1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-29 16:23:09 +00:00
BadFish/src/search.cpp
Marco Costalba bd3fd6501b scan_for_easy_move: we don't need a loop here
Moves are already sorted, so just consider the best
and the second one.

Some trailing whitespace remove noise crept in due
to my editor removes it before to save.

Signed-off-by: Marco Costalba <mcostalba@gmail.com>
2008-09-03 23:33:49 +02:00

2438 lines
80 KiB
C++

/*
Glaurung, a UCI chess playing engine.
Copyright (C) 2004-2008 Tord Romstad
Glaurung is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Glaurung is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
////
//// Includes
////
#include <cassert>
#include <cstdio>
#include <fstream>
#include <iostream>
#include <sstream>
#include "book.h"
#include "evaluate.h"
#include "history.h"
#include "misc.h"
#include "movepick.h"
#include "san.h"
#include "search.h"
#include "thread.h"
#include "tt.h"
#include "ucioption.h"
////
//// Local definitions
////
namespace {
/// Types
// The RootMove class is used for moves at the root at the tree. For each
// root move, we store a score, a node count, and a PV (really a refutation
// in the case of moves which fail low).
class RootMove {
public:
RootMove();
Move move;
Value score;
int64_t nodes, cumulativeNodes;
Move pv[PLY_MAX_PLUS_2];
};
// The RootMoveList class is essentially an array of RootMove objects, with
// a handful of methods for accessing the data in the individual moves.
class RootMoveList {
public:
RootMoveList(Position &pos, Move searchMoves[]);
Move get_move(int moveNum) const;
Value get_move_score(int moveNum) const;
void set_move_score(int moveNum, Value score);
void set_move_nodes(int moveNum, int64_t nodes);
void set_move_pv(int moveNum, const Move pv[]);
Move get_move_pv(int moveNum, int i) const;
int64_t get_move_cumulative_nodes(int moveNum);
int move_count() const;
Move scan_for_easy_move() const;
void sort();
void sort_multipv(int n);
private:
static bool compare_root_moves(const RootMove &rm1, const RootMove &rm2);
static const int MaxRootMoves = 500;
RootMove moves[MaxRootMoves];
int count;
};
/// Constants and variables
// Minimum number of full depth (i.e. non-reduced) moves at PV and non-PV
// nodes:
int LMRPVMoves = 15;
int LMRNonPVMoves = 4;
// Depth limit for use of dynamic threat detection:
Depth ThreatDepth = 5*OnePly;
// Depth limit for selective search:
Depth SelectiveDepth = 7*OnePly;
// Use internal iterative deepening?
const bool UseIIDAtPVNodes = true;
const bool UseIIDAtNonPVNodes = false;
// Internal iterative deepening margin. At Non-PV moves, when
// UseIIDAtNonPVNodes is true, we do an internal iterative deepening search
// when the static evaluation is at most IIDMargin below beta.
const Value IIDMargin = Value(0x100);
// Use easy moves?
const bool UseEasyMove = true;
// Easy move margin. An easy move candidate must be at least this much
// better than the second best move.
const Value EasyMoveMargin = Value(0x200);
// Problem margin. If the score of the first move at iteration N+1 has
// dropped by more than this since iteration N, the boolean variable
// "Problem" is set to true, which will make the program spend some extra
// time looking for a better move.
const Value ProblemMargin = Value(0x28);
// No problem margin. If the boolean "Problem" is true, and a new move
// is found at the root which is less than NoProblemMargin worse than the
// best move from the previous iteration, Problem is set back to false.
const Value NoProblemMargin = Value(0x14);
// Null move margin. A null move search will not be done if the approximate
// evaluation of the position is more than NullMoveMargin below beta.
const Value NullMoveMargin = Value(0x300);
// Pruning criterions. See the code and comments in ok_to_prune() to
// understand their precise meaning.
const bool PruneEscapeMoves = false;
const bool PruneDefendingMoves = false;
const bool PruneBlockingMoves = false;
// Use futility pruning?
bool UseQSearchFutilityPruning = true;
bool UseFutilityPruning = true;
// Margins for futility pruning in the quiescence search, at frontier
// nodes, and at pre-frontier nodes:
Value FutilityMargin0 = Value(0x80);
Value FutilityMargin1 = Value(0x100);
Value FutilityMargin2 = Value(0x300);
// Razoring
Depth RazorDepth = 4*OnePly;
Value RazorMargin = Value(0x300);
// Extensions. Array index 0 is used at non-PV nodes, index 1 at PV nodes.
Depth CheckExtension[2] = {OnePly, OnePly};
Depth SingleReplyExtension[2] = {OnePly / 2, OnePly / 2};
Depth PawnPushTo7thExtension[2] = {OnePly / 2, OnePly / 2};
Depth PassedPawnExtension[2] = {Depth(0), Depth(0)};
Depth PawnEndgameExtension[2] = {OnePly, OnePly};
Depth MateThreatExtension[2] = {Depth(0), Depth(0)};
// Search depth at iteration 1:
const Depth InitialDepth = OnePly /*+ OnePly/2*/;
// Node counters
int NodesSincePoll;
int NodesBetweenPolls = 30000;
// Iteration counter:
int Iteration;
// Scores and number of times the best move changed for each iteration:
Value ValueByIteration[PLY_MAX_PLUS_2];
int BestMoveChangesByIteration[PLY_MAX_PLUS_2];
// MultiPV mode:
int MultiPV = 1;
// Time managment variables
int SearchStartTime;
int MaxNodes, MaxDepth;
int MaxSearchTime, AbsoluteMaxSearchTime, ExtraSearchTime;
Move BestRootMove, PonderMove, EasyMove;
int RootMoveNumber;
bool InfiniteSearch;
bool PonderSearch;
bool StopOnPonderhit;
bool AbortSearch;
bool Quit;
bool FailHigh;
bool Problem;
bool PonderingEnabled;
int ExactMaxTime;
// Show current line?
bool ShowCurrentLine = false;
// Log file
bool UseLogFile = false;
std::ofstream LogFile;
// MP related variables
Depth MinimumSplitDepth = 4*OnePly;
int MaxThreadsPerSplitPoint = 4;
Thread Threads[THREAD_MAX];
Lock MPLock;
bool AllThreadsShouldExit = false;
const int MaxActiveSplitPoints = 8;
SplitPoint SplitPointStack[THREAD_MAX][MaxActiveSplitPoints];
bool Idle = true;
#if !defined(_MSC_VER)
pthread_cond_t WaitCond;
pthread_mutex_t WaitLock;
#else
HANDLE SitIdleEvent[THREAD_MAX];
#endif
/// Functions
void id_loop(const Position &pos, Move searchMoves[]);
Value root_search(Position &pos, SearchStack ss[], RootMoveList &rml);
Value search_pv(Position &pos, SearchStack ss[], Value alpha, Value beta,
Depth depth, int ply, int threadID);
Value search(Position &pos, SearchStack ss[], Value beta,
Depth depth, int ply, bool allowNullmove, int threadID);
Value qsearch(Position &pos, SearchStack ss[], Value alpha, Value beta,
Depth depth, int ply, int threadID);
void sp_search(SplitPoint *sp, int threadID);
void sp_search_pv(SplitPoint *sp, int threadID);
void init_search_stack(SearchStack ss[]);
void init_node(const Position &pos, SearchStack ss[], int ply, int threadID);
void update_pv(SearchStack ss[], int ply);
void sp_update_pv(SearchStack *pss, SearchStack ss[], int ply);
bool connected_moves(const Position &pos, Move m1, Move m2);
Depth extension(const Position &pos, Move m, bool pvNode, bool check,
bool singleReply, bool mateThreat);
bool ok_to_do_nullmove(const Position &pos);
bool ok_to_prune(const Position &pos, Move m, Move threat, Depth d);
bool fail_high_ply_1();
int current_search_time();
int nps();
void poll();
void ponderhit();
void print_current_line(SearchStack ss[], int ply, int threadID);
void wait_for_stop_or_ponderhit();
void idle_loop(int threadID, SplitPoint *waitSp);
void init_split_point_stack();
void destroy_split_point_stack();
bool thread_should_stop(int threadID);
bool thread_is_available(int slave, int master);
bool idle_thread_exists(int master);
bool split(const Position &pos, SearchStack *ss, int ply,
Value *alpha, Value *beta, Value *bestValue, Depth depth,
int *moves, MovePicker *mp, Bitboard dcCandidates, int master,
bool pvNode);
void wake_sleeping_threads();
#if !defined(_MSC_VER)
void *init_thread(void *threadID);
#else
DWORD WINAPI init_thread(LPVOID threadID);
#endif
}
////
//// Global variables
////
// The main transposition table
TranspositionTable TT = TranspositionTable(TTDefaultSize);
// Number of active threads:
int ActiveThreads = 1;
// Locks. In principle, there is no need for IOLock to be a global variable,
// but it could turn out to be useful for debugging.
Lock IOLock;
History H; // Should be made local?
