNumber - MultiPV + 1) * ln(depth / 2) / 6.0;
if (red >= 1.0)
{
ss[0].reduction = Depth(int(floor(red * int(OnePly))));
value = -search(pos, ss, -alpha, newDepth-ss[0].reduction, 1, true, 0);
}
else
value = alpha + 1; // Just to trigger next condition
} else
value = alpha + 1; // Just to trigger next condition
if (value > alpha)
{
value = -search(pos, ss, -alpha, newDepth, 1, true, 0);
if (value > alpha)
{
// Fail high! Set the boolean variable FailHigh to true, and
// re-search the move using a PV search. The variable FailHigh
// is used for time managment: We try to avoid aborting the
// search prematurely during a fail high research.
FailHigh = true;
value = -search_pv(pos, ss, -beta, -alpha, newDepth, 1, 0);
}
}
}
pos.undo_move(move);
// Finished searching the move. If AbortSearch is true, the search
// was aborted because the user interrupted the search or because we
// ran out of time. In this case, the return value of the search cannot
// be trusted, and we break out of the loop without updating the best
// move and/or PV.
if (AbortSearch)
break;
// Remember beta-cutoff and searched nodes counts for this move. The
// info is used to sort the root moves at the next iteration.
int64_t our, their;
BetaCounter.read(pos.side_to_move(), our, their);
rml.set_beta_counters(i, our, their);
rml.set_move_nodes(i, nodes_searched() - nodes);
assert(value >= -VALUE_INFINITE && value <= VALUE_INFINITE);
if (value <= alpha && i >= MultiPV)
rml.set_move_score(i, -VALUE_INFINITE);
else
{
// PV move or new best move!
// Update PV
rml.set_move_score(i, value);
update_pv(ss, 0);
TT.extract_pv(pos, ss[0].pv, PLY_MAX);
rml.set_move_pv(i, ss[0].pv);
if (MultiPV == 1)
{
// We record how often the best move has been changed in each
// iteration. This information is used for time managment: When
// the best move changes frequently, we allocate some more time.
if (i > 0)
BestMoveChangesByIteration[Iteration]++;
// Print search information to the standard output
cout << "info depth " << Iteration
<< " score " << value_to_string(value)
<< ((value >= beta) ? " lowerbound" :
((value <= alpha)? " upperbound" : ""))
<< " time " << current_search_time()
<< " nodes " << nodes_searched()
<< " nps " << nps()
<< " pv ";
for (int j = 0; ss[0].pv[j] != MOVE_NONE && j < PLY_MAX; j++)
cout << ss[0].pv[j] << " ";
cout << endl;
if (UseLogFile)
{
ValueType type = (value >= beta ? VALUE_TYPE_LOWER
: (value <= alpha ? VALUE_TYPE_UPPER : VALUE_TYPE_EXACT));
LogFile << pretty_pv(pos, current_search_time(), Iteration,
nodes_searched(), value, type, ss[0].pv) << endl;
}
if (value > alpha)
alpha = value;
// Reset the global variable Problem to false if the value isn't too
// far below the final value from the last iteration.
if (value > IterationInfo[Iteration - 1].value - NoProblemMargin)
Problem = false;
}
else // MultiPV > 1
{
rml.sort_multipv(i);
for (int j = 0; j < Min(MultiPV, rml.move_count()); j++)
{
cout << "info multipv " << j + 1
<< " score " << value_to_string(rml.get_move_score(j))
<< " depth " << ((j <= i)? Iteration : Iteration - 1)
<< " time " << current_search_time()
<< " nodes " << nodes_searched()
<< " nps " << nps()
<< " pv ";
for (int k = 0; rml.get_move_pv(j, k) != MOVE_NONE && k < PLY_MAX; k++)
cout << rml.get_move_pv(j, k) << " ";
cout << endl;
}
alpha = rml.get_move_score(Min(i, MultiPV-1));
}
} // PV move or new best move
assert(alpha >= oldAlpha);
FailLow = (alpha == oldAlpha);
}
return alpha;
}
// search_pv() is the main search function for PV nodes.
Value search_pv(Position& pos, SearchStack ss[], Value alpha, Value beta,
Depth depth, int ply, int threadID) {
assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
assert(beta > alpha && beta <= VALUE_INFINITE);
assert(ply >= 0 && ply < PLY_MAX);
assert(threadID >= 0 && threadID < ActiveThreads);
Move movesSearched[256];
StateInfo st;
const TTEntry* tte;
Move ttMove, move;
Depth ext, newDepth;
Value oldAlpha, value;
bool isCheck, mateThreat, singleEvasion, moveIsCheck, captureOrPromotion, dangerous;
int moveCount = 0;
Value bestValue = -VALUE_INFINITE;
if (depth < OnePly)
return qsearch(pos, ss, alpha, beta, Depth(0), ply, threadID);
// Initialize, and make an early exit in case of an aborted search,
// an instant draw, maximum ply reached, etc.
init_node(ss, ply, threadID);
// After init_node() that calls poll()
if (AbortSearch || thread_should_stop(threadID))
return Value(0);
if (pos.is_draw() || ply >= PLY_MAX - 1)
return VALUE_DRAW;
// Mate distance pruning
oldAlpha = alpha;
alpha = Max(value_mated_in(ply), alpha);
beta = Min(value_mate_in(ply+1), beta);
if (alpha >= beta)
return alpha;
// Transposition table lookup. At PV nodes, we don't use the TT for
// pruning, but only for move ordering. This is to avoid problems in
// the following areas:
//
// * Repetition draw detection
// * Fifty move rule detection
// * Searching for a mate
// * Printing of full PV line
//
tte = TT.retrieve(pos.get_key());
ttMove = (tte ? tte->move() : MOVE_NONE);
// Go with internal iterative deepening if we don't have a TT move
if ( UseIIDAtPVNodes
&& depth >= 5*OnePly
&& ttMove == MOVE_NONE)
{
search_pv(pos, ss, alpha, beta, depth-2*OnePly, ply, threadID);
ttMove = ss[ply].pv[ply];
tte = TT.retrieve(pos.get_key());
}
// Initialize a MovePicker object for the current position, and prepare
// to search all moves
isCheck = pos.is_check();
mateThreat = pos.has_mate_threat(opposite_color(pos.side_to_move()));
CheckInfo ci(pos);
MovePicker mp = MovePicker(pos, ttMove, depth, H, &ss[ply]);
// Loop through all legal moves until no moves remain or a beta cutoff
// occurs.
while ( alpha < beta
&& (move = mp.get_next_move()) != MOVE_NONE
&& !thread_should_stop(threadID))
{
assert(move_is_ok(move));
singleEvasion = (isCheck && mp.number_of_evasions() == 1);
moveIsCheck = pos.move_is_check(move, ci);
captureOrPromotion = pos.move_is_capture_or_promotion(move);
// Decide the new search depth
ext = extension(pos, move, true, captureOrPromotion, moveIsCheck, singleEvasion, mateThreat, &dangerous);
// Singular extension search. We extend the TT move if its value is much better than
// its siblings. To verify this we do a reduced search on all the other moves but the
// ttMove, if result is lower then ttValue minus a margin then we extend ttMove.
if ( depth >= 6 * OnePly
&& tte
&& move == tte->move()
&& ext < OnePly
&& is_lower_bound(tte->type())
&& tte->depth() >= depth - 3 * OnePly)
{
Value ttValue = value_from_tt(tte->value(), ply);
if (abs(ttValue) < VALUE_KNOWN_WIN)
{
Value excValue = search(pos, ss, ttValue - SingleReplyMargin, depth / 2, ply, false, threadID, move);
if (excValue < ttValue - SingleReplyMargin)
ext = OnePly;
}
}
newDepth = depth - OnePly + ext;
// Update current move
movesSearched[moveCount++] = ss[ply].currentMove = move;
// Make and search the move
pos.do_move(move, st, ci, moveIsCheck);
if (moveCount == 1) // The first move in list is the PV
value = -search_pv(pos, ss, -beta, -alpha, newDepth, ply+1, threadID);
else
{
// Try to reduce non-pv search depth by one ply if move seems not problematic,
// if the move fails high will be re-searched at full depth.
