mirror of
https://github.com/sockspls/badfish
synced 2025-04-29 16:23:09 +00:00
964 lines
38 KiB
C++
964 lines
38 KiB
C++
/*
|
|
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
|
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
|
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
|
|
|
Stockfish is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Stockfish is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
////
|
|
//// Includes
|
|
////
|
|
|
|
#include <cassert>
|
|
|
|
#include "bitcount.h"
|
|
#include "evaluate.h"
|
|
#include "material.h"
|
|
#include "pawns.h"
|
|
#include "thread.h"
|
|
#include "ucioption.h"
|
|
|
|
|
|
////
|
|
//// Local definitions
|
|
////
|
|
|
|
namespace {
|
|
|
|
// Struct EvalInfo contains various information computed and collected
|
|
// by the evaluation functions.
|
|
struct EvalInfo {
|
|
|
|
// Pointer to pawn hash table entry
|
|
PawnInfo* pi;
|
|
|
|
// updateKingTables[color] is set to true if we have enough material
|
|
// to trigger the opponent's king safety calculation. When is false we
|
|
// skip the time consuming update of the king attackers tables.
|
|
bool updateKingTables[2];
|
|
|
|
// attackedBy[color][piece type] is a bitboard representing all squares
|
|
// attacked by a given color and piece type, attackedBy[color][0] contains
|
|
// all squares attacked by the given color.
|
|
Bitboard attackedBy[2][8];
|
|
|
|
// kingZone[color] is the zone around the enemy king which is considered
|
|
// by the king safety evaluation. This consists of the squares directly
|
|
// adjacent to the king, and the three (or two, for a king on an edge file)
|
|
// squares two ranks in front of the king. For instance, if black's king
|
|
// is on g8, kingZone[WHITE] is a bitboard containing the squares f8, h8,
|
|
// f7, g7, h7, f6, g6 and h6.
|
|
Bitboard kingZone[2];
|
|
|
|
// kingAttackersCount[color] is the number of pieces of the given color
|
|
// which attack a square in the kingZone of the enemy king.
|
|
int kingAttackersCount[2];
|
|
|
|
// kingAttackersWeight[color] is the sum of the "weight" of the pieces of the
|
|
// given color which attack a square in the kingZone of the enemy king. The
|
|
// weights of the individual piece types are given by the variables
|
|
// QueenAttackWeight, RookAttackWeight, BishopAttackWeight and
|
|
// KnightAttackWeight in evaluate.cpp
|
|
int kingAttackersWeight[2];
|
|
|
|
// kingAdjacentZoneAttacksCount[color] is the number of attacks to squares
|
|
// directly adjacent to the king of the given color. Pieces which attack
|
|
// more than one square are counted multiple times. For instance, if black's
|
|
// king is on g8 and there's a white knight on g5, this knight adds
|
|
// 2 to kingAdjacentZoneAttacksCount[BLACK].
|
|
int kingAdjacentZoneAttacksCount[2];
|
|
};
|
|
|
|
// Evaluation grain size, must be a power of 2
|
|
const int GrainSize = 8;
|
|
|
|
// Evaluation weights, initialized from UCI options
|
|
enum { Mobility, PawnStructure, PassedPawns, Space, KingDangerUs, KingDangerThem };
|
|
Score Weights[6];
|
|
|
|
typedef Value V;
|
|
#define S(mg, eg) make_score(mg, eg)
|
|
|
|
// Internal evaluation weights. These are applied on top of the evaluation
|
|
// weights read from UCI parameters. The purpose is to be able to change
|
|
// the evaluation weights while keeping the default values of the UCI
|
|
// parameters at 100, which looks prettier.
|
|
//
|
|
// Values modified by Joona Kiiski
|
|
const Score WeightsInternal[] = {
|
|
S(248, 271), S(233, 201), S(252, 259), S(46, 0), S(247, 0), S(259, 0)
|
|
};
|
|
|
|
// MobilityBonus[PieceType][attacked] contains mobility bonuses for middle and
|
|
// end game, indexed by piece type and number of attacked squares not occupied
|
|
// by friendly pieces.
|
|
const Score MobilityBonus[][32] = {
|
|
{}, {},
|
|
{ S(-38,-33), S(-25,-23), S(-12,-13), S( 0, -3), S(12