////
//// Functions
////
/// think() is the external interface to Glaurung's search, and is called when
/// the program receives the UCI 'go' command. It initializes various
/// search-related global variables, and calls root_search()
void think(const Position &pos, bool infinite, bool ponder, int time,
int increment, int movesToGo, int maxDepth, int maxNodes,
int maxTime, Move searchMoves[]) {
// Look for a book move:
if(!infinite && !ponder && get_option_value_bool("OwnBook")) {
Move bookMove;
if(get_option_value_string("Book File") != OpeningBook.file_name()) {
OpeningBook.close();
OpeningBook.open("book.bin");
}
bookMove = OpeningBook.get_move(pos);
if(bookMove != MOVE_NONE) {
std::cout << "bestmove " << bookMove << std::endl;
return;
}
}
// Initialize global search variables:
Idle = false;
SearchStartTime = get_system_time();
BestRootMove = MOVE_NONE;
PonderMove = MOVE_NONE;
EasyMove = MOVE_NONE;
for(int i = 0; i < THREAD_MAX; i++) {
Threads[i].nodes = 0ULL;
Threads[i].failHighPly1 = false;
}
NodesSincePoll = 0;
InfiniteSearch = infinite;
PonderSearch = ponder;
StopOnPonderhit = false;
AbortSearch = false;
Quit = false;
FailHigh = false;
Problem = false;
ExactMaxTime = maxTime;
// Read UCI option values:
TT.set_size(get_option_value_int("Hash"));
if(button_was_pressed("Clear Hash"))
TT.clear();
PonderingEnabled = get_option_value_int("Ponder");
MultiPV = get_option_value_int("MultiPV");
CheckExtension[1] = Depth(get_option_value_int("Check Extension (PV nodes)"));
CheckExtension[0] =
Depth(get_option_value_int("Check Extension (non-PV nodes)"));
SingleReplyExtension[1] = Depth(get_option_value_int("Single Reply Extension (PV nodes)"));
SingleReplyExtension[0] =
Depth(get_option_value_int("Single Reply Extension (non-PV nodes)"));
PawnPushTo7thExtension[1] =
Depth(get_option_value_int("Pawn Push to 7th Extension (PV nodes)"));
PawnPushTo7thExtension[0] =
Depth(get_option_value_int("Pawn Push to 7th Extension (non-PV nodes)"));
PassedPawnExtension[1] =
Depth(get_option_value_int("Passed Pawn Extension (PV nodes)"));
PassedPawnExtension[0] =
Depth(get_option_value_int("Passed Pawn Extension (non-PV nodes)"));
PawnEndgameExtension[1] =
Depth(get_option_value_int("Pawn Endgame Extension (PV nodes)"));
PawnEndgameExtension[0] =
Depth(get_option_value_int("Pawn Endgame Extension (non-PV nodes)"));
MateThreatExtension[1] =
Depth(get_option_value_int("Mate Threat Extension (PV nodes)"));
MateThreatExtension[0] =
Depth(get_option_value_int("Mate Threat Extension (non-PV nodes)"));
LMRPVMoves = get_option_value_int("Full Depth Moves (PV nodes)") + 1;
LMRNonPVMoves = get_option_value_int("Full Depth Moves (non-PV nodes)") + 1;
ThreatDepth = get_option_value_int("Threat Depth") * OnePly;
SelectiveDepth = get_option_value_int("Selective Plies") * OnePly;
Chess960 = get_option_value_bool("UCI_Chess960");
ShowCurrentLine = get_option_value_bool("UCI_ShowCurrLine");
UseLogFile = get_option_value_bool("Use Search Log");
if(UseLogFile)
LogFile.open(get_option_value_string("Search Log Filename").c_str(),
std::ios::out | std::ios::app);
UseQSearchFutilityPruning =
get_option_value_bool("Futility Pruning (Quiescence Search)");
UseFutilityPruning =
get_option_value_bool("Futility Pruning (Main Search)");
FutilityMargin0 =
value_from_centipawns(get_option_value_int("Futility Margin 0"));
FutilityMargin1 =
value_from_centipawns(get_option_value_int("Futility Margin 1"));
FutilityMargin2 =
value_from_centipawns(get_option_value_int("Futility Margin 2"));
RazorDepth = (get_option_value_int("Maximum Razoring Depth") + 1) * OnePly;
RazorMargin = value_from_centipawns(get_option_value_int("Razoring Margin"));
MinimumSplitDepth = get_option_value_int("Minimum Split Depth") * OnePly;
MaxThreadsPerSplitPoint =
get_option_value_int("Maximum Number of Threads per Split Point");
read_weights(pos.side_to_move());
int newActiveThreads = get_option_value_int("Threads");
if(newActiveThreads != ActiveThreads) {
ActiveThreads = newActiveThreads;
init_eval(ActiveThreads);
}
// Write information to search log file:
if(UseLogFile) {
LogFile << "Searching: " << pos.to_fen() << '\n';
LogFile << "infinite: " << infinite << " ponder: " << ponder
<< " time: " << time << " increment: " << increment
<< " moves to go: " << movesToGo << '\n';
}
// Wake up sleeping threads:
wake_sleeping_threads();
for(int i = 1; i < ActiveThreads; i++)
assert(thread_is_available(i, 0));
// Set thinking time:
if(!movesToGo) { // Sudden death time control
if(increment) {
MaxSearchTime = time / 30 + increment;
AbsoluteMaxSearchTime = Max(time / 4, increment - 100);
}
else { // Blitz game without increment
MaxSearchTime = time / 40;
AbsoluteMaxSearchTime = time / 8;
}
}
else { // (x moves) / (y minutes)
if(movesToGo == 1) {
MaxSearchTime = time / 2;
AbsoluteMaxSearchTime = Min(time / 2, time - 500);
}
else {
MaxSearchTime = time / Min(movesToGo, 20);
AbsoluteMaxSearchTime = Min((4 * time) / movesToGo, time / 3);
}
}
if(PonderingEnabled) {
MaxSearchTime += MaxSearchTime / 4;
MaxSearchTime = Min(MaxSearchTime, AbsoluteMaxSearchTime);
}
// Fixed depth or fixed number of nodes?
MaxDepth = maxDepth;
if(MaxDepth)
InfiniteSearch = true; // HACK
MaxNodes = maxNodes;
if(MaxNodes) {
NodesBetweenPolls = Min(MaxNodes, 30000);
InfiniteSearch = true; // HACK
}
else
NodesBetweenPolls = 30000;
// We're ready to start thinking. Call the iterative deepening loop
// function:
id_loop(pos, searchMoves);
if(UseLogFile)
LogFile.close();
if(Quit) {
OpeningBook.close();
stop_threads();
quit_eval();
exit(0);
}
Idle = true;
}
/// init_threads() is called during startup. It launches all helper threads,
/// and initializes the split point stack and the global locks and condition
/// objects.
void init_threads() {
volatile int i;
#if !defined(_MSC_VER)
pthread_t pthread[1];
#endif
for(i = 0; i < THREAD_MAX; i++)
Threads[i].activeSplitPoints = 0;
// Initialize global locks:
lock_init(&MPLock, NULL);
lock_init(&IOLock, NULL);
init_split_point_stack();
#if !defined(_MSC_VER)
pthread_mutex_init(&WaitLock, NULL);
pthread_cond_init(&WaitCond, NULL);
#else
for(i = 0; i < THREAD_MAX; i++)
SitIdleEvent[i] = CreateEvent(0, FALSE, FALSE, 0);
#endif
// All threads except the main thread should be initialized to idle state:
for(i = 1; i < THREAD_MAX; i++) {
Threads[i].stop = false;
Threads[i].workIsWaiting = false;
Threads[i].idle = true;
Threads[i].running = false;
}
// Launch the helper threads:
for(i = 1; i < THREAD_MAX; i++) {
#if !defined(_MSC_VER)
pthread_create(pthread, NULL, init_thread, (void*)(&i));
#else
{
DWORD iID[1];
CreateThread(NULL, 0, init_thread, (LPVOID)(&i), 0, iID);
}
#endif
// Wait until the thread has finished launching:
while(!Threads[i].running);
}
}
/// stop_threads() is called when the program exits. It makes all the
/// helper threads exit cleanly.
void stop_threads() {
ActiveThreads = THREAD_MAX; // HACK
Idle = false; // HACK
wake_sleeping_threads();
AllThreadsShouldExit = true;
for(int i = 1; i < THREAD_MAX; i++) {
Threads[i].stop = true;
while(Threads[i].running);
}
destroy_split_point_stack();
}
/// nodes_searched() returns the total number of nodes searched so far in
/// the current search.
int64_t nodes_searched() {
int64_t result = 0ULL;
for(int i = 0; i < ActiveThreads; i++)
result += Threads[i].nodes;
return result;
}
namespace {
// id_loop() is the main iterative deepening loop. It calls root_search
// repeatedly with increasing depth until the allocated thinking time has
// been consumed, the user stops the search, or the maximum search depth is
// reached.
void id_loop(const Position &pos, Move searchMoves[]) {
Position p(pos);
SearchStack ss[PLY_MAX_PLUS_2];
// searchMoves are verified, copied, scored and sorted
RootMoveList rml(p, searchMoves);
// Initialize
TT.new_search();
H.clear();
init_search_stack(ss);
ValueByIteration[0] = Value(0);
ValueByIteration[1] = rml.get_move_score(0);
Iteration = 1;
EasyMove = rml.scan_for_easy_move();
// Iterative deepening loop
while(!AbortSearch && Iteration < PLY_MAX) {
// Initialize iteration
rml.sort();
Iteration++;
BestMoveChangesByIteration[Iteration] = 0;
if(Iteration <= 5)
ExtraSearchTime = 0;
std::cout << "info depth " << Iteration << std::endl;
// Search to the current depth
ValueByIteration[Iteration] = root_search(p, ss, rml);
// Erase the easy move if it differs from the new best move
if(ss[0].pv[0] != EasyMove)
EasyMove = MOVE_NONE;
Problem = false;
if(!InfiniteSearch) {
// Time to stop?
bool stopSearch = false;
// Stop search early if there is only a single legal move:
if(Iteration >= 6 && rml.move_count() == 1)
stopSearch = true;
// Stop search early when the last two iterations returned a mate
// score:
if(Iteration >= 6
&& abs(ValueByIteration[Iteration]) >= abs(VALUE_MATE) - 100
&& abs(ValueByIteration[Iteration-1]) >= abs(VALUE_MATE) - 100)
stopSearch = true;
// Stop search early if one move seems to be much better than the
// rest:
int64_t nodes = nodes_searched();
if(Iteration >= 8 && EasyMove == ss[0].pv[0] &&
((rml.get_move_cumulative_nodes(0) > (nodes * 85) / 100 &&
current_search_time() > MaxSearchTime / 16) ||
(rml.get_move_cumulative_nodes(0) > (nodes * 98) / 100 &&
current_search_time() > MaxSearchTime / 32)))
stopSearch = true;
// Add some extra time if the best move has changed during the last
// two iterations:
if(Iteration > 5 && Iteration <= 50)
ExtraSearchTime =
BestMoveChangesByIteration[Iteration] * (MaxSearchTime / 2) +
BestMoveChangesByIteration[Iteration-1] * (MaxSearchTime / 3);
// Stop search if most of MaxSearchTime is consumed at the end of the
// iteration. We probably don't have enough time to search the first
// move at the next iteration anyway.