if ( depth >= 3*OnePly
&& !dangerous
&& !captureOrPromotion
&& !move_is_castle(move)
&& !move_is_killer(move, ss[ply]))
{
double red = 0.5 + ln(moveCount) * ln(depth / 2) / 6.0;
if (red >= 1.0)
{
ss[ply].reduction = Depth(int(floor(red * int(OnePly))));
value = -search(pos, ss, -alpha, newDepth-ss[ply].reduction, ply+1, true, threadID);
}
else
value = alpha + 1; // Just to trigger next condition
}
else
value = alpha + 1; // Just to trigger next condition
if (value > alpha) // Go with full depth non-pv search
{
ss[ply].reduction = Depth(0);
value = -search(pos, ss, -alpha, newDepth, ply+1, true, threadID);
if (value > alpha && value < beta)
{
// When the search fails high at ply 1 while searching the first
// move at the root, set the flag failHighPly1. This is used for
// time managment: We don't want to stop the search early in
// such cases, because resolving the fail high at ply 1 could
// result in a big drop in score at the root.
if (ply == 1 && RootMoveNumber == 1)
Threads[threadID].failHighPly1 = true;
// A fail high occurred. Re-search at full window (pv search)
value = -search_pv(pos, ss, -beta, -alpha, newDepth, ply+1, threadID);
Threads[threadID].failHighPly1 = false;
}
}
}
pos.undo_move(move);
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
// New best move?
if (value > bestValue)
{
bestValue = value;
if (value > alpha)
{
alpha = value;
update_pv(ss, ply);
if (value == value_mate_in(ply + 1))
ss[ply].mateKiller = move;
}
// If we are at ply 1, and we are searching the first root move at
// ply 0, set the 'Problem' variable if the score has dropped a lot
// (from the computer's point of view) since the previous iteration.
if ( ply == 1
&& Iteration >= 2
&& -value <= IterationInfo[Iteration-1].value - ProblemMargin)
Problem = true;
}
// Split?
if ( ActiveThreads > 1
&& bestValue < beta
&& depth >= MinimumSplitDepth
&& Iteration <= 99
&& idle_thread_exists(threadID)
&& !AbortSearch
&& !thread_should_stop(threadID)
&& split(pos, ss, ply, &alpha, &beta, &bestValue, VALUE_NONE,
depth, &moveCount, &mp, threadID, true))
break;
}
// All legal moves have been searched. A special case: If there were
// no legal moves, it must be mate or stalemate.
if (moveCount == 0)
return (isCheck ? value_mated_in(ply) : VALUE_DRAW);
// If the search is not aborted, update the transposition table,
// history counters, and killer moves.
if (AbortSearch || thread_should_stop(threadID))
return bestValue;
if (bestValue <= oldAlpha)
TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_UPPER, depth, MOVE_NONE);
else if (bestValue >= beta)
{
BetaCounter.add(pos.side_to_move(), depth, threadID);
move = ss[ply].pv[ply];
if (!pos.move_is_capture_or_promotion(move))
{
update_history(pos, move, depth, movesSearched, moveCount);
update_killers(move, ss[ply]);
}
TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, depth, move);
}
else
TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_EXACT, depth, ss[ply].pv[ply]);
return bestValue;
}
// search() is the search function for zero-width nodes.
Value search(Position& pos, SearchStack ss[], Value beta, Depth depth,
int ply, bool allowNullmove, int threadID, Move excludedMove) {
assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
assert(ply >= 0 && ply < PLY_MAX);
assert(threadID >= 0 && threadID < ActiveThreads);
Move movesSearched[256];
EvalInfo ei;
StateInfo st;
const TTEntry* tte;
Move ttMove, move;
Depth ext, newDepth;
Value staticValue, nullValue, value, futilityValue, futilityValueScaled;
bool isCheck, useFutilityPruning, singleEvasion, moveIsCheck, captureOrPromotion, dangerous;
bool mateThreat = false;
int moveCount = 0;
Value bestValue = -VALUE_INFINITE;
if (depth < OnePly)
return qsearch(pos, ss, beta-1, beta, Depth(0), ply, threadID);
// Initialize, and make an early exit in case of an aborted search,
// an instant draw, maximum ply reached, etc.
init_node(ss, ply, threadID);
// After init_node() that calls poll()
if (AbortSearch || thread_should_stop(threadID))
return Value(0);
if (pos.is_draw() || ply >= PLY_MAX - 1)
return VALUE_DRAW;
// Mate distance pruning
if (value_mated_in(ply) >= beta)
return beta;
if (value_mate_in(ply + 1) < beta)
return beta - 1;
// We don't want the score of a partial search to overwrite a previous full search
// TT value, so we use a different position key in case of an excluded move exsists.
Key posKey = excludedMove ? pos.get_exclusion_key() : pos.get_key();
// Transposition table lookup
tte = TT.retrieve(posKey);
ttMove = (tte ? tte->move() : MOVE_NONE);
if (tte && ok_to_use_TT(tte, depth, beta, ply))
{
ss[ply].currentMove = ttMove; // Can be MOVE_NONE
return value_from_tt(tte->value(), ply);
}
isCheck = pos.is_check();
// Calculate depth dependant futility pruning parameters
const int FutilityMoveCountMargin = 3 + (1 << (3 * int(depth) / 8));
const int FutilityValueMargin = 112 * bitScanReverse32(int(depth) * int(depth) / 2);
// Evaluate the position statically
if (isCheck)
ss[ply].eval = VALUE_NONE;
else
{
if (tte && (tte->type() & VALUE_TYPE_EVAL))
staticValue = value_from_tt(tte->value(), ply);
else
staticValue = evaluate(pos, ei, threadID);
ss[ply].eval = staticValue;
futilityValue = staticValue + FutilityValueMargin;
staticValue = refine_eval(tte, staticValue, ply); // Enhance accuracy with TT value if possible
}
// Null move search
if ( allowNullmove
&& depth > OnePly
&& !isCheck
&& !value_is_mate(beta)
&& ok_to_do_nullmove(pos)
&& staticValue >= beta - NullMoveMargin)
{
ss[ply].currentMove = MOVE_NULL;
pos.do_null_move(st);
// Null move dynamic reduction based on depth
int R = 3 + (depth >= 5 * OnePly ? depth / 8 : 0);
// Null move dynamic reduction based on value
if (staticValue - beta > PawnValueMidgame)
R++;
nullValue = -search(pos, ss, -(beta-1), depth-R*OnePly, ply+1, false, threadID);
pos.undo_null_move();
if (nullValue >= beta)
{
if (depth < 6 * OnePly)
return beta;
// Do zugzwang verification search
Value v = search(pos, ss, beta, depth-5*OnePly, ply, false, threadID);
if (v >= beta)
return beta;
} else {
// The null move failed low, which means that we may be faced with
// some kind of threat. If the previous move was reduced, check if
// the move that refuted the null move was somehow connected to the
// move which was reduced. If a connection is found, return a fail
// low score (which will cause the reduced move to fail high in the
// parent node, which will trigger a re-search with full depth).
if (nullValue == value_mated_in(ply + 2))
mateThreat = true;
ss[ply].threatMove = ss[ply + 1].currentMove;
if ( depth < ThreatDepth
&& ss[ply - 1].reduction
&& connected_moves(pos, ss[ply - 1].currentMove, ss[ply].threatMove))
return beta - 1;
}
}
// Null move search not allowed, try razoring
else if ( !value_is_mate(beta)
&& !isCheck
&& depth < RazorDepth
&& staticValue < beta - (NullMoveMargin + 16 * depth)
&& ss[ply - 1].currentMove != MOVE_NULL
&& ttMove == MOVE_NONE
&& !pos.has_pawn_on_7th(pos.side_to_move()))
{
Value rbeta = beta - (NullMoveMargin + 16 * depth);
Value v = qsearch(pos, ss, rbeta-1, rbeta, Depth(0), ply, threadID);
if (v < rbeta)
return v;
}
// Go with internal iterative deepening if we don't have a TT move
if (UseIIDAtNonPVNodes && ttMove == MOVE_NONE && depth >= 8*OnePly &&
!isCheck && evaluate(pos, ei, threadID) >= beta - IIDMargin)
{
search(pos, ss, beta, Min(depth/2, depth-2*OnePly), ply, false, threadID);
ttMove = ss[ply].pv[ply];
tte = TT.retrieve(pos.get_key());
}
// Initialize a MovePicker object for the current position, and prepare
// to search all moves.
