mirror of
https://github.com/sockspls/badfish
synced 2025-06-28 00:19:50 +00:00

Passed STC: LLR: 2.94 (-2.94,2.94) <-1.75,0.25> Total: 94208 W: 24270 L: 24112 D: 45826 Ptnml(0-2): 286, 11186, 24009, 11330, 293 https://tests.stockfishchess.org/tests/view/6635ddd773559a8aa8582826 Passed LTC: LLR: 2.95 (-2.94,2.94) <-1.75,0.25> Total: 114960 W: 29107 L: 28982 D: 56871 Ptnml(0-2): 37, 12683, 31924, 12790, 46 https://tests.stockfishchess.org/tests/view/663604a973559a8aa85881ed closes #5214 Bench 1653939
105 lines
3.6 KiB
C++
105 lines
3.6 KiB
C++
/*
|
|
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
|
Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file)
|
|
|
|
Stockfish is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Stockfish is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
// Class for difference calculation of NNUE evaluation function
|
|
|
|
#ifndef NNUE_ACCUMULATOR_H_INCLUDED
|
|
#define NNUE_ACCUMULATOR_H_INCLUDED
|
|
|
|
#include <cstdint>
|
|
|
|
#include "nnue_architecture.h"
|
|
#include "nnue_common.h"
|
|
|
|
namespace Stockfish::Eval::NNUE {
|
|
|
|
using BiasType = std::int16_t;
|
|
using PSQTWeightType = std::int32_t;
|
|
using IndexType = std::uint32_t;
|
|
|
|
// Class that holds the result of affine transformation of input features
|
|
template<IndexType Size>
|
|
struct alignas(CacheLineSize) Accumulator {
|
|
std::int16_t accumulation[COLOR_NB][Size];
|
|
std::int32_t psqtAccumulation[COLOR_NB][PSQTBuckets];
|
|
bool computed[COLOR_NB];
|
|
};
|
|
|
|
|
|
// AccumulatorCaches struct provides per-thread accumulator caches, where each
|
|
// cache contains multiple entries for each of the possible king squares.
|
|
// When the accumulator needs to be refreshed, the cached entry is used to more
|
|
// efficiently update the accumulator, instead of rebuilding it from scratch.
|
|
// This idea, was first described by Luecx (author of Koivisto) and
|
|
// is commonly referred to as "Finny Tables".
|
|
struct AccumulatorCaches {
|
|
|
|
template<typename Networks>
|
|
AccumulatorCaches(const Networks& networks) {
|
|
clear(networks);
|
|
}
|
|
|
|
template<IndexType Size>
|
|
struct alignas(CacheLineSize) Cache {
|
|
|
|
struct alignas(CacheLineSize) Entry {
|
|
BiasType accumulation[Size];
|
|
PSQTWeightType psqtAccumulation[PSQTBuckets];
|
|
Bitboard byColorBB[COLOR_NB];
|
|
Bitboard byTypeBB[PIECE_TYPE_NB];
|
|
|
|
// To initialize a refresh entry, we set all its bitboards empty,
|
|
// so we put the biases in the accumulation, without any weights on top
|
|
void clear(const BiasType* biases) {
|
|
|
|
std::memcpy(accumulation, biases, sizeof(accumulation));
|
|
std::memset((uint8_t*) this + offsetof(Entry, psqtAccumulation), 0,
|
|
sizeof(Entry) - offsetof(Entry, psqtAccumulation));
|
|
}
|
|
};
|
|
|
|
template<typename Network>
|
|
void clear(const Network& network) {
|
|
for (auto& entries1D : entries)
|
|
for (auto& entry : entries1D)
|
|
entry.clear(network.featureTransformer->biases);
|
|
}
|
|
|
|
void clear(const BiasType* biases) {
|
|
for (auto& entry : entries)
|
|
entry.clear(biases);
|
|
}
|
|
|
|
std::array<Entry, COLOR_NB>& operator[](Square sq) { return entries[sq]; }
|
|
|
|
std::array<std::array<Entry, COLOR_NB>, SQUARE_NB> entries;
|
|
};
|
|
|
|
template<typename Networks>
|
|
void clear(const Networks& networks) {
|
|
big.clear(networks.big);
|
|
small.clear(networks.small);
|
|
}
|
|
|
|
Cache<TransformedFeatureDimensionsBig> big;
|
|
Cache<TransformedFeatureDimensionsSmall> small;
|
|
};
|
|
|
|
} // namespace Stockfish::Eval::NNUE
|
|
|
|
#endif // NNUE_ACCUMULATOR_H_INCLUDED
|