if(current_search_time() > ((MaxSearchTime + ExtraSearchTime)*80) / 128)
stopSearch = true;
if(stopSearch) {
if(!PonderSearch)
break;
else
StopOnPonderhit = true;
}
}
// Write PV to transposition table, in case the relevant entries have
// been overwritten during the search:
TT.insert_pv(p, ss[0].pv);
if(MaxDepth && Iteration >= MaxDepth)
break;
}
rml.sort();
// If we are pondering, we shouldn't print the best move before we
// are told to do so
if(PonderSearch)
wait_for_stop_or_ponderhit();
else
// Print final search statistics
std::cout << "info nodes " << nodes_searched() << " nps " << nps()
<< " time " << current_search_time()
<< " hashfull " << TT.full() << std::endl;
// Print the best move and the ponder move to the standard output:
std::cout << "bestmove " << ss[0].pv[0];
if(ss[0].pv[1] != MOVE_NONE)
std::cout << " ponder " << ss[0].pv[1];
std::cout << std::endl;
if(UseLogFile) {
UndoInfo u;
LogFile << "Nodes: " << nodes_searched() << '\n';
LogFile << "Nodes/second: " << nps() << '\n';
LogFile << "Best move: " << move_to_san(p, ss[0].pv[0]) << '\n';
p.do_move(ss[0].pv[0], u);
LogFile << "Ponder move: " << move_to_san(p, ss[0].pv[1]) << '\n';
LogFile << std::endl;
}
}
// root_search() is the function which searches the root node. It is
// similar to search_pv except that it uses a different move ordering
// scheme (perhaps we should try to use this at internal PV nodes, too?)
// and prints some information to the standard output.
Value root_search(Position &pos, SearchStack ss[], RootMoveList &rml) {
Value alpha = -VALUE_INFINITE, beta = VALUE_INFINITE, value;
Bitboard dcCandidates = pos.discovered_check_candidates(pos.side_to_move());
// Loop through all the moves in the root move list:
for(int i = 0; i < rml.move_count() && !AbortSearch; i++) {
int64_t nodes;
Move move;
UndoInfo u;
Depth ext, newDepth;
RootMoveNumber = i + 1;
FailHigh = false;
// Remember the node count before the move is searched. The node counts
// are used to sort the root moves at the next iteration.
nodes = nodes_searched();
// Pick the next root move, and print the move and the move number to
// the standard output:
move = ss[0].currentMove = rml.get_move(i);
if(current_search_time() >= 1000)
std::cout << "info currmove " << move
<< " currmovenumber " << i + 1 << std::endl;
// Decide search depth for this move:
ext = extension(pos, move, true, pos.move_is_check(move), false, false);
newDepth = (Iteration-2)*OnePly + ext + InitialDepth;
// Make the move, and search it.
pos.do_move(move, u, dcCandidates);
if(i < MultiPV) {
value = -search_pv(pos, ss, -beta, VALUE_INFINITE, newDepth, 1, 0);
// If the value has dropped a lot compared to the last iteration,
// set the boolean variable Problem to true. This variable is used
// for time managment: When Problem is true, we try to complete the
// current iteration before playing a move.
Problem = (Iteration >= 2 &&
value <= ValueByIteration[Iteration-1] - ProblemMargin);
if(Problem && StopOnPonderhit)
StopOnPonderhit = false;
}
else {
value = -search(pos, ss, -alpha, newDepth, 1, true, 0);
if(value > alpha) {
// Fail high! Set the boolean variable FailHigh to true, and
// re-search the move with a big window. The variable FailHigh is
// used for time managment: We try to avoid aborting the search
// prematurely during a fail high research.
FailHigh = true;
value = -search_pv(pos, ss, -beta, -alpha, newDepth, 1, 0);
}
}
pos.undo_move(move, u);
// Finished searching the move. If AbortSearch is true, the search
// was aborted because the user interrupted the search or because we
// ran out of time. In this case, the return value of the search cannot
// be trusted, and we break out of the loop without updating the best
// move and/or PV:
if(AbortSearch)
break;
// Remember the node count for this move. The node counts are used to
// sort the root moves at the next iteration.
rml.set_move_nodes(i, nodes_searched() - nodes);
assert(value >= -VALUE_INFINITE && value <= VALUE_INFINITE);
if(value <= alpha && i >= MultiPV)
rml.set_move_score(i, -VALUE_INFINITE);
else {
// New best move!
// Update PV:
rml.set_move_score(i, value);
update_pv(ss, 0);
rml.set_move_pv(i, ss[0].pv);
if(MultiPV == 1) {
// We record how often the best move has been changed in each
// iteration. This information is used for time managment: When
// the best move changes frequently, we allocate some more time.
if(i > 0)
BestMoveChangesByIteration[Iteration]++;
// Print search information to the standard output:
std::cout << "info depth " << Iteration
<< " score " << value_to_string(value)
<< " time " << current_search_time()
<< " nodes " << nodes_searched()
<< " nps " << nps()
<< " pv ";
for(int j = 0; ss[0].pv[j] != MOVE_NONE && j < PLY_MAX; j++)
std::cout << ss[0].pv[j] << " ";
std::cout << std::endl;
if(UseLogFile)
LogFile << pretty_pv(pos, current_search_time(), Iteration,
nodes_searched(), value, ss[0].pv)
<< std::endl;
alpha = value;
// Reset the global variable Problem to false if the value isn't too
// far below the final value from the last iteration.
if(value > ValueByIteration[Iteration - 1] - NoProblemMargin)
Problem = false;
}
else { // MultiPV > 1
rml.sort_multipv(i);
for(int j = 0; j < Min(MultiPV, rml.move_count()); j++) {
int k;
std::cout << "info multipv " << j + 1
<< " score " << value_to_string(rml.get_move_score(j))
<< " depth " << ((j <= i)? Iteration : Iteration - 1)
<< " time " << current_search_time()
<< " nodes " << nodes_searched()
<< " nps " << nps()
<< " pv ";
for(k = 0; rml.get_move_pv(j, k) != MOVE_NONE && k < PLY_MAX; k++)
std::cout << rml.get_move_pv(j, k) << " ";
std::cout << std::endl;
}
alpha = rml.get_move_score(Min(i, MultiPV-1));
}
}
}
return alpha;
}
// search_pv() is the main search function for PV nodes.
Value search_pv(Position &pos, SearchStack ss[], Value alpha, Value beta,
Depth depth, int ply, int threadID) {
assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
assert(beta > alpha && beta <= VALUE_INFINITE);
assert(ply >= 0 && ply < PLY_MAX);
assert(threadID >= 0 && threadID < ActiveThreads);
EvalInfo ei;
// Initialize, and make an early exit in case of an aborted search,
// an instant draw, maximum ply reached, etc.
Value oldAlpha = alpha;
if(AbortSearch || thread_should_stop(threadID))
return Value(0);
if(depth < OnePly)
return qsearch(pos, ss, alpha, beta, Depth(0), ply, threadID);
init_node(pos, ss, ply, threadID);
if(pos.is_draw())
return VALUE_DRAW;
if(ply >= PLY_MAX - 1)
return evaluate(pos, ei, threadID);
// Mate distance pruning
alpha = Max(value_mated_in(ply), alpha);
beta = Min(value_mate_in(ply+1), beta);
if(alpha >= beta)
return alpha;
// Transposition table lookup. At PV nodes, we don't use the TT for
// pruning, but only for move ordering.
Value ttValue;
Depth ttDepth;
Move ttMove = MOVE_NONE;
ValueType ttValueType;
TT.retrieve(pos, &ttValue, &ttDepth, &ttMove, &ttValueType);
// Internal iterative deepening.
if(UseIIDAtPVNodes && ttMove == MOVE_NONE && depth >= 5*OnePly) {
search_pv(pos, ss, alpha, beta, depth-2*OnePly, ply, threadID);
ttMove = ss[ply].pv[ply];
}
// Initialize a MovePicker object for the current position, and prepare
// to search all moves:
MovePicker mp = MovePicker(pos, true, ttMove, ss[ply].mateKiller,
ss[ply].killer1, ss[ply].killer2, depth);
Move move, movesSearched[256];
int moveCount = 0;
Value value, bestValue = -VALUE_INFINITE;
Bitboard dcCandidates = mp.discovered_check_candidates();
bool mateThreat =
MateThreatExtension[1] > Depth(0)
&& pos.has_mate_threat(opposite_color(pos.side_to_move()));
// Loop through all legal moves until no moves remain or a beta cutoff
// occurs.
while(alpha < beta && !thread_should_stop(threadID)
&& (move = mp.get_next_move()) != MOVE_NONE) {
UndoInfo u;
Depth ext, newDepth;
bool singleReply = (pos.is_check() && mp.number_of_moves() == 1);
bool moveIsCheck = pos.move_is_check(move, dcCandidates);
bool moveIsCapture = pos.move_is_capture(move);
bool moveIsPassedPawnPush = pos.move_is_passed_pawn_push(move);
assert(move_is_ok(move));
movesSearched[moveCount++] = ss[ply].currentMove = move;
ss[ply].currentMoveCaptureValue = move_is_ep(move)?