MovePicker mp = MovePicker(pos, ttMove, depth, H, &ss[ply]);
CheckInfo ci(pos);
useFutilityPruning = depth < SelectiveDepth && !isCheck;
// Loop through all legal moves until no moves remain or a beta cutoff occurs
while ( bestValue < beta
&& (move = mp.get_next_move()) != MOVE_NONE
&& !thread_should_stop(threadID))
{
assert(move_is_ok(move));
if (move == excludedMove)
continue;
moveIsCheck = pos.move_is_check(move, ci);
singleEvasion = (isCheck && mp.number_of_evasions() == 1);
captureOrPromotion = pos.move_is_capture_or_promotion(move);
// Decide the new search depth
ext = extension(pos, move, false, captureOrPromotion, moveIsCheck, singleEvasion, mateThreat, &dangerous);
// Singular extension search. We extend the TT move if its value is much better than
// its siblings. To verify this we do a reduced search on all the other moves but the
// ttMove, if result is lower then ttValue minus a margin then we extend ttMove.
if ( depth >= 8 * OnePly
&& tte
&& move == tte->move()
&& !excludedMove // Do not allow recursive single-reply search
&& ext < OnePly
&& is_lower_bound(tte->type())
&& tte->depth() >= depth - 3 * OnePly)
{
Value ttValue = value_from_tt(tte->value(), ply);
if (abs(ttValue) < VALUE_KNOWN_WIN)
{
Value excValue = search(pos, ss, ttValue - SingleReplyMargin, depth / 2, ply, false, threadID, move);
if (excValue < ttValue - SingleReplyMargin)
ext = OnePly;
}
}
newDepth = depth - OnePly + ext;
// Update current move
movesSearched[moveCount++] = ss[ply].currentMove = move;
// Futility pruning
if ( useFutilityPruning
&& !dangerous
&& !captureOrPromotion
&& move != ttMove)
{
// Move count based pruning
if ( moveCount >= FutilityMoveCountMargin
&& ok_to_prune(pos, move, ss[ply].threatMove)
&& bestValue > value_mated_in(PLY_MAX))
continue;
// Value based pruning
futilityValueScaled = futilityValue - moveCount * IncrementalFutilityMargin;
if (futilityValueScaled < beta)
{
if (futilityValueScaled > bestValue)
bestValue = futilityValueScaled;
continue;
}
}
// Make and search the move
pos.do_move(move, st, ci, moveIsCheck);
// Try to reduce non-pv search depth by one ply if move seems not problematic,
// if the move fails high will be re-searched at full depth.
if ( depth >= 3*OnePly
&& !dangerous
&& !captureOrPromotion
&& !move_is_castle(move)
&& !move_is_killer(move, ss[ply])
/* && move != ttMove*/)
{
double red = 0.5 + ln(moveCount) * ln(depth / 2) / 3.0;
if (red >= 1.0)
{
ss[ply].reduction = Depth(int(floor(red * int(OnePly))));
value = -search(pos, ss, -(beta-1), newDepth-ss[ply].reduction, ply+1, true, threadID);
}
else
value = beta; // Just to trigger next condition
}
else
value = beta; // Just to trigger next condition
if (value >= beta) // Go with full depth non-pv search
{
ss[ply].reduction = Depth(0);
value = -search(pos, ss, -(beta-1), newDepth, ply+1, true, threadID);
}
pos.undo_move(move);
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
// New best move?
if (value > bestValue)
{
bestValue = value;
if (value >= beta)
update_pv(ss, ply);
if (value == value_mate_in(ply + 1))
ss[ply].mateKiller = move;
}
// Split?
if ( ActiveThreads > 1
&& bestValue < beta
&& depth >= MinimumSplitDepth
&& Iteration <= 99
&& idle_thread_exists(threadID)
&& !AbortSearch
&& !thread_should_stop(threadID)
&& split(pos, ss, ply, &beta, &beta, &bestValue, futilityValue,
depth, &moveCount, &mp, threadID, false))
break;
}
// All legal moves have been searched. A special case: If there were
// no legal moves, it must be mate or stalemate.
if (!moveCount)
return excludedMove ? beta - 1 : (pos.is_check() ? value_mated_in(ply) : VALUE_DRAW);
// If the search is not aborted, update the transposition table,
// history counters, and killer moves.
if (AbortSearch || thread_should_stop(threadID))
return bestValue;
if (bestValue < beta)
TT.store(posKey, value_to_tt(bestValue, ply), VALUE_TYPE_UPPER, depth, MOVE_NONE);
else
{
BetaCounter.add(pos.side_to_move(), depth, threadID);
move = ss[ply].pv[ply];
TT.store(posKey, value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, depth, move);
if (!pos.move_is_capture_or_promotion(move))
{
update_history(pos, move, depth, movesSearched, moveCount);
update_killers(move, ss[ply]);
}
}
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
return bestValue;
}
// qsearch() is the quiescence search function, which is called by the main
// search function when the remaining depth is zero (or, to be more precise,
// less than OnePly).
Value qsearch(Position& pos, SearchStack ss[], Value alpha, Value beta,
Depth depth, int ply, int threadID) {
assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
assert(depth <= 0);
assert(ply >= 0 && ply < PLY_MAX);
assert(threadID >= 0 && threadID < ActiveThreads);
EvalInfo ei;
StateInfo st;
Move ttMove, move;
Value staticValue, bestValue, value, futilityBase, futilityValue;
bool isCheck, enoughMaterial, moveIsCheck;
const TTEntry* tte = NULL;
int moveCount = 0;
bool pvNode = (beta - alpha != 1);
// Initialize, and make an early exit in case of an aborted search,
// an instant draw, maximum ply reached, etc.
init_node(ss, ply, threadID);
// After init_node() that calls poll()
if (AbortSearch || thread_should_stop(threadID))
return Value(0);
if (pos.is_draw() || ply >= PLY_MAX - 1)
return VALUE_DRAW;
// Transposition table lookup. At PV nodes, we don't use the TT for
// pruning, but only for move ordering.
tte = TT.retrieve(pos.get_key());
ttMove = (tte ? tte->move() : MOVE_NONE);
if (!pvNode && tte && ok_to_use_TT(tte, depth, beta, ply))
{
assert(tte->type() != VALUE_TYPE_EVAL);
ss[ply].currentMove = ttMove; // Can be MOVE_NONE
return value_from_tt(tte->value(), ply);
}
isCheck = pos.is_check();
// Evaluate the position statically
if (isCheck)
staticValue = -VALUE_INFINITE;
else if (tte && (tte->type() & VALUE_TYPE_EVAL))
staticValue = value_from_tt(tte->value(), ply);
else
staticValue = evaluate(pos, ei, threadID);
// Initialize "stand pat score", and return it immediately if it is
// at least beta.
bestValue = staticValue;
if (bestValue >= beta)
{
// Store the score to avoid a future costly evaluation() call
if (!isCheck && !tte && ei.futilityMargin == 0)
TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_EV_LO, Depth(-127*OnePly), MOVE_NONE);
return bestValue;
}
if (bestValue > alpha)
alpha = bestValue;
// Initialize a MovePicker object for the current position, and prepare
// to search the moves. Because the depth is <= 0 here, only captures,
// queen promotions and checks (only if depth == 0) will be generated.
