1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-30 08:43:09 +00:00
BadFish/src/thread.cpp
Marco Costalba b8c5ea869c Some renaming in split()
Naming suggested by jundery.

No functional change.
2013-02-04 22:00:41 +01:00

380 lines
11 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm> // For std::count
#include <cassert>
#include <iostream>
#include "movegen.h"
#include "search.h"
#include "thread.h"
#include "ucioption.h"
using namespace Search;
ThreadPool Threads; // Global object
namespace { extern "C" {
// start_routine() is the C function which is called when a new thread
// is launched. It is a wrapper to the virtual function idle_loop().
long start_routine(Thread* th) { th->idle_loop(); return 0; }
} }
// Thread c'tor starts a newly-created thread of execution that will call
// the the virtual function idle_loop(), going immediately to sleep.
Thread::Thread() : splitPoints() {
searching = exit = false;
maxPly = splitPointsSize = 0;
activeSplitPoint = NULL;
idx = Threads.size();
if (!thread_create(handle, start_routine, this))
{
std::cerr << "Failed to create thread number " << idx << std::endl;
::exit(EXIT_FAILURE);
}
}
// Thread d'tor waits for thread termination before to return
Thread::~Thread() {
exit = true; // Search must be already finished
notify_one();
thread_join(handle); // Wait for thread termination
}
// TimerThread::idle_loop() is where the timer thread waits msec milliseconds
// and then calls check_time(). If msec is 0 thread sleeps until is woken up.
extern void check_time();
void TimerThread::idle_loop() {
while (!exit)
{
mutex.lock();
if (!exit)
sleepCondition.wait_for(mutex, msec ? msec : INT_MAX);
mutex.unlock();
if (msec)
check_time();
}
}
// MainThread::idle_loop() is where the main thread is parked waiting to be started
// when there is a new search. Main thread will launch all the slave threads.
void MainThread::idle_loop() {
while (true)
{
mutex.lock();
thinking = false;
while (!thinking && !exit)
{
Threads.sleepCondition.notify_one(); // Wake up UI thread if needed
sleepCondition.wait(mutex);
}
mutex.unlock();
if (exit)
return;
searching = true;
Search::think();
assert(searching);
searching = false;
}
}
// Thread::notify_one() wakes up the thread when there is some search to do
void Thread::notify_one() {
mutex.lock();
sleepCondition.notify_one();
mutex.unlock();
}
// Thread::wait_for() set the thread to sleep until condition 'b' turns true
void Thread::wait_for(volatile const bool& b) {
mutex.lock();
while (!b) sleepCondition.wait(mutex);
mutex.unlock();
}
// Thread::cutoff_occurred() checks whether a beta cutoff has occurred in the
// current active split point, or in some ancestor of the split point.
bool Thread::cutoff_occurred() const {
for (SplitPoint* sp = activeSplitPoint; sp; sp = sp->parentSplitPoint)
if (sp->cutoff)
return true;
return false;
}
// Thread::is_available_to() checks whether the thread is available to help the
// thread 'master' at a split point. An obvious requirement is that thread must
// be idle. With more than two threads, this is not sufficient: If the thread is
// the master of some split point, it is only available as a slave to the slaves
// which are busy searching the split point at the top of slaves split point
// stack (the "helpful master concept" in YBWC terminology).
bool Thread::is_available_to(Thread* master) const {
if (searching)
return false;
// Make a local copy to be sure doesn't become zero under our feet while
// testing next condition and so leading to an out of bound access.
int size = splitPointsSize;
// No split points means that the thread is available as a slave for any
// other thread otherwise apply the "helpful master" concept if possible.
return !size || (splitPoints[size - 1].slavesMask & (1ULL << master->idx));
}
// init() is called at startup to create and launch requested threads, that will
// go immediately to sleep due to 'sleepWhileIdle' set to true. We cannot use
// a c'tor becuase Threads is a static object and we need a fully initialized
// engine at this point due to allocation of Endgames in Thread c'tor.
void ThreadPool::init() {
sleepWhileIdle = true;
timer = new TimerThread();
threads.push_back(new MainThread());
read_uci_options();
}
// exit() cleanly terminates the threads before the program exits
void ThreadPool::exit() {
delete timer; // As first because check_time() accesses threads data
for (size_t i = 0; i < threads.size(); i++)
delete threads[i];
}
// read_uci_options() updates internal threads parameters from the corresponding
// UCI options and creates/destroys threads to match the requested number. Thread
// objects are dynamically allocated to avoid creating in advance all possible
// threads, with included pawns and material tables, if only few are used.
void ThreadPool::read_uci_options() {
maxThreadsPerSplitPoint = Options["Max Threads per Split Point"];
minimumSplitDepth = Options["Min Split Depth"] * ONE_PLY;
size_t requested = Options["Threads"];
assert(requested > 0);
while (threads.size() < requested)
threads.push_back(new Thread());
while (threads.size() > requested)
{
delete threads.back();
threads.pop_back();
}
}
// slave_available() tries to find an idle thread which is available as a slave
// for the thread 'master'.
bool ThreadPool::slave_available(Thread* master) const {
for (size_t i = 0; i < threads.size(); i++)
if (threads[i]->is_available_to(master))
return true;
return false;
}
// split() does the actual work of distributing the work at a node between
// several available threads. If it does not succeed in splitting the node
// (because no idle threads are available), the function immediately returns.