PawnValueMidgame : pos.midgame_value_of_piece_on(move_to(move));
// Decide the new search depth.
ext = extension(pos, move, true, moveIsCheck, singleReply, mateThreat);
newDepth = depth - OnePly + ext;
// Make and search the move.
pos.do_move(move, u, dcCandidates);
if(moveCount == 1)
value = -search_pv(pos, ss, -beta, -alpha, newDepth, ply+1, threadID);
else {
if(depth >= 2*OnePly && ext == Depth(0) && moveCount >= LMRPVMoves
&& !moveIsCapture && !move_promotion(move)
&& !moveIsPassedPawnPush && !move_is_castle(move)
&& move != ss[ply].killer1 && move != ss[ply].killer2) {
ss[ply].reduction = OnePly;
value = -search(pos, ss, -alpha, newDepth-OnePly, ply+1, true,
threadID);
}
else value = alpha + 1;
if(value > alpha) {
ss[ply].reduction = Depth(0);
value = -search(pos, ss, -alpha, newDepth, ply+1, true, threadID);
if(value > alpha && value < beta) {
if(ply == 1 && RootMoveNumber == 1)
// When the search fails high at ply 1 while searching the first
// move at the root, set the flag failHighPly1. This is used for
// time managment: We don't want to stop the search early in
// such cases, because resolving the fail high at ply 1 could
// result in a big drop in score at the root.
Threads[threadID].failHighPly1 = true;
value = -search_pv(pos, ss, -beta, -alpha, newDepth, ply+1,
threadID);
Threads[threadID].failHighPly1 = false;
}
}
}
pos.undo_move(move, u);
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
// New best move?
if(value > bestValue) {
bestValue = value;
if(value > alpha) {
alpha = value;
update_pv(ss, ply);
if(value == value_mate_in(ply + 1))
ss[ply].mateKiller = move;
}
// If we are at ply 1, and we are searching the first root move at
// ply 0, set the 'Problem' variable if the score has dropped a lot
// (from the computer's point of view) since the previous iteration:
if(Iteration >= 2 &&
-value <= ValueByIteration[Iteration-1] - ProblemMargin)
Problem = true;
}
// Split?
if(ActiveThreads > 1 && bestValue < beta && depth >= MinimumSplitDepth
&& Iteration <= 99 && idle_thread_exists(threadID)
&& !AbortSearch && !thread_should_stop(threadID)
&& split(pos, ss, ply, &alpha, &beta, &bestValue, depth,
&moveCount, &mp, dcCandidates, threadID, true))
break;
}
// All legal moves have been searched. A special case: If there were
// no legal moves, it must be mate or stalemate:
if(moveCount == 0) {
if(pos.is_check())
return value_mated_in(ply);
else
return VALUE_DRAW;
}
// If the search is not aborted, update the transposition table,
// history counters, and killer moves. This code is somewhat messy,
// and definitely needs to be cleaned up. FIXME
if(!AbortSearch && !thread_should_stop(threadID)) {
if(bestValue <= oldAlpha)
TT.store(pos, value_to_tt(bestValue, ply), depth, MOVE_NONE,
VALUE_TYPE_UPPER);
else if(bestValue >= beta) {
Move m = ss[ply].pv[ply];
if(pos.square_is_empty(move_to(m)) && !move_promotion(m) &&
!move_is_ep(m)) {
for(int i = 0; i < moveCount - 1; i++)
if(pos.square_is_empty(move_to(movesSearched[i]))
&& !move_promotion(movesSearched[i])
&& !move_is_ep(movesSearched[i]))
H.failure(pos.piece_on(move_from(movesSearched[i])),
movesSearched[i]);
H.success(pos.piece_on(move_from(m)), m, depth);
if(m != ss[ply].killer1) {
ss[ply].killer2 = ss[ply].killer1;
ss[ply].killer1 = m;
}
}
TT.store(pos, value_to_tt(bestValue, ply), depth, m, VALUE_TYPE_LOWER);
}
else
TT.store(pos, value_to_tt(bestValue, ply), depth, ss[ply].pv[ply],
VALUE_TYPE_EXACT);
}
return bestValue;
}
// search() is the search function for zero-width nodes.
Value search(Position &pos, SearchStack ss[], Value beta, Depth depth,
int ply, bool allowNullmove, int threadID) {
assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
assert(ply >= 0 && ply < PLY_MAX);
assert(threadID >= 0 && threadID < ActiveThreads);
EvalInfo ei;
// Initialize, and make an early exit in case of an aborted search,
// an instant draw, maximum ply reached, etc.
if(AbortSearch || thread_should_stop(threadID))
return Value(0);
if(depth < OnePly)
return qsearch(pos, ss, beta-1, beta, Depth(0), ply, threadID);
init_node(pos, ss, ply, threadID);
if(pos.is_draw())
return VALUE_DRAW;
if(ply >= PLY_MAX - 1)
return evaluate(pos, ei, threadID);
// Mate distance pruning
if(value_mated_in(ply) >= beta)
return beta;
if(value_mate_in(ply+1) < beta)
return beta-1;
// Transposition table lookup
bool ttFound;
Value ttValue;
Depth ttDepth;
Move ttMove = MOVE_NONE;
ValueType ttValueType;
ttFound = TT.retrieve(pos, &ttValue, &ttDepth, &ttMove, &ttValueType);
if(ttFound) {
ttValue = value_from_tt(ttValue, ply);
if(ttDepth >= depth
|| ttValue >= Max(value_mate_in(100), beta)
|| ttValue < Min(value_mated_in(100), beta)) {
if((is_lower_bound(ttValueType) && ttValue >= beta) ||
(is_upper_bound(ttValueType) && ttValue < beta)) {
ss[ply].currentMove = ttMove;
return ttValue;
}
}
}
Value approximateEval = quick_evaluate(pos);
bool mateThreat = false;
// Null move search
if(!pos.is_check() && allowNullmove && ok_to_do_nullmove(pos)
&& approximateEval >= beta - NullMoveMargin) {
UndoInfo u;
Value nullValue;
ss[ply].currentMove = MOVE_NULL;
pos.do_null_move(u);
nullValue = -search(pos, ss, -(beta-1), depth-4*OnePly, ply+1, false,
threadID);
pos.undo_null_move(u);
if(nullValue >= beta) {
if(depth >= 6 * OnePly) { // Do zugzwang verification search
Value v = search(pos, ss, beta, depth-5*OnePly, ply, false, threadID);
if(v >= beta)
return beta;
}
else
return beta;
}
else {
// The null move failed low, which means that we may be faced with
// some kind of threat. If the previous move was reduced, check if
// the move that refuted the null move was somehow connected to the
// move which was reduced. If a connection is found, return a fail
// low score (which will cause the reduced move to fail high in the
// parent node, which will trigger a re-search with full depth).
if(nullValue == value_mated_in(ply+2))
mateThreat = true;
ss[ply].threatMove = ss[ply+1].currentMove;
if(depth < ThreatDepth && ss[ply-1].reduction &&
connected_moves(pos, ss[ply-1].currentMove, ss[ply].threatMove))
return beta - 1;
}
}
// Razoring:
else if(depth < RazorDepth && approximateEval < beta - RazorMargin &&
evaluate(pos, ei, threadID) < beta - RazorMargin) {
Value v = qsearch(pos, ss, beta-1, beta, Depth(0), ply, threadID);
if(v < beta)
return v;
}
// Internal iterative deepening
if(UseIIDAtNonPVNodes && ttMove == MOVE_NONE && depth >= 8*OnePly &&
evaluate(pos, ei, threadID) >= beta - IIDMargin) {
search(pos, ss, beta, Min(depth/2, depth-2*OnePly), ply, false, threadID);
ttMove = ss[ply].pv[ply];
}
// Initialize a MovePicker object for the current position, and prepare
// to search all moves:
MovePicker mp = MovePicker(pos, false, ttMove, ss[ply].mateKiller,
ss[ply].killer1, ss[ply].killer2, depth);
Move move, movesSearched[256];
int moveCount = 0;
Value value, bestValue = -VALUE_INFINITE, futilityValue = VALUE_NONE;
Bitboard dcCandidates = mp.discovered_check_candidates();
bool isCheck = pos.is_check();
bool useFutilityPruning =
UseFutilityPruning && depth < SelectiveDepth && !isCheck;
// Loop through all legal moves until no moves remain or a beta cutoff
// occurs.
while(bestValue < beta && !thread_should_stop(threadID)
&& (move = mp.get_next_move()) != MOVE_NONE) {
UndoInfo u;
Depth ext, newDepth;
bool singleReply = (isCheck && mp.number_of_moves() == 1);
bool moveIsCheck = pos.move_is_check(move, dcCandidates);
bool moveIsCapture = pos.move_is_capture(move);
bool moveIsPassedPawnPush = pos.move_is_passed_pawn_push(move);
assert(move_is_ok(move));
movesSearched[moveCount++] = ss[ply].currentMove = move;
// Decide the new search depth.
ext = extension(pos, move, false, moveIsCheck, singleReply, mateThreat);
newDepth = depth - OnePly + ext;
// Futility pruning
if(useFutilityPruning && ext == Depth(0) && !moveIsCapture &&
!moveIsPassedPawnPush && !move_promotion(move)) {
if(moveCount >= 2 + int(depth)
&& ok_to_prune(pos, move, ss[ply].threatMove, depth))
continue;
if(depth < 3 * OnePly && approximateEval < beta) {
if(futilityValue == VALUE_NONE)
futilityValue = evaluate(pos, ei, threadID)
+ ((depth < 2 * OnePly)? FutilityMargin1 : FutilityMargin2);
if(futilityValue < beta) {
if(futilityValue > bestValue)
bestValue = futilityValue;
continue;
}
}
}
// Make and search the move.
pos.do_move(move, u, dcCandidates);
if(depth >= 2*OnePly && ext == Depth(0) && moveCount >= LMRNonPVMoves
&& !moveIsCapture && !move_promotion(move) && !moveIsPassedPawnPush
&& !move_is_castle(move)
&& move != ss[ply].killer1 && move != ss[ply].killer2) {
ss[ply].reduction = OnePly;
value = -search(pos, ss, -(beta-1), newDepth-OnePly, ply+1, true,
threadID);
}
else
value = beta;
if(value >= beta) {
ss[ply].reduction = Depth(0);
value = -search(pos, ss, -(beta-1), newDepth, ply+1, true, threadID);
}
pos.undo_move(move, u);
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
// New best move?