MovePicker mp = MovePicker(pos, ttMove, depth, H);
CheckInfo ci(pos);
enoughMaterial = pos.non_pawn_material(pos.side_to_move()) > RookValueMidgame;
futilityBase = staticValue + FutilityMarginQS + ei.futilityMargin;
// Loop through the moves until no moves remain or a beta cutoff
// occurs.
while ( alpha < beta
&& (move = mp.get_next_move()) != MOVE_NONE)
{
assert(move_is_ok(move));
moveIsCheck = pos.move_is_check(move, ci);
// Update current move
moveCount++;
ss[ply].currentMove = move;
// Futility pruning
if ( enoughMaterial
&& !isCheck
&& !pvNode
&& !moveIsCheck
&& move != ttMove
&& !move_is_promotion(move)
&& !pos.move_is_passed_pawn_push(move))
{
futilityValue = futilityBase
+ pos.endgame_value_of_piece_on(move_to(move))
+ (move_is_ep(move) ? PawnValueEndgame : Value(0));
if (futilityValue < alpha)
{
if (futilityValue > bestValue)
bestValue = futilityValue;
continue;
}
}
// Don't search captures and checks with negative SEE values
if ( !isCheck
&& move != ttMove
&& !move_is_promotion(move)
&& pos.see_sign(move) < 0)
continue;
// Make and search the move
pos.do_move(move, st, ci, moveIsCheck);
value = -qsearch(pos, ss, -beta, -alpha, depth-OnePly, ply+1, threadID);
pos.undo_move(move);
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
// New best move?
if (value > bestValue)
{
bestValue = value;
if (value > alpha)
{
alpha = value;
update_pv(ss, ply);
}
}
}
// All legal moves have been searched. A special case: If we're in check
// and no legal moves were found, it is checkmate.
if (!moveCount && pos.is_check()) // Mate!
return value_mated_in(ply);
// Update transposition table
Depth d = (depth == Depth(0) ? Depth(0) : Depth(-1));
if (bestValue < beta)
{
// If bestValue isn't changed it means it is still the static evaluation
// of the node, so keep this info to avoid a future evaluation() call.
ValueType type = (bestValue == staticValue && !ei.futilityMargin ? VALUE_TYPE_EV_UP : VALUE_TYPE_UPPER);
TT.store(pos.get_key(), value_to_tt(bestValue, ply), type, d, MOVE_NONE);
}
else
{
move = ss[ply].pv[ply];
TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, d, move);
// Update killers only for good checking moves
if (!pos.move_is_capture_or_promotion(move))
update_killers(move, ss[ply]);
}
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
return bestValue;
}
// sp_search() is used to search from a split point. This function is called
// by each thread working at the split point. It is similar to the normal
// search() function, but simpler. Because we have already probed the hash
// table, done a null move search, and searched the first move before
// splitting, we don't have to repeat all this work in sp_search(). We
// also don't need to store anything to the hash table here: This is taken
// care of after we return from the split point.
void sp_search(SplitPoint* sp, int threadID) {
assert(threadID >= 0 && threadID < ActiveThreads);
assert(ActiveThreads > 1);
Position pos = Position(sp->pos);
CheckInfo ci(pos);
SearchStack* ss = sp->sstack[threadID];
Value value;
Move move;
bool isCheck = pos.is_check();
bool useFutilityPruning = sp->depth < SelectiveDepth
&& !isCheck;
const int FutilityMoveCountMargin = 3 + (1 << (3 * int(sp->depth) / 8));
const int FutilityValueMargin = 112 * bitScanReverse32(int(sp->depth) * int(sp->depth) / 2);
while ( sp->bestValue < sp->beta
&& !thread_should_stop(threadID)
&& (move = sp->mp->get_next_move(sp->lock)) != MOVE_NONE)
{
assert(move_is_ok(move));
bool moveIsCheck = pos.move_is_check(move, ci);
bool captureOrPromotion = pos.move_is_capture_or_promotion(move);
lock_grab(&(sp->lock));
int moveCount = ++sp->moves;
lock_release(&(sp->lock));
ss[sp->ply].currentMove = move;
// Decide the new search depth.
bool dangerous;
Depth ext = extension(pos, move, false, captureOrPromotion, moveIsCheck, false, false, &dangerous);
Depth newDepth = sp->depth - OnePly + ext;
// Prune?
if ( useFutilityPruning
&& !dangerous
&& !captureOrPromotion)
{
// Move count based pruning
if ( moveCount >= FutilityMoveCountMargin
&& ok_to_prune(pos, move, ss[sp->ply].threatMove)
&& sp->bestValue > value_mated_in(PLY_MAX))
continue;
// Value based pruning
if (sp->futilityValue == VALUE_NONE)
{
EvalInfo ei;
sp->futilityValue = evaluate(pos, ei, threadID) + FutilityValueMargin;
}
Value futilityValueScaled = sp->futilityValue - moveCount * IncrementalFutilityMargin;
if (futilityValueScaled < sp->beta)
{
if (futilityValueScaled > sp->bestValue) // Less then 1% of cases
{
lock_grab(&(sp->lock));
if (futilityValueScaled > sp->bestValue)
sp->bestValue = futilityValueScaled;
lock_release(&(sp->lock));
}
continue;
}
}
// Make and search the move.
StateInfo st;
pos.do_move(move, st, ci, moveIsCheck);
// Try to reduce non-pv search depth by one ply if move seems not problematic,
// if the move fails high will be re-searched at full depth.
if ( !dangerous
&& !captureOrPromotion
&& !move_is_castle(move)
&& !move_is_killer(move, ss[sp->ply]))
{
double red = 0.5 + ln(moveCount) * ln(sp->depth / 2) / 3.0;
if (red >= 1.0)
{
ss[sp->ply].reduction = Depth(int(floor(red * int(OnePly))));
value = -search(pos, ss, -(sp->beta-1), newDepth-ss[sp->ply].reduction, sp->ply+1, true, threadID);
}
else
value = sp->beta; // Just to trigger next condition
}
else
value = sp->beta; // Just to trigger next condition
if (value >= sp->beta) // Go with full depth non-pv search
{
ss[sp->ply].reduction = Depth(0);
value = -search(pos, ss, -(sp->beta - 1), newDepth, sp->ply+1, true, threadID);
}
pos.undo_move(move);
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
if (thread_should_stop(threadID))
break;
// New best move?
if (value > sp->bestValue) // Less then 2% of cases
{
lock_grab(&(sp->lock));
if (value > sp->bestValue && !thread_should_stop(threadID))
{
sp->bestValue = value;
if (sp->bestValue >= sp->beta)
{
sp_update_pv(sp->parentSstack, ss, sp->ply);
for (int i = 0; i < ActiveThreads; i++)
if (i != threadID && (i == sp->master || sp->slaves[i]))
Threads[i].stop = true;
sp->finished = true;
}
}
lock_release(&(sp->lock));
}
}
lock_grab(&(sp->lock));
// If this is the master thread and we have been asked to stop because of
// a beta cutoff higher up in the tree, stop all slave threads.
if (sp->master == threadID && thread_should_stop(threadID))
for (int i = 0; i < ActiveThreads; i++)
if (sp->slaves[i])
Threads[i].stop = true;
sp->cpus--;
sp->slaves[threadID] = 0;
lock_release(&(sp->lock));
}
// sp_search_pv() is used to search from a PV split point. This function
// is called by each thread working at the split point. It is similar to
// the normal search_pv() function, but simpler. Because we have already
// probed the hash table and searched the first move before splitting, we
// don't have to repeat all this work in sp_search_pv(). We also don't
// need to store anything to the hash table here: This is taken care of
// after we return from the split point.
void sp_search_pv(SplitPoint* sp, int threadID) {
assert(threadID >= 0 && threadID < ActiveThreads);
assert(ActiveThreads > 1);
Position pos = Position(sp->pos);
CheckInfo ci(pos);
SearchStack* ss = sp->sstack[threadID];
Value value;
Move move;
while ( sp->alpha < sp->beta
&& !thread_should_stop(threadID)
&& (move = sp->mp->get_next_move(sp->lock)) != MOVE_NONE)
{
bool moveIsCheck = pos.move_is_check(move, ci);
bool captureOrPromotion = pos.move_is_capture_or_promotion(move);
assert(move_is_ok(move));
lock_grab(&(sp->lock));
int moveCount = ++sp->moves;
lock_release(&(sp->lock));
ss[sp->ply].currentMove = move;
// Decide the new search depth.
bool dangerous;
Depth ext = extension(pos, move, true, captureOrPromotion, moveIsCheck, false, false, &dangerous);
Depth newDepth = sp->depth - OnePly + ext;
// Make and search the move.