// If splitting is possible, a SplitPoint object is initialized with all the
// data that must be copied to the helper threads and then helper threads are
// told that they have been assigned work. This will cause them to instantly
// leave their idle loops and call search(). When all threads have returned from
// search() then split() returns.
template <bool Fake>
Value ThreadPool::split(Position& pos, Stack* ss, Value alpha, Value beta,
Value bestValue, Move* bestMove, Depth depth, Move threatMove,
int moveCount, MovePicker& mp, int nodeType) {
assert(pos.pos_is_ok());
assert(bestValue <= alpha && alpha < beta && beta <= VALUE_INFINITE);
assert(bestValue > -VALUE_INFINITE);
assert(depth >= Threads.minimumSplitDepth);
Thread* thisThread = pos.this_thread();
assert(thisThread->searching);
assert(thisThread->splitPointsSize < MAX_SPLITPOINTS_PER_THREAD);
// Pick the next available split point from the split point stack
SplitPoint& sp = thisThread->splitPoints[thisThread->splitPointsSize];
sp.masterThread = thisThread;
sp.parentSplitPoint = thisThread->activeSplitPoint;
sp.slavesMask = 1ULL << thisThread->idx;
sp.depth = depth;
sp.bestMove = *bestMove;
sp.threatMove = threatMove;
sp.alpha = alpha;
sp.beta = beta;
sp.nodeType = nodeType;
sp.bestValue = bestValue;
sp.movePicker = &mp;
sp.moveCount = moveCount;
sp.pos = &pos;
sp.nodes = 0;
sp.cutoff = false;
sp.ss = ss;
// Try to allocate available threads and ask them to start searching setting
// 'searching' flag. This must be done under lock protection to avoid concurrent
// allocation of the same slave by another master.
mutex.lock();
sp.mutex.lock();
thisThread->splitPointsSize++;
thisThread->activeSplitPoint = &sp;
size_t slavesCnt = 1; // Master is always included
for (size_t i = 0; i < threads.size() && !Fake; ++i)
if (threads[i]->is_available_to(thisThread) && ++slavesCnt <= maxThreadsPerSplitPoint)
{
sp.slavesMask |= 1ULL << threads[i]->idx;
threads[i]->activeSplitPoint = &sp;
threads[i]->searching = true; // Slave leaves idle_loop()
threads[i]->notify_one(); // Could be sleeping
}
sp.mutex.unlock();
mutex.unlock();
// Everything is set up. The master thread enters the idle loop, from which
// it will instantly launch a search, because its 'searching' flag is set.
// The thread will return from the idle loop when all slaves have finished
// their work at this split point.
if (slavesCnt > 1 || Fake)
{
thisThread->Thread::idle_loop(); // Force a call to base class idle_loop()
// In helpful master concept a master can help only a sub-tree of its split
// point, and because here is all finished is not possible master is booked.
assert(!thisThread->searching);
}
// We have returned from the idle loop, which means that all threads are
// finished. Note that setting 'searching' and decreasing splitPointsSize is
// done under lock protection to avoid a race with Thread::is_available_to().
mutex.lock();
sp.mutex.lock();
thisThread->searching = true;
thisThread->splitPointsSize--;
thisThread->activeSplitPoint = sp.parentSplitPoint;
pos.set_nodes_searched(pos.nodes_searched() + sp.nodes);
*bestMove = sp.bestMove;
sp.mutex.unlock();
mutex.unlock();
return sp.bestValue;
}
// Explicit template instantiations
template Value ThreadPool::split<false>(Position&, Stack*, Value, Value, Value, Move*, Depth, Move, int, MovePicker&, int);
template Value ThreadPool::split<true>(Position&, Stack*, Value, Value, Value, Move*, Depth, Move, int, MovePicker&, int);
// wait_for_think_finished() waits for main thread to go to sleep then returns
void ThreadPool::wait_for_think_finished() {
MainThread* t = main_thread();
t->mutex.lock();
while (t->thinking) sleepCondition.wait(t->mutex);
t->mutex.unlock();
}
// start_thinking() wakes up the main thread sleeping in MainThread::idle_loop()
// so to start a new search, then returns immediately.
void ThreadPool::start_thinking(const Position& pos, const LimitsType& limits,
const std::vector<Move>& searchMoves, StateStackPtr& states) {
wait_for_think_finished();
SearchTime = Time::now(); // As early as possible
Signals.stopOnPonderhit = Signals.firstRootMove = false;
Signals.stop = Signals.failedLowAtRoot = false;
RootPos = pos;
Limits = limits;
SetupStates = states; // Ownership transfer here
RootMoves.clear();
for (MoveList<LEGAL> ml(pos); !ml.end(); ++ml)
if ( searchMoves.empty()
|| std::count(searchMoves.begin(), searchMoves.end(), ml.move()))
RootMoves.push_back(RootMove(ml.move()));
main_thread()->thinking = true;
main_thread()->notify_one(); // Starts main thread
}