if(value > bestValue) {
bestValue = value;
if(value >= beta)
update_pv(ss, ply);
if(value == value_mate_in(ply + 1))
ss[ply].mateKiller = move;
}
// Split?
if(ActiveThreads > 1 && bestValue < beta && depth >= MinimumSplitDepth
&& Iteration <= 99 && idle_thread_exists(threadID)
&& !AbortSearch && !thread_should_stop(threadID)
&& split(pos, ss, ply, &beta, &beta, &bestValue, depth, &moveCount,
&mp, dcCandidates, threadID, false))
break;
}
// All legal moves have been searched. A special case: If there were
// no legal moves, it must be mate or stalemate:
if(moveCount == 0) {
if(pos.is_check())
return value_mated_in(ply);
else
return VALUE_DRAW;
}
// If the search is not aborted, update the transposition table,
// history counters, and killer moves. This code is somewhat messy,
// and definitely needs to be cleaned up. FIXME
if(!AbortSearch && !thread_should_stop(threadID)) {
if(bestValue < beta)
TT.store(pos, value_to_tt(bestValue, ply), depth, MOVE_NONE,
VALUE_TYPE_UPPER);
else {
Move m = ss[ply].pv[ply];
if(pos.square_is_empty(move_to(m)) && !move_promotion(m) &&
!move_is_ep(m)) {
for(int i = 0; i < moveCount - 1; i++)
if(pos.square_is_empty(move_to(movesSearched[i]))
&& !move_promotion(movesSearched[i])
&& !move_is_ep(movesSearched[i]))
H.failure(pos.piece_on(move_from(movesSearched[i])),
movesSearched[i]);
H.success(pos.piece_on(move_from(m)), m, depth);
if(m != ss[ply].killer1) {
ss[ply].killer2 = ss[ply].killer1;
ss[ply].killer1 = m;
}
}
TT.store(pos, value_to_tt(bestValue, ply), depth, m, VALUE_TYPE_LOWER);
}
}
return bestValue;
}
// qsearch() is the quiescence search function, which is called by the main
// search function when the remaining depth is zero (or, to be more precise,
// less than OnePly).
Value qsearch(Position &pos, SearchStack ss[], Value alpha, Value beta,
Depth depth, int ply, int threadID) {
Value staticValue, bestValue, value;
EvalInfo ei;
assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
assert(depth <= 0);
assert(ply >= 0 && ply < PLY_MAX);
assert(threadID >= 0 && threadID < ActiveThreads);
// Initialize, and make an early exit in case of an aborted search,
// an instant draw, maximum ply reached, etc.
if(AbortSearch || thread_should_stop(threadID))
return Value(0);
init_node(pos, ss, ply, threadID);
if(pos.is_draw())
return VALUE_DRAW;
// Evaluate the position statically:
staticValue = evaluate(pos, ei, threadID);
if(ply == PLY_MAX - 1) return staticValue;
// Initialize "stand pat score", and return it immediately if it is
// at least beta.
if(pos.is_check())
bestValue = -VALUE_INFINITE;
else {
bestValue = staticValue;
if(bestValue >= beta)
return bestValue;
if(bestValue > alpha)
alpha = bestValue;
}
// Initialize a MovePicker object for the current position, and prepare
// to search the moves. Because the depth is <= 0 here, only captures,
// queen promotions and checks (only if depth == 0) will be generated.
MovePicker mp = MovePicker(pos, false, MOVE_NONE, MOVE_NONE, MOVE_NONE,
MOVE_NONE, depth);
Move move;
int moveCount = 0;
Bitboard dcCandidates = mp.discovered_check_candidates();
bool isCheck = pos.is_check();
// Loop through the moves until no moves remain or a beta cutoff
// occurs.
while(alpha < beta && ((move = mp.get_next_move()) != MOVE_NONE)) {
UndoInfo u;
bool moveIsCheck = pos.move_is_check(move, dcCandidates);
bool moveIsPassedPawnPush = pos.move_is_passed_pawn_push(move);
assert(move_is_ok(move));
moveCount++;
ss[ply].currentMove = move;
// Futility pruning
if(UseQSearchFutilityPruning && !isCheck && !moveIsCheck &&
!move_promotion(move) && !moveIsPassedPawnPush &&
beta - alpha == 1 &&
pos.non_pawn_material(pos.side_to_move()) > RookValueMidgame) {
Value futilityValue =
staticValue
+ Max(pos.midgame_value_of_piece_on(move_to(move)),
pos.endgame_value_of_piece_on(move_to(move)))
+ FutilityMargin0
+ ei.futilityMargin;
if(futilityValue < alpha) {
if(futilityValue > bestValue)
bestValue = futilityValue;
continue;
}
}
// Don't search captures and checks with negative SEE values.
if(!isCheck && !move_promotion(move) &&
pos.midgame_value_of_piece_on(move_from(move)) >
pos.midgame_value_of_piece_on(move_to(move)) &&
pos.see(move) < 0)
continue;
// Make and search the move.
pos.do_move(move, u, dcCandidates);
value = -qsearch(pos, ss, -beta, -alpha, depth-OnePly, ply+1, threadID);
pos.undo_move(move, u);
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
// New best move?
if(value > bestValue) {
bestValue = value;
if(value > alpha) {
alpha = value;
update_pv(ss, ply);
}
}
}
// All legal moves have been searched. A special case: If we're in check
// and no legal moves were found, it is checkmate:
if(pos.is_check() && moveCount == 0) // Mate!
return value_mated_in(ply);
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
return bestValue;
}
// sp_search() is used to search from a split point. This function is called
// by each thread working at the split point. It is similar to the normal
// search() function, but simpler. Because we have already probed the hash
// table, done a null move search, and searched the first move before
// splitting, we don't have to repeat all this work in sp_search(). We
// also don't need to store anything to the hash table here: This is taken
// care of after we return from the split point.
void sp_search(SplitPoint *sp, int threadID) {
assert(threadID >= 0 && threadID < ActiveThreads);
assert(ActiveThreads > 1);
Position pos = Position(sp->pos);
SearchStack *ss = sp->sstack[threadID];
Value value;
Move move;
int moveCount = sp->moves;
bool isCheck = pos.is_check();
bool useFutilityPruning =
UseFutilityPruning && sp->depth < SelectiveDepth && !isCheck;
while(sp->bestValue < sp->beta && !thread_should_stop(threadID)
&& (move = sp->mp->get_next_move(sp->lock)) != MOVE_NONE) {
UndoInfo u;
Depth ext, newDepth;
bool moveIsCheck = pos.move_is_check(move, sp->dcCandidates);
bool moveIsCapture = pos.move_is_capture(move);
bool moveIsPassedPawnPush = pos.move_is_passed_pawn_push(move);
assert(move_is_ok(move));
lock_grab(&(sp->lock));
sp->moves++;
moveCount = sp->moves;
lock_release(&(sp->lock));
ss[sp->ply].currentMove = move;
// Decide the new search depth.
ext = extension(pos, move, false, moveIsCheck, false, false);
newDepth = sp->depth - OnePly + ext;
// Prune?
if(useFutilityPruning && ext == Depth(0) && !moveIsCapture
&& !moveIsPassedPawnPush && !move_promotion(move)
&& moveCount >= 2 + int(sp->depth)
&& ok_to_prune(pos, move, ss[sp->ply].threatMove, sp->depth))
continue;
// Make and search the move.
pos.do_move(move, u, sp->dcCandidates);
if(ext == Depth(0) && moveCount >= LMRNonPVMoves
&& !moveIsCapture && !move_promotion(move) && !moveIsPassedPawnPush
&& !move_is_castle(move)
&& move != ss[sp->ply].killer1 && move != ss[sp->ply].killer2) {
ss[sp->ply].reduction = OnePly;
value = -search(pos, ss, -(sp->beta-1), newDepth - OnePly, sp->ply+1,
true, threadID);
}
else
value = sp->beta;
if(value >= sp->beta) {
ss[sp->ply].reduction = Depth(0);
value = -search(pos, ss, -(sp->beta - 1), newDepth, sp->ply+1, true,
threadID);
}
pos.undo_move(move, u);
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
if(thread_should_stop(threadID))
break;
// New best move?
lock_grab(&(sp->lock));
if(value > sp->bestValue && !thread_should_stop(threadID)) {
sp->bestValue = value;
if(sp->bestValue >= sp->beta) {
sp_update_pv(sp->parentSstack, ss, sp->ply);
for(int i = 0; i < ActiveThreads; i++)
if(i != threadID && (i == sp->master || sp->slaves[i]))
Threads[i].stop = true;
sp->finished = true;
}
}
lock_release(&(sp->lock));
}
lock_grab(&(sp->lock));
// If this is the master thread and we have been asked to stop because of
// a beta cutoff higher up in the tree, stop all slave threads:
if(sp->master == threadID && thread_should_stop(threadID))
for(int i = 0; i < ActiveThreads; i++)
if(sp->slaves[i])
Threads[i].stop = true;
sp->cpus--;
sp->slaves[threadID] = 0;
lock_release(&(sp->lock));
}
// sp_search_pv() is used to search from a PV split point. This function
// is called by each thread working at the split point. It is similar to
// the normal search_pv() function, but simpler. Because we have already
// probed the hash table and searched the first move before splitting, we
// don't have to repeat all this work in sp_search_pv(). We also don't
// need to store anything to the hash table here: This is taken care of
// after we return from the split point.
void sp_search_pv(SplitPoint *sp, int threadID) {
assert(threadID >= 0 && threadID < ActiveThreads);
assert(ActiveThreads > 1);
Position pos = Position(sp->pos);
SearchStack *ss = sp->sstack[threadID];
Value value;
Move move;
int moveCount = sp->moves;
while(sp->alpha < sp->beta && !thread_should_stop(threadID)
&& (move = sp->mp->get_next_move(sp->lock)) != MOVE_NONE) {
UndoInfo u;
Depth ext, newDepth;
bool moveIsCheck = pos.move_is_check(move, sp->dcCandidates);
bool moveIsCapture = pos.move_is_capture(move);
bool moveIsPassedPawnPush = pos.move_is_passed_pawn_push(move);
assert(move_is_ok(move));
ss[sp->ply].currentMoveCaptureValue = move_is_ep(move)?