StateInfo st;
pos.do_move(move, st, ci, moveIsCheck);
// Try to reduce non-pv search depth by one ply if move seems not problematic,
// if the move fails high will be re-searched at full depth.
if ( !dangerous
&& !captureOrPromotion
&& !move_is_castle(move)
&& !move_is_killer(move, ss[sp->ply]))
{
double red = 0.5 + ln(moveCount) * ln(sp->depth / 2) / 6.0;
if (red >= 1.0)
{
ss[sp->ply].reduction = Depth(int(floor(red * int(OnePly))));
value = -search(pos, ss, -sp->alpha, newDepth-ss[sp->ply].reduction, sp->ply+1, true, threadID);
}
else
value = sp->alpha + 1; // Just to trigger next condition
}
else
value = sp->alpha + 1; // Just to trigger next condition
if (value > sp->alpha) // Go with full depth non-pv search
{
ss[sp->ply].reduction = Depth(0);
value = -search(pos, ss, -sp->alpha, newDepth, sp->ply+1, true, threadID);
if (value > sp->alpha && value < sp->beta)
{
// When the search fails high at ply 1 while searching the first
// move at the root, set the flag failHighPly1. This is used for
// time managment: We don't want to stop the search early in
// such cases, because resolving the fail high at ply 1 could
// result in a big drop in score at the root.
if (sp->ply == 1 && RootMoveNumber == 1)
Threads[threadID].failHighPly1 = true;
value = -search_pv(pos, ss, -sp->beta, -sp->alpha, newDepth, sp->ply+1, threadID);
Threads[threadID].failHighPly1 = false;
}
}
pos.undo_move(move);
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
if (thread_should_stop(threadID))
break;
// New best move?
lock_grab(&(sp->lock));
if (value > sp->bestValue && !thread_should_stop(threadID))
{
sp->bestValue = value;
if (value > sp->alpha)
{
sp->alpha = value;
sp_update_pv(sp->parentSstack, ss, sp->ply);
if (value == value_mate_in(sp->ply + 1))
ss[sp->ply].mateKiller = move;
if (value >= sp->beta)
{
for (int i = 0; i < ActiveThreads; i++)
if (i != threadID && (i == sp->master || sp->slaves[i]))
Threads[i].stop = true;
sp->finished = true;
}
}
// If we are at ply 1, and we are searching the first root move at
// ply 0, set the 'Problem' variable if the score has dropped a lot
// (from the computer's point of view) since the previous iteration.
if ( sp->ply == 1
&& Iteration >= 2
&& -value <= IterationInfo[Iteration-1].value - ProblemMargin)
Problem = true;
}
lock_release(&(sp->lock));
}
lock_grab(&(sp->lock));
// If this is the master thread and we have been asked to stop because of
// a beta cutoff higher up in the tree, stop all slave threads.
if (sp->master == threadID && thread_should_stop(threadID))
for (int i = 0; i < ActiveThreads; i++)
if (sp->slaves[i])
Threads[i].stop = true;
sp->cpus--;
sp->slaves[threadID] = 0;
lock_release(&(sp->lock));
}
/// The BetaCounterType class
BetaCounterType::BetaCounterType() { clear(); }
void BetaCounterType::clear() {
for (int i = 0; i < THREAD_MAX; i++)
Threads[i].betaCutOffs[WHITE] = Threads[i].betaCutOffs[BLACK] = 0ULL;
}
void BetaCounterType::add(Color us, Depth d, int threadID) {
// Weighted count based on depth
Threads[threadID].betaCutOffs[us] += unsigned(d);
}
void BetaCounterType::read(Color us, int64_t& our, int64_t& their) {
our = their = 0UL;
for (int i = 0; i < THREAD_MAX; i++)
{
our += Threads[i].betaCutOffs[us];
their += Threads[i].betaCutOffs[opposite_color(us)];
}
}
/// The RootMoveList class
// RootMoveList c'tor
RootMoveList::RootMoveList(Position& pos, Move searchMoves[]) : count(0) {
MoveStack mlist[MaxRootMoves];
bool includeAllMoves = (searchMoves[0] == MOVE_NONE);
// Generate all legal moves
MoveStack* last = generate_moves(pos, mlist);
// Add each move to the moves[] array
for (MoveStack* cur = mlist; cur != last; cur++)
{
bool includeMove = includeAllMoves;
for (int k = 0; !includeMove && searchMoves[k] != MOVE_NONE; k++)
includeMove = (searchMoves[k] == cur->move);
if (!includeMove)
continue;
// Find a quick score for the move
StateInfo st;
SearchStack ss[PLY_MAX_PLUS_2];
init_ss_array(ss);
moves[count].move = cur->move;
pos.do_move(moves[count].move, st);
moves[count].score = -qsearch(pos, ss, -VALUE_INFINITE, VALUE_INFINITE, Depth(0), 1, 0);
pos.undo_move(moves[count].move);
moves[count].pv[0] = moves[count].move;
moves[count].pv[1] = MOVE_NONE;
count++;
}
sort();
}
// RootMoveList simple methods definitions
void RootMoveList::set_move_nodes(int moveNum, int64_t nodes) {
moves[moveNum].nodes = nodes;
moves[moveNum].cumulativeNodes += nodes;
}
void RootMoveList::set_beta_counters(int moveNum, int64_t our, int64_t their) {
moves[moveNum].ourBeta = our;
moves[moveNum].theirBeta = their;
}
void RootMoveList::set_move_pv(int moveNum, const Move pv[]) {
int j;
for (j = 0; pv[j] != MOVE_NONE; j++)
moves[moveNum].pv[j] = pv[j];
moves[moveNum].pv[j] = MOVE_NONE;
}
// RootMoveList::sort() sorts the root move list at the beginning of a new
// iteration.
void RootMoveList::sort() {
sort_multipv(count - 1); // Sort all items
}
// RootMoveList::sort_multipv() sorts the first few moves in the root move
// list by their scores and depths. It is used to order the different PVs
// correctly in MultiPV mode.
void RootMoveList::sort_multipv(int n) {
int i,j;
for (i = 1; i <= n; i++)
{
RootMove rm = moves[i];
for (j = i; j > 0 && moves[j - 1] < rm; j--)
moves[j] = moves[j - 1];
moves[j] = rm;
}
}
// init_node() is called at the beginning of all the search functions
// (search(), search_pv(), qsearch(), and so on) and initializes the
// search stack object corresponding to the current node. Once every
// NodesBetweenPolls nodes, init_node() also calls poll(), which polls
// for user input and checks whether it is time to stop the search.
void init_node(SearchStack ss[], int ply, int threadID) {
assert(ply >= 0 && ply < PLY_MAX);
assert(threadID >= 0 && threadID < ActiveThreads);
Threads[threadID].nodes++;
if (threadID == 0)
{
NodesSincePoll++;
if (NodesSincePoll >= NodesBetweenPolls)
{
poll();
NodesSincePoll = 0;
}
}
ss[ply].init(ply);
ss[ply + 2].initKillers();
if (Threads[threadID].printCurrentLine)
print_current_line(ss, ply, threadID);
}
// update_pv() is called whenever a search returns a value > alpha.
// It updates the PV in the SearchStack object corresponding to the
// current node.
void update_pv(SearchStack ss[], int ply) {
assert(ply >= 0 && ply < PLY_MAX);
int p;
ss[ply].pv[ply] = ss[ply].currentMove;
for (p = ply + 1; ss[ply + 1].pv[p] != MOVE_NONE; p++)
ss[ply].pv[p] = ss[ply + 1].pv[p];
ss[ply].pv[p] = MOVE_NONE;
}
// sp_update_pv() is a variant of update_pv for use at split points. The
// difference between the two functions is that sp_update_pv also updates
// the PV at the parent node.
void sp_update_pv(SearchStack* pss, SearchStack ss[], int ply) {
assert(ply >= 0 && ply < PLY_MAX);
int p;
ss[ply].pv[ply] = pss[ply].pv[ply] = ss[ply].currentMove;
for (p = ply + 1; ss[ply + 1].pv[p] != MOVE_NONE; p++)
ss[ply].pv[p] = pss[ply].pv[p] = ss[ply + 1].pv[p];
ss[ply].pv[p] = pss[ply].pv[p] = MOVE_NONE;
}
// connected_moves() tests whether two moves are 'connected' in the sense
// that the first move somehow made the second move possible (for instance
// if the moving piece is the same in both moves). The first move is assumed
// to be the move that was made to reach the current position, while the
// second move is assumed to be a move from the current position.
bool connected_moves(const Position& pos, Move m1, Move m2) {
Square f1, t1, f2, t2;
Piece p;
assert(move_is_ok(m1));
assert(move_is_ok(m2));
if (m2 == MOVE_NONE)
return false;
// Case 1: The moving piece is the same in both moves
f2 = move_from(m2);
t1 = move_to(m1);
if (f2 == t1)
return true;
// Case 2: The destination square for m2 was vacated by m1
t2 = move_to(m2);
f1 = move_from(m1);
if (t2 == f1)
return true;
// Case 3: Moving through the vacated square
if ( piece_is_slider(pos.piece_on(f2))
&& bit_is_set(squares_between(f2, t2), f1))
return true;
// Case 4: The destination square for m2 is defended by the moving piece in m1
p = pos.piece_on(t1);
if (bit_is_set(pos.attacks_from(p, t1), t2))
return true;
// Case 5: Discovered check, checking piece is the piece moved in m1
if ( piece_is_slider(p)
&& bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), f2)
&& !bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), t2))
{
// discovered_check_candidates() works also if the Position's side to
// move is the opposite of the checking piece.
Color them = opposite_color(pos.side_to_move());
Bitboard dcCandidates = pos.discovered_check_candidates(them);
if (bit_is_set(dcCandidates, f2))
return true;
}
return false;
}
// value_is_mate() checks if the given value is a mate one
// eventually compensated for the ply.
bool value_is_mate(Value value) {
assert(abs(value) <= VALUE_INFINITE);
return value <= value_mated_in(PLY_MAX)
|| value >= value_mate_in(PLY_MAX);
}
// move_is_killer() checks if the given move is among the
// killer moves of that ply.
bool move_is_killer(Move m, const SearchStack& ss) {
const Move* k = ss.killers;
for (int i = 0; i < KILLER_MAX; i++, k++)
if (*k == m)
return true;
return false;
}
// extension() decides whether a move should be searched with normal depth,
// or with extended depth. Certain classes of moves (checking moves, in
// particular) are searched with bigger depth than ordinary moves and in
// any case are marked as 'dangerous'. Note that also if a move is not
// extended, as example because the corresponding UCI option is set to zero,
// the move is marked as 'dangerous' so, at least, we avoid to prune it.
Depth extension(const Position& pos, Move m, bool pvNode, bool captureOrPromotion,
bool moveIsCheck, bool singleEvasion, bool mateThreat, bool* dangerous) {
assert(m != MOVE_NONE);
Depth result = Depth(0);
*dangerous = moveIsCheck | singleEvasion | mateThreat;
if (*dangerous)
{
if (moveIsCheck)
result += CheckExtension[pvNode];
if (singleEvasion)
result += SingleEvasionExtension[pvNode];
if (mateThreat)
result += MateThreatExtension[pvNode];
}
if (pos.type_of_piece_on(move_from(m)) == PAWN)
{
Color c = pos.side_to_move();
if (relative_rank(c, move_to(m)) == RANK_7)
{
result += PawnPushTo7thExtension[pvNode];
*dangerous = true;
}
if (pos.pawn_is_passed(c, move_to(m)))
{
result += PassedPawnExtension[pvNode];
*dangerous = true;
}
}
if ( captureOrPromotion
&& pos.type_of_piece_on(move_to(m)) != PAWN
&& ( pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK)
- pos.midgame_value_of_piece_on(move_to(m)) == Value(0))
&& !move_is_promotion(m)
&& !move_is_ep(m))
{
result += PawnEndgameExtension[pvNode];
*dangerous = true;
}
if ( pvNode
&& captureOrPromotion
&& pos.type_of_piece_on(move_to(m)) != PAWN
&& pos.see_sign(m) >= 0)
{
result += OnePly/2;
*dangerous = true;
}
return Min(result, OnePly);
}
// ok_to_do_nullmove() looks at the current position and decides whether
// doing a 'null move' should be allowed. In order to avoid zugzwang
// problems, null moves are not allowed when the side to move has very
// little material left. Currently, the test is a bit too simple: Null
// moves are avoided only when the side to move has only pawns left.
// It's probably a good idea to avoid null moves in at least some more
// complicated endgames, e.g. KQ vs KR. FIXME
bool ok_to_do_nullmove(const Position& pos) {
return pos.non_pawn_material(pos.side_to_move()) != Value(0);
}
// ok_to_prune() tests whether it is safe to forward prune a move. Only
// non-tactical moves late in the move list close to the leaves are
// candidates for pruning.
bool ok_to_prune(const Position& pos, Move m, Move threat) {
assert(move_is_ok(m));
assert(threat == MOVE_NONE || move_is_ok(threat));
assert(!pos.move_is_check(m));
assert(!pos.move_is_capture_or_promotion(m));
assert(!pos.move_is_passed_pawn_push(m));
Square mfrom, mto, tfrom, tto;
// Prune if there isn't any threat move and
// is not a castling move (common case).
if (threat == MOVE_NONE && !move_is_castle(m))
return true;
mfrom = move_from(m);
mto = move_to(m);
tfrom = move_from(threat);
tto = move_to(threat);
// Case 1: Castling moves are never pruned
if (move_is_castle(m))
return false;
// Case 2: Don't prune moves which move the threatened piece
if (mfrom == tto)
return false;
// Case 3: If the threatened piece has value less than or equal to the
// value of the threatening piece, don't prune move which defend it.
if ( pos.move_is_capture(threat)
&& ( pos.midgame_value_of_piece_on(tfrom) >= pos.midgame_value_of_piece_on(tto)
|| pos.type_of_piece_on(tfrom) == KING)
&& pos.move_attacks_square(m, tto))
return false;
// Case 4: If the moving piece in the threatened move is a slider, don't
// prune safe moves which block its ray.
if ( piece_is_slider(pos.piece_on(tfrom))
&& bit_is_set(squares_between(tfrom, tto), mto)
&& pos.see_sign(m) >= 0)
return false;
return true;
}
// ok_to_use_TT() returns true if a transposition table score
// can be used at a given point in search.
bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply) {
Value v = value_from_tt(tte->value(), ply);
return ( tte->depth() >= depth
|| v >= Max(value_mate_in(PLY_MAX), beta)
|| v < Min(value_mated_in(PLY_MAX), beta))
&& ( (is_lower_bound(tte->type()) && v >= beta)
|| (is_upper_bound(tte->type()) && v < beta));
}
// refine_eval() returns the transposition table score if
// possible otherwise falls back on static position evaluation.