PawnValueMidgame : pos.midgame_value_of_piece_on(move_to(move));
lock_grab(&(sp->lock));
sp->moves++;
moveCount = sp->moves;
lock_release(&(sp->lock));
ss[sp->ply].currentMove = move;
// Decide the new search depth.
ext = extension(pos, move, true, moveIsCheck, false, false);
newDepth = sp->depth - OnePly + ext;
// Make and search the move.
pos.do_move(move, u, sp->dcCandidates);
if(ext == Depth(0) && moveCount >= LMRPVMoves && !moveIsCapture
&& !move_promotion(move) && !moveIsPassedPawnPush
&& !move_is_castle(move)
&& move != ss[sp->ply].killer1 && move != ss[sp->ply].killer2) {
ss[sp->ply].reduction = OnePly;
value = -search(pos, ss, -sp->alpha, newDepth - OnePly, sp->ply+1,
true, threadID);
}
else
value = sp->alpha + 1;
if(value > sp->alpha) {
ss[sp->ply].reduction = Depth(0);
value = -search(pos, ss, -sp->alpha, newDepth, sp->ply+1, true,
threadID);
if(value > sp->alpha && value < sp->beta) {
if(sp->ply == 1 && RootMoveNumber == 1)
// When the search fails high at ply 1 while searching the first
// move at the root, set the flag failHighPly1. This is used for
// time managment: We don't want to stop the search early in
// such cases, because resolving the fail high at ply 1 could
// result in a big drop in score at the root.
Threads[threadID].failHighPly1 = true;
value = -search_pv(pos, ss, -sp->beta, -sp->alpha, newDepth,
sp->ply+1, threadID);
Threads[threadID].failHighPly1 = false;
}
}
pos.undo_move(move, u);
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
if(thread_should_stop(threadID))
break;
// New best move?
lock_grab(&(sp->lock));
if(value > sp->bestValue && !thread_should_stop(threadID)) {
sp->bestValue = value;
if(value > sp->alpha) {
sp->alpha = value;
sp_update_pv(sp->parentSstack, ss, sp->ply);
if(value == value_mate_in(sp->ply + 1))
ss[sp->ply].mateKiller = move;
if(value >= sp->beta) {
for(int i = 0; i < ActiveThreads; i++)
if(i != threadID && (i == sp->master || sp->slaves[i]))
Threads[i].stop = true;
sp->finished = true;
}
}
// If we are at ply 1, and we are searching the first root move at
// ply 0, set the 'Problem' variable if the score has dropped a lot
// (from the computer's point of view) since the previous iteration:
if(Iteration >= 2 &&
-value <= ValueByIteration[Iteration-1] - ProblemMargin)
Problem = true;
}
lock_release(&(sp->lock));
}
lock_grab(&(sp->lock));
// If this is the master thread and we have been asked to stop because of
// a beta cutoff higher up in the tree, stop all slave threads:
if(sp->master == threadID && thread_should_stop(threadID))
for(int i = 0; i < ActiveThreads; i++)
if(sp->slaves[i])
Threads[i].stop = true;
sp->cpus--;
sp->slaves[threadID] = 0;
lock_release(&(sp->lock));
}
/// The RootMove class
// Constructor
RootMove::RootMove() {
nodes = cumulativeNodes = 0ULL;
}
/// The RootMoveList class
// Constructor
RootMoveList::RootMoveList(Position& pos, Move searchMoves[]) : count(0) {
MoveStack mlist[MaxRootMoves];
bool includeAllMoves = (searchMoves[0] == MOVE_NONE);
// Generate all legal moves
int lm_count = generate_legal_moves(pos, mlist);
// Add each move to the moves[] array
for (int i = 0; i < lm_count; i++)
{
bool includeMove = includeAllMoves;
for (int k = 0; !includeMove && searchMoves[k] != MOVE_NONE; k++)
includeMove = (searchMoves[k] == mlist[i].move);
if (includeMove)
{
// Find a quick score for the move
UndoInfo u;
SearchStack ss[PLY_MAX_PLUS_2];
moves[count].move = mlist[i].move;
moves[count].nodes = 0ULL;
pos.do_move(moves[count].move, u);
moves[count].score = -qsearch(pos, ss, -VALUE_INFINITE, VALUE_INFINITE,
Depth(0), 1, 0);
pos.undo_move(moves[count].move, u);
moves[count].pv[0] = moves[i].move;
moves[count].pv[1] = MOVE_NONE; // FIXME
count++;
}
}
sort();
}
// Simple accessor methods for the RootMoveList class
Move RootMoveList::get_move(int moveNum) const {
return moves[moveNum].move;
}
Value RootMoveList::get_move_score(int moveNum) const {
return moves[moveNum].score;
}
void RootMoveList::set_move_score(int moveNum, Value score) {
moves[moveNum].score = score;
}
void RootMoveList::set_move_nodes(int moveNum, int64_t nodes) {
moves[moveNum].nodes = nodes;
moves[moveNum].cumulativeNodes += nodes;
}
void RootMoveList::set_move_pv(int moveNum, const Move pv[]) {
int j;
for(j = 0; pv[j] != MOVE_NONE; j++)
moves[moveNum].pv[j] = pv[j];
moves[moveNum].pv[j] = MOVE_NONE;
}
Move RootMoveList::get_move_pv(int moveNum, int i) const {
return moves[moveNum].pv[i];
}
int64_t RootMoveList::get_move_cumulative_nodes(int moveNum) {
return moves[moveNum].cumulativeNodes;
}
int RootMoveList::move_count() const {
return count;
}
// RootMoveList::scan_for_easy_move() is called at the end of the first
// iteration, and is used to detect an "easy move", i.e. a move which appears
// to be much bester than all the rest. If an easy move is found, the move
// is returned, otherwise the function returns MOVE_NONE. It is very
// important that this function is called at the right moment: The code
// assumes that the first iteration has been completed and the moves have
// been sorted. This is done in RootMoveList c'tor.
Move RootMoveList::scan_for_easy_move() const {
assert(count);
if (count == 1)
return get_move(0);
// moves are sorted so just consider the best and the second one
if (get_move_score(0) > get_move_score(1) + EasyMoveMargin)
return get_move(0);
return MOVE_NONE;
}
// RootMoveList::compare_root_moves() is the comparison function used by
// RootMoveList::sort when sorting the moves. A move m1 is considered to
// be better than a move m2 if it has a higher score, or if the moves have
// equal score but m1 has the higher node count.
bool RootMoveList::compare_root_moves(const RootMove &rm1,
const RootMove &rm2) {
if (rm1.score != rm2.score)
return (rm1.score < rm2.score);
return rm1.nodes <= rm2.nodes;
}
// RootMoveList::sort() sorts the root move list at the beginning of a new
// iteration.
void RootMoveList::sort() {
for(int i = 1; i < count; i++) {
RootMove rm = moves[i];
int j;
for(j = i; j > 0 && compare_root_moves(moves[j-1], rm); j--)
moves[j] = moves[j-1];
moves[j] = rm;
}
}
// RootMoveList::sort_multipv() sorts the first few moves in the root move
// list by their scores and depths. It is used to order the different PVs
// correctly in MultiPV mode.
void RootMoveList::sort_multipv(int n) {
for(int i = 1; i <= n; i++) {
RootMove rm = moves[i];
int j;
for(j = i; j > 0 && moves[j-1].score < rm.score; j--)
moves[j] = moves[j-1];
moves[j] = rm;
}
}
// init_search_stack() initializes a search stack at the beginning of a
// new search from the root.
void init_search_stack(SearchStack ss[]) {
for(int i = 0; i < 3; i++) {
ss[i].pv[i] = MOVE_NONE;
ss[i].pv[i+1] = MOVE_NONE;
ss[i].currentMove = MOVE_NONE;
ss[i].mateKiller = MOVE_NONE;
ss[i].killer1 = MOVE_NONE;
ss[i].killer2 = MOVE_NONE;
ss[i].threatMove = MOVE_NONE;
ss[i].reduction = Depth(0);
}
}
// init_node() is called at the beginning of all the search functions
// (search(), search_pv(), qsearch(), and so on) and initializes the search
// stack object corresponding to the current node. Once every
// NodesBetweenPolls nodes, init_node() also calls poll(), which polls
// for user input and checks whether it is time to stop the search.
void init_node(const Position &pos, SearchStack ss[], int ply, int threadID) {
assert(ply >= 0 && ply < PLY_MAX);
assert(threadID >= 0 && threadID < ActiveThreads);
Threads[threadID].nodes++;
if(threadID == 0) {
NodesSincePoll++;
if(NodesSincePoll >= NodesBetweenPolls) {
poll();
NodesSincePoll = 0;
}
}
ss[ply].pv[ply] = ss[ply].pv[ply+1] = ss[ply].currentMove = MOVE_NONE;
ss[ply+2].mateKiller = MOVE_NONE;
ss[ply+2].killer1 = ss[ply+2].killer2 = MOVE_NONE;
ss[ply].threatMove = MOVE_NONE;
ss[ply].reduction = Depth(0);
ss[ply].currentMoveCaptureValue = Value(0);
if(Threads[threadID].printCurrentLine)
print_current_line(ss, ply, threadID);
}
// update_pv() is called whenever a search returns a value > alpha. It
// updates the PV in the SearchStack object corresponding to the current
// node.
void update_pv(SearchStack ss[], int ply) {
assert(ply >= 0 && ply < PLY_MAX);
ss[ply].pv[ply] = ss[ply].currentMove;
int p;
for(p = ply + 1; ss[ply+1].pv[p] != MOVE_NONE; p++)
ss[ply].pv[p] = ss[ply+1].pv[p];
ss[ply].pv[p] = MOVE_NONE;
}
// sp_update_pv() is a variant of update_pv for use at split points. The
// difference between the two functions is that sp_update_pv also updates
// the PV at the parent node.
void sp_update_pv(SearchStack *pss, SearchStack ss[], int ply) {
assert(ply >= 0 && ply < PLY_MAX);
ss[ply].pv[ply] = pss[ply].pv[ply] = ss[ply].currentMove;
int p;
for(p = ply + 1; ss[ply+1].pv[p] != MOVE_NONE; p++)
ss[ply].pv[p] = pss[ply].pv[p] = ss[ply+1].pv[p];
ss[ply].pv[p] = pss[ply].pv[p] = MOVE_NONE;
}
// connected_moves() tests whether two moves are 'connected' in the sense
// that the first move somehow made the second move possible (for instance
// if the moving piece is the same in both moves). The first move is
// assumed to be the move that was made to reach the current position, while
// the second move is assumed to be a move from the current position.
bool connected_moves(const Position &pos, Move m1, Move m2) {
Square f1, t1, f2, t2;
assert(move_is_ok(m1));
assert(move_is_ok(m2));
if(m2 == MOVE_NONE)
return false;
// Case 1: The moving piece is the same in both moves.
f2 = move_from(m2);
t1 = move_to(m1);
if(f2 == t1)
return true;
// Case 2: The destination square for m2 was vacated by m1.
t2 = move_to(m2);
f1 = move_from(m1);
if(t2 == f1)
return true;
// Case 3: Moving through the vacated square:
if(piece_is_slider(pos.piece_on(f2)) &&
bit_is_set(squares_between(f2, t2), f1))
return true;
// Case 4: The destination square for m2 is attacked by the moving piece
// in m1:
if(pos.piece_attacks_square(t1, t2))
return true;
// Case 5: Discovered check, checking piece is the piece moved in m1:
if(piece_is_slider(pos.piece_on(t1)) &&
bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())),
f2) &&
!bit_is_set(squares_between(t2, pos.king_square(pos.side_to_move())),
t2)) {
Bitboard occ = pos.occupied_squares();
Color us = pos.side_to_move();
Square ksq = pos.king_square(us);
clear_bit(&occ, f2);
if(pos.type_of_piece_on(t1) == BISHOP) {
if(bit_is_set(bishop_attacks_bb(ksq, occ), t1))
return true;
}
else if(pos.type_of_piece_on(t1) == ROOK) {
if(bit_is_set(rook_attacks_bb(ksq, occ), t1))
return true;
}
else {
assert(pos.type_of_piece_on(t1) == QUEEN);
if(bit_is_set(queen_attacks_bb(ksq, occ), t1))
return true;
}
}
return false;
}
// extension() decides whether a move should be searched with normal depth,
// or with extended depth. Certain classes of moves (checking moves, in
// particular) are searched with bigger depth than ordinary moves.
Depth extension(const Position &pos, Move m, bool pvNode,
bool check, bool singleReply, bool mateThreat) {
Depth result = Depth(0);
if(check)
result += CheckExtension[pvNode];
if(singleReply)
result += SingleReplyExtension[pvNode];
if(pos.move_is_pawn_push_to_7th(m))
result += PawnPushTo7thExtension[pvNode];
if(pos.move_is_passed_pawn_push(m))
result += PassedPawnExtension[pvNode];
if(mateThreat)
result += MateThreatExtension[pvNode];
if(pos.midgame_value_of_piece_on(move_to(m)) >= RookValueMidgame
&& (pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK)
- pos.midgame_value_of_piece_on(move_to(m)) == Value(0))
&& !move_promotion(m))
result += PawnEndgameExtension[pvNode];
if(pvNode && pos.move_is_capture(m)
&& pos.type_of_piece_on(move_to(m)) != PAWN && pos.see(m) >= 0)
result += OnePly/2;
return Min(result, OnePly);
}
// ok_to_do_nullmove() looks at the current position and decides whether
// doing a 'null move' should be allowed. In order to avoid zugzwang
// problems, null moves are not allowed when the side to move has very
// little material left. Currently, the test is a bit too simple: Null
// moves are avoided only when the side to move has only pawns left. It's
// probably a good idea to avoid null moves in at least some more
// complicated endgames, e.g. KQ vs KR. FIXME
bool ok_to_do_nullmove(const Position &pos) {
if(pos.non_pawn_material(pos.side_to_move()) == Value(0))
return false;
return true;
}
// ok_to_prune() tests whether it is safe to forward prune a move. Only
// non-tactical moves late in the move list close to the leaves are
// candidates for pruning.
bool ok_to_prune(const Position &pos, Move m, Move threat, Depth d) {
Square mfrom, mto, tfrom, tto;
assert(move_is_ok(m));
assert(threat == MOVE_NONE || move_is_ok(threat));
assert(!move_promotion(m));
assert(!pos.move_is_check(m));
assert(!pos.move_is_capture(m));
assert(!pos.move_is_passed_pawn_push(m));
assert(d >= OnePly);
mfrom = move_from(m);
mto = move_to(m);
tfrom = move_from(threat);
tto = move_to(threat);
// Case 1: Castling moves are never pruned.
if(move_is_castle(m))
return false;
// Case 2: Don't prune moves which move the threatened piece
if(!PruneEscapeMoves && threat != MOVE_NONE && mfrom == tto)
return false;
// Case 3: If the threatened piece has value less than or equal to the
// value of the threatening piece, don't prune move which defend it.
if(!PruneDefendingMoves && threat != MOVE_NONE
&& (piece_value_midgame(pos.piece_on(tfrom))
>= piece_value_midgame(pos.piece_on(tto)))
&& pos.move_attacks_square(m, tto))
return false;
// Case 4: Don't prune moves with good history.
if(!H.ok_to_prune(pos.piece_on(move_from(m)), m, d))
return false;
// Case 5: If the moving piece in the threatened move is a slider, don't
// prune safe moves which block its ray.
if(!PruneBlockingMoves && threat != MOVE_NONE
&& piece_is_slider(pos.piece_on(tfrom))
&& bit_is_set(squares_between(tfrom, tto), mto) && pos.see(m) >= 0)
return false;
return true;
}
// fail_high_ply_1() checks if some thread is currently resolving a fail
// high at ply 1 at the node below the first root node. This information
// is used for time managment.
bool fail_high_ply_1() {
for(int i = 0; i < ActiveThreads; i++)
if(Threads[i].failHighPly1)
return true;
return false;
}
// current_search_time() returns the number of milliseconds which have passed
// since the beginning of the current search.
int current_search_time() {
return get_system_time() - SearchStartTime;
}
// nps() computes the current nodes/second count.
int nps() {
int t = current_search_time();
return (t > 0)? int((nodes_searched() * 1000) / t) : 0;
}
// poll() performs two different functions: It polls for user input, and it
// looks at the time consumed so far and decides if it's time to abort the
// search.
void poll() {
int t, data;
static int lastInfoTime;
t = current_search_time();
// Poll for input
data = Bioskey();
if(data) {
char input[256];
if(fgets(input, 255, stdin) == NULL)
strcpy(input, "quit\n");
if(strncmp(input, "quit", 4) == 0) {
AbortSearch = true;
PonderSearch = false;
Quit = true;
}
else if(strncmp(input, "stop", 4) == 0) {
AbortSearch = true;
PonderSearch = false;
}
else if(strncmp(input, "ponderhit", 9) == 0)
ponderhit();
}
// Print search information
if(t < 1000)
lastInfoTime = 0;
else if(lastInfoTime > t)
// HACK: Must be a new search where we searched less than
// NodesBetweenPolls nodes during the first second of search.
lastInfoTime = 0;
else if(t - lastInfoTime >= 1000) {
lastInfoTime = t;
lock_grab(&IOLock);
std::cout << "info nodes " << nodes_searched() << " nps " << nps()
<< " time " << t << " hashfull " << TT.full() << std::endl;
lock_release(&IOLock);
if(ShowCurrentLine)
Threads[0].printCurrentLine = true;
}
// Should we stop the search?
if(!PonderSearch && Iteration >= 2 &&
(!InfiniteSearch && (t > AbsoluteMaxSearchTime ||
(RootMoveNumber == 1 &&
t > MaxSearchTime + ExtraSearchTime) ||
(!FailHigh && !fail_high_ply_1() && !Problem &&
t > 6*(MaxSearchTime + ExtraSearchTime)))))
AbortSearch = true;
if(!PonderSearch && ExactMaxTime && t >= ExactMaxTime)
AbortSearch = true;
if(!PonderSearch && Iteration >= 3 && MaxNodes
&& nodes_searched() >= MaxNodes)
AbortSearch = true;
}
// ponderhit() is called when the program is pondering (i.e. thinking while
// it's the opponent's turn to move) in order to let the engine know that
// it correctly predicted the opponent's move.
void ponderhit() {
int t = current_search_time();
PonderSearch = false;
if(Iteration >= 2 &&
(!InfiniteSearch && (StopOnPonderhit ||
t > AbsoluteMaxSearchTime ||
(RootMoveNumber == 1 &&
t > MaxSearchTime + ExtraSearchTime) ||
(!FailHigh && !fail_high_ply_1() && !Problem &&
t > 6*(MaxSearchTime + ExtraSearchTime)))))
AbortSearch = true;
}
// print_current_line() prints the current line of search for a given
// thread. Called when the UCI option UCI_ShowCurrLine is 'true'.
void print_current_line(SearchStack ss[], int ply, int threadID) {
assert(ply >= 0 && ply < PLY_MAX);
assert(threadID >= 0 && threadID < ActiveThreads);
if(!Threads[threadID].idle) {
lock_grab(&IOLock);
std::cout << "info currline " << (threadID + 1);
for(int p = 0; p < ply; p++)
std::cout << " " << ss[p].currentMove;
std::cout << std::endl;
lock_release(&IOLock);
}
Threads[threadID].printCurrentLine = false;
if(threadID + 1 < ActiveThreads)
Threads[threadID + 1].printCurrentLine = true;
}
// wait_for_stop_or_ponderhit() is called when the maximum depth is reached
// while the program is pondering. The point is to work around a wrinkle in
// the UCI protocol: When pondering, the engine is not allowed to give a
// "bestmove" before the GUI sends it a "stop" or "ponderhit" command.