Value refine_eval(const TTEntry* tte, Value defaultEval, int ply) {
if (!tte)
return defaultEval;
Value v = value_from_tt(tte->value(), ply);
if ( (is_lower_bound(tte->type()) && v >= defaultEval)
|| (is_upper_bound(tte->type()) && v < defaultEval))
return v;
return defaultEval;
}
// update_history() registers a good move that produced a beta-cutoff
// in history and marks as failures all the other moves of that ply.
void update_history(const Position& pos, Move move, Depth depth,
Move movesSearched[], int moveCount) {
Move m;
H.success(pos.piece_on(move_from(move)), move_to(move), depth);
for (int i = 0; i < moveCount - 1; i++)
{
m = movesSearched[i];
assert(m != move);
if (!pos.move_is_capture_or_promotion(m))
H.failure(pos.piece_on(move_from(m)), move_to(m), depth);
}
}
// update_killers() add a good move that produced a beta-cutoff
// among the killer moves of that ply.
void update_killers(Move m, SearchStack& ss) {
if (m == ss.killers[0])
return;
for (int i = KILLER_MAX - 1; i > 0; i--)
ss.killers[i] = ss.killers[i - 1];
ss.killers[0] = m;
}
// fail_high_ply_1() checks if some thread is currently resolving a fail
// high at ply 1 at the node below the first root node. This information
// is used for time management.
bool fail_high_ply_1() {
for (int i = 0; i < ActiveThreads; i++)
if (Threads[i].failHighPly1)
return true;
return false;
}
// current_search_time() returns the number of milliseconds which have passed
// since the beginning of the current search.
int current_search_time() {
return get_system_time() - SearchStartTime;
}
// nps() computes the current nodes/second count.
int nps() {
int t = current_search_time();
return (t > 0 ? int((nodes_searched() * 1000) / t) : 0);
}
// poll() performs two different functions: It polls for user input, and it
// looks at the time consumed so far and decides if it's time to abort the
// search.
void poll() {
static int lastInfoTime;
int t = current_search_time();
// Poll for input
if (Bioskey())
{
// We are line oriented, don't read single chars
std::string command;
if (!std::getline(std::cin, command))
command = "quit";
if (command == "quit")
{
AbortSearch = true;
PonderSearch = false;
Quit = true;
return;
}
else if (command == "stop")
{
AbortSearch = true;
PonderSearch = false;
}
else if (command == "ponderhit")
ponderhit();
}
// Print search information
if (t < 1000)
lastInfoTime = 0;
else if (lastInfoTime > t)
// HACK: Must be a new search where we searched less than
// NodesBetweenPolls nodes during the first second of search.
lastInfoTime = 0;
else if (t - lastInfoTime >= 1000)
{
lastInfoTime = t;
lock_grab(&IOLock);
if (dbg_show_mean)
dbg_print_mean();
if (dbg_show_hit_rate)
dbg_print_hit_rate();
cout << "info nodes " << nodes_searched() << " nps " << nps()
<< " time " << t << " hashfull " << TT.full() << endl;
lock_release(&IOLock);
if (ShowCurrentLine)
Threads[0].printCurrentLine = true;
}
// Should we stop the search?
if (PonderSearch)
return;
bool stillAtFirstMove = RootMoveNumber == 1
&& !FailLow
&& t > MaxSearchTime + ExtraSearchTime;
bool noProblemFound = !FailHigh
&& !FailLow
&& !fail_high_ply_1()
&& !Problem
&& t > 6 * (MaxSearchTime + ExtraSearchTime);
bool noMoreTime = t > AbsoluteMaxSearchTime
|| stillAtFirstMove //FIXME: We are not checking any problem flags, BUG?
|| noProblemFound;
if ( (Iteration >= 3 && UseTimeManagement && noMoreTime)
|| (ExactMaxTime && t >= ExactMaxTime)
|| (Iteration >= 3 && MaxNodes && nodes_searched() >= MaxNodes))
AbortSearch = true;
}
// ponderhit() is called when the program is pondering (i.e. thinking while
// it's the opponent's turn to move) in order to let the engine know that
// it correctly predicted the opponent's move.
void ponderhit() {
int t = current_search_time();
PonderSearch = false;
bool stillAtFirstMove = RootMoveNumber == 1
&& !FailLow
&& t > MaxSearchTime + ExtraSearchTime;
bool noProblemFound = !FailHigh
&& !FailLow
&& !fail_high_ply_1()
&& !Problem
&& t > 6 * (MaxSearchTime + ExtraSearchTime);
bool noMoreTime = t > AbsoluteMaxSearchTime
|| stillAtFirstMove
|| noProblemFound;
if (Iteration >= 3 && UseTimeManagement && (noMoreTime || StopOnPonderhit))
AbortSearch = true;
}
// print_current_line() prints the current line of search for a given
// thread. Called when the UCI option UCI_ShowCurrLine is 'true'.
void print_current_line(SearchStack ss[], int ply, int threadID) {
assert(ply >= 0 && ply < PLY_MAX);
assert(threadID >= 0 && threadID < ActiveThreads);
if (!Threads[threadID].idle)
{
lock_grab(&IOLock);
cout << "info currline " << (threadID + 1);
for (int p = 0; p < ply; p++)
cout << " " << ss[p].currentMove;
cout << endl;
lock_release(&IOLock);
}
Threads[threadID].printCurrentLine = false;
if (threadID + 1 < ActiveThreads)
Threads[threadID + 1].printCurrentLine = true;
}
// init_ss_array() does a fast reset of the first entries of a SearchStack array
void init_ss_array(SearchStack ss[]) {
for (int i = 0; i < 3; i++)
{
ss[i].init(i);
ss[i].initKillers();
}
}
// wait_for_stop_or_ponderhit() is called when the maximum depth is reached
// while the program is pondering. The point is to work around a wrinkle in
// the UCI protocol: When pondering, the engine is not allowed to give a
// "bestmove" before the GUI sends it a "stop" or "ponderhit" command.
// We simply wait here until one of these commands is sent, and return,
// after which the bestmove and pondermove will be printed (in id_loop()).
void wait_for_stop_or_ponderhit() {
std::string command;
while (true)
{
if (!std::getline(std::cin, command))
command = "quit";
if (command == "quit")
{
Quit = true;
break;
}
else if (command == "ponderhit" || command == "stop")
break;
}
}
// idle_loop() is where the threads are parked when they have no work to do.
// The parameter "waitSp", if non-NULL, is a pointer to an active SplitPoint
// object for which the current thread is the master.
void idle_loop(int threadID, SplitPoint* waitSp) {
assert(threadID >= 0 && threadID < THREAD_MAX);
Threads[threadID].running = true;
while (true)
{
if (AllThreadsShouldExit && threadID != 0)
break;
// If we are not thinking, wait for a condition to be signaled
// instead of wasting CPU time polling for work.
while (threadID != 0 && (Idle || threadID >= ActiveThreads))
{
#if !defined(_MSC_VER)
pthread_mutex_lock(&WaitLock);
if (Idle || threadID >= ActiveThreads)
pthread_cond_wait(&WaitCond, &WaitLock);
pthread_mutex_unlock(&WaitLock);
#else
WaitForSingleObject(SitIdleEvent[threadID], INFINITE);
#endif
}
// If this thread has been assigned work, launch a search
if (Threads[threadID].workIsWaiting)
{
Threads[threadID].workIsWaiting = false;
if (Threads[threadID].splitPoint->pvNode)
sp_search_pv(Threads[threadID].splitPoint, threadID);
else
sp_search(Threads[threadID].splitPoint, threadID);
Threads[threadID].idle = true;
}
// If this thread is the master of a split point and all threads have
// finished their work at this split point, return from the idle loop.
if (waitSp != NULL && waitSp->cpus == 0)
return;
}
Threads[threadID].running = false;
}
// init_split_point_stack() is called during program initialization, and
// initializes all split point objects.