// We simply wait here until one of these commands is sent, and return,
// after which the bestmove and pondermove will be printed (in id_loop()).
void wait_for_stop_or_ponderhit() {
std::string command;
while(true) {
if(!std::getline(std::cin, command))
command = "quit";
if(command == "quit") {
OpeningBook.close();
stop_threads();
quit_eval();
exit(0);
}
else if(command == "ponderhit" || command == "stop")
break;
}
}
// idle_loop() is where the threads are parked when they have no work to do.
// The parameter "waitSp", if non-NULL, is a pointer to an active SplitPoint
// object for which the current thread is the master.
void idle_loop(int threadID, SplitPoint *waitSp) {
assert(threadID >= 0 && threadID < THREAD_MAX);
Threads[threadID].running = true;
while(true) {
if(AllThreadsShouldExit && threadID != 0)
break;
// If we are not thinking, wait for a condition to be signaled instead
// of wasting CPU time polling for work:
while(threadID != 0 && (Idle || threadID >= ActiveThreads)) {
#if !defined(_MSC_VER)
pthread_mutex_lock(&WaitLock);
if(Idle || threadID >= ActiveThreads)
pthread_cond_wait(&WaitCond, &WaitLock);
pthread_mutex_unlock(&WaitLock);
#else
WaitForSingleObject(SitIdleEvent[threadID], INFINITE);
#endif
}
// If this thread has been assigned work, launch a search:
if(Threads[threadID].workIsWaiting) {
Threads[threadID].workIsWaiting = false;
if(Threads[threadID].splitPoint->pvNode)
sp_search_pv(Threads[threadID].splitPoint, threadID);
else
sp_search(Threads[threadID].splitPoint, threadID);
Threads[threadID].idle = true;
}
// If this thread is the master of a split point and all threads have
// finished their work at this split point, return from the idle loop:
if(waitSp != NULL && waitSp->cpus == 0)
return;
}
Threads[threadID].running = false;
}
// init_split_point_stack() is called during program initialization, and
// initializes all split point objects.
void init_split_point_stack() {
for(int i = 0; i < THREAD_MAX; i++)
for(int j = 0; j < MaxActiveSplitPoints; j++) {
SplitPointStack[i][j].parent = NULL;
lock_init(&(SplitPointStack[i][j].lock), NULL);
}
}
// destroy_split_point_stack() is called when the program exits, and
// destroys all locks in the precomputed split point objects.
void destroy_split_point_stack() {
for(int i = 0; i < THREAD_MAX; i++)
for(int j = 0; j < MaxActiveSplitPoints; j++)
lock_destroy(&(SplitPointStack[i][j].lock));
}
// thread_should_stop() checks whether the thread with a given threadID has
// been asked to stop, directly or indirectly. This can happen if a beta
// cutoff has occured in thre thread's currently active split point, or in
// some ancestor of the current split point.
bool thread_should_stop(int threadID) {
assert(threadID >= 0 && threadID < ActiveThreads);
SplitPoint *sp;
if(Threads[threadID].stop)
return true;
if(ActiveThreads <= 2)
return false;
for(sp = Threads[threadID].splitPoint; sp != NULL; sp = sp->parent)
if(sp->finished) {
Threads[threadID].stop = true;
return true;
}
return false;
}
// thread_is_available() checks whether the thread with threadID "slave" is
// available to help the thread with threadID "master" at a split point. An
// obvious requirement is that "slave" must be idle. With more than two
// threads, this is not by itself sufficient: If "slave" is the master of
// some active split point, it is only available as a slave to the other
// threads which are busy searching the split point at the top of "slave"'s
// split point stack (the "helpful master concept" in YBWC terminology).
bool thread_is_available(int slave, int master) {
assert(slave >= 0 && slave < ActiveThreads);
assert(master >= 0 && master < ActiveThreads);
assert(ActiveThreads > 1);
if(!Threads[slave].idle || slave == master)
return false;
if(Threads[slave].activeSplitPoints == 0)
// No active split points means that the thread is available as a slave
// for any other thread.
return true;
if(ActiveThreads == 2)
return true;
// Apply the "helpful master" concept if possible.
if(SplitPointStack[slave][Threads[slave].activeSplitPoints-1].slaves[master])
return true;
return false;
}
// idle_thread_exists() tries to find an idle thread which is available as
// a slave for the thread with threadID "master".
bool idle_thread_exists(int master) {
assert(master >= 0 && master < ActiveThreads);
assert(ActiveThreads > 1);
for(int i = 0; i < ActiveThreads; i++)
if(thread_is_available(i, master))
return true;
return false;
}
// split() does the actual work of distributing the work at a node between
// several threads at PV nodes. If it does not succeed in splitting the
// node (because no idle threads are available, or because we have no unused
// split point objects), the function immediately returns false. If
// splitting is possible, a SplitPoint object is initialized with all the
// data that must be copied to the helper threads (the current position and
// search stack, alpha, beta, the search depth, etc.), and we tell our
// helper threads that they have been assigned work. This will cause them
// to instantly leave their idle loops and call sp_search_pv(). When all
// threads have returned from sp_search_pv (or, equivalently, when
// splitPoint->cpus becomes 0), split() returns true.
bool split(const Position &p, SearchStack *sstck, int ply,
Value *alpha, Value *beta, Value *bestValue,
Depth depth, int *moves,
MovePicker *mp, Bitboard dcCandidates, int master, bool pvNode) {
assert(p.is_ok());
assert(sstck != NULL);
assert(ply >= 0 && ply < PLY_MAX);
assert(*bestValue >= -VALUE_INFINITE && *bestValue <= *alpha);
assert(!pvNode || *alpha < *beta);
assert(*beta <= VALUE_INFINITE);
assert(depth > Depth(0));
assert(master >= 0 && master < ActiveThreads);
assert(ActiveThreads > 1);
SplitPoint *splitPoint;
int i;
lock_grab(&MPLock);
// If no other thread is available to help us, or if we have too many
// active split points, don't split:
if(!idle_thread_exists(master) ||
Threads[master].activeSplitPoints >= MaxActiveSplitPoints) {
lock_release(&MPLock);
return false;
}
// Pick the next available split point object from the split point stack:
splitPoint = SplitPointStack[master] + Threads[master].activeSplitPoints;
Threads[master].activeSplitPoints++;
// Initialize the split point object:
splitPoint->parent = Threads[master].splitPoint;
splitPoint->finished = false;
splitPoint->ply = ply;
splitPoint->depth = depth;
splitPoint->alpha = pvNode? *alpha : (*beta - 1);
splitPoint->beta = *beta;
splitPoint->pvNode = pvNode;
splitPoint->dcCandidates = dcCandidates;
splitPoint->bestValue = *bestValue;
splitPoint->master = master;
splitPoint->mp = mp;
splitPoint->moves = *moves;
splitPoint->cpus = 1;
splitPoint->pos.copy(p);
splitPoint->parentSstack = sstck;
for(i = 0; i < ActiveThreads; i++)
splitPoint->slaves[i] = 0;
// Copy the current position and the search stack to the master thread:
memcpy(splitPoint->sstack[master], sstck, (ply+1)*sizeof(SearchStack));
Threads[master].splitPoint = splitPoint;
// Make copies of the current position and search stack for each thread:
for(i = 0; i < ActiveThreads && splitPoint->cpus < MaxThreadsPerSplitPoint;
i++)
if(thread_is_available(i, master)) {
memcpy(splitPoint->sstack[i], sstck, (ply+1)*sizeof(SearchStack));
Threads[i].splitPoint = splitPoint;
splitPoint->slaves[i] = 1;
splitPoint->cpus++;
}
// Tell the threads that they have work to do. This will make them leave
// their idle loop.
for(i = 0; i < ActiveThreads; i++)
if(i == master || splitPoint->slaves[i]) {
Threads[i].workIsWaiting = true;
Threads[i].idle = false;
Threads[i].stop = false;
}
lock_release(&MPLock);
// Everything is set up. The master thread enters the idle loop, from
// which it will instantly launch a search, because its workIsWaiting
// slot is 'true'. We send the split point as a second parameter to the
// idle loop, which means that the main thread will return from the idle
// loop when all threads have finished their work at this split point
// (i.e. when // splitPoint->cpus == 0).
idle_loop(master, splitPoint);
// We have returned from the idle loop, which means that all threads are
// finished. Update alpha, beta and bestvalue, and return:
lock_grab(&MPLock);
if(pvNode) *alpha = splitPoint->alpha;
*beta = splitPoint->beta;
*bestValue = splitPoint->bestValue;
Threads[master].stop = false;
Threads[master].idle = false;
Threads[master].activeSplitPoints--;
Threads[master].splitPoint = splitPoint->parent;
lock_release(&MPLock);
return true;
}
// wake_sleeping_threads() wakes up all sleeping threads when it is time
// to start a new search from the root.
void wake_sleeping_threads() {
if(ActiveThreads > 1) {
for(int i = 1; i < ActiveThreads; i++) {
Threads[i].idle = true;
Threads[i].workIsWaiting = false;
}
#if !defined(_MSC_VER)
pthread_mutex_lock(&WaitLock);
pthread_cond_broadcast(&WaitCond);
pthread_mutex_unlock(&WaitLock);
#else
for(int i = 1; i < THREAD_MAX; i++)
SetEvent(SitIdleEvent[i]);
#endif
}
}
// init_thread() is the function which is called when a new thread is
// launched. It simply calls the idle_loop() function with the supplied
// threadID. There are two versions of this function; one for POSIX threads
// and one for Windows threads.
#if !defined(_MSC_VER)
void *init_thread(void *threadID) {
idle_loop(*(int *)threadID, NULL);
return NULL;
}
#else
DWORD WINAPI init_thread(LPVOID threadID) {
idle_loop(*(int *)threadID, NULL);
return NULL;
}
#endif
}