void init_split_point_stack() {
for (int i = 0; i < THREAD_MAX; i++)
for (int j = 0; j < ACTIVE_SPLIT_POINTS_MAX; j++)
{
SplitPointStack[i][j].parent = NULL;
lock_init(&(SplitPointStack[i][j].lock), NULL);
}
}
// destroy_split_point_stack() is called when the program exits, and
// destroys all locks in the precomputed split point objects.
void destroy_split_point_stack() {
for (int i = 0; i < THREAD_MAX; i++)
for (int j = 0; j < ACTIVE_SPLIT_POINTS_MAX; j++)
lock_destroy(&(SplitPointStack[i][j].lock));
}
// thread_should_stop() checks whether the thread with a given threadID has
// been asked to stop, directly or indirectly. This can happen if a beta
// cutoff has occurred in the thread's currently active split point, or in
// some ancestor of the current split point.
bool thread_should_stop(int threadID) {
assert(threadID >= 0 && threadID < ActiveThreads);
SplitPoint* sp;
if (Threads[threadID].stop)
return true;
if (ActiveThreads <= 2)
return false;
for (sp = Threads[threadID].splitPoint; sp != NULL; sp = sp->parent)
if (sp->finished)
{
Threads[threadID].stop = true;
return true;
}
return false;
}
// thread_is_available() checks whether the thread with threadID "slave" is
// available to help the thread with threadID "master" at a split point. An
// obvious requirement is that "slave" must be idle. With more than two
// threads, this is not by itself sufficient: If "slave" is the master of
// some active split point, it is only available as a slave to the other
// threads which are busy searching the split point at the top of "slave"'s
// split point stack (the "helpful master concept" in YBWC terminology).
bool thread_is_available(int slave, int master) {
assert(slave >= 0 && slave < ActiveThreads);
assert(master >= 0 && master < ActiveThreads);
assert(ActiveThreads > 1);
if (!Threads[slave].idle || slave == master)
return false;
if (Threads[slave].activeSplitPoints == 0)
// No active split points means that the thread is available as
// a slave for any other thread.
return true;
if (ActiveThreads == 2)
return true;
// Apply the "helpful master" concept if possible
if (SplitPointStack[slave][Threads[slave].activeSplitPoints - 1].slaves[master])
return true;
return false;
}
// idle_thread_exists() tries to find an idle thread which is available as
// a slave for the thread with threadID "master".
bool idle_thread_exists(int master) {
assert(master >= 0 && master < ActiveThreads);
assert(ActiveThreads > 1);
for (int i = 0; i < ActiveThreads; i++)
if (thread_is_available(i, master))
return true;
return false;
}
// split() does the actual work of distributing the work at a node between
// several threads at PV nodes. If it does not succeed in splitting the
// node (because no idle threads are available, or because we have no unused
// split point objects), the function immediately returns false. If
// splitting is possible, a SplitPoint object is initialized with all the
// data that must be copied to the helper threads (the current position and
// search stack, alpha, beta, the search depth, etc.), and we tell our
// helper threads that they have been assigned work. This will cause them
// to instantly leave their idle loops and call sp_search_pv(). When all
// threads have returned from sp_search_pv (or, equivalently, when
// splitPoint->cpus becomes 0), split() returns true.
bool split(const Position& p, SearchStack* sstck, int ply,
Value* alpha, Value* beta, Value* bestValue, const Value futilityValue,
Depth depth, int* moves, MovePicker* mp, int master, bool pvNode) {
assert(p.is_ok());
assert(sstck != NULL);
assert(ply >= 0 && ply < PLY_MAX);
assert(*bestValue >= -VALUE_INFINITE && *bestValue <= *alpha);
assert(!pvNode || *alpha < *beta);
assert(*beta <= VALUE_INFINITE);
assert(depth > Depth(0));
assert(master >= 0 && master < ActiveThreads);
assert(ActiveThreads > 1);
SplitPoint* splitPoint;
int i;
lock_grab(&MPLock);
// If no other thread is available to help us, or if we have too many
// active split points, don't split.
if ( !idle_thread_exists(master)
|| Threads[master].activeSplitPoints >= ACTIVE_SPLIT_POINTS_MAX)
{
lock_release(&MPLock);
return false;
}
// Pick the next available split point object from the split point stack
splitPoint = SplitPointStack[master] + Threads[master].activeSplitPoints;
Threads[master].activeSplitPoints++;
// Initialize the split point object and copy current position
splitPoint->parent = Threads[master].splitPoint;
splitPoint->finished = false;
splitPoint->ply = ply;
splitPoint->depth = depth;
splitPoint->alpha = pvNode ? *alpha : (*beta - 1);
splitPoint->beta = *beta;
splitPoint->pvNode = pvNode;
splitPoint->bestValue = *bestValue;
splitPoint->futilityValue = futilityValue;
splitPoint->master = master;
splitPoint->mp = mp;
splitPoint->moves = *moves;
splitPoint->cpus = 1;
splitPoint->pos.copy(p);
splitPoint->parentSstack = sstck;
for (i = 0; i < ActiveThreads; i++)
splitPoint->slaves[i] = 0;
// Copy the current search stack to the master thread
memcpy(splitPoint->sstack[master], sstck, (ply+1) * sizeof(SearchStack));
Threads[master].splitPoint = splitPoint;
// Make copies of the current position and search stack for each thread
for (i = 0; i < ActiveThreads && splitPoint->cpus < MaxThreadsPerSplitPoint; i++)
if (thread_is_available(i, master))
{
memcpy(splitPoint->sstack[i], sstck, (ply+1) * sizeof(SearchStack));
Threads[i].splitPoint = splitPoint;
splitPoint->slaves[i] = 1;
splitPoint->cpus++;
}
// Tell the threads that they have work to do. This will make them leave
// their idle loop.
for (i = 0; i < ActiveThreads; i++)
if (i == master || splitPoint->slaves[i])
{
Threads[i].workIsWaiting = true;
Threads[i].idle = false;
Threads[i].stop = false;
}
lock_release(&MPLock);
// Everything is set up. The master thread enters the idle loop, from
// which it will instantly launch a search, because its workIsWaiting
// slot is 'true'. We send the split point as a second parameter to the
// idle loop, which means that the main thread will return from the idle
// loop when all threads have finished their work at this split point
// (i.e. when splitPoint->cpus == 0).
idle_loop(master, splitPoint);
// We have returned from the idle loop, which means that all threads are
// finished. Update alpha, beta and bestValue, and return.
lock_grab(&MPLock);
if (pvNode)
*alpha = splitPoint->alpha;
*beta = splitPoint->beta;
*bestValue = splitPoint->bestValue;
Threads[master].stop = false;
Threads[master].idle = false;
Threads[master].activeSplitPoints--;
Threads[master].splitPoint = splitPoint->parent;
lock_release(&MPLock);
return true;
}
// wake_sleeping_threads() wakes up all sleeping threads when it is time
// to start a new search from the root.
void wake_sleeping_threads() {
if (ActiveThreads > 1)
{
for (int i = 1; i < ActiveThreads; i++)
{
Threads[i].idle = true;
Threads[i].workIsWaiting = false;
}
#if !defined(_MSC_VER)
pthread_mutex_lock(&WaitLock);
pthread_cond_broadcast(&WaitCond);
pthread_mutex_unlock(&WaitLock);
#else
for (int i = 1; i < THREAD_MAX; i++)
SetEvent(SitIdleEvent[i]);
#endif
}
}
// init_thread() is the function which is called when a new thread is
// launched. It simply calls the idle_loop() function with the supplied
// threadID. There are two versions of this function; one for POSIX
// threads and one for Windows threads.
#if !defined(_MSC_VER)
void* init_thread(void *threadID) {
idle_loop(*(int*)threadID, NULL);
return NULL;
}
#else
DWORD WINAPI init_thread(LPVOID threadID) {
idle_loop(*(int*)threadID, NULL);
return NULL;
}
#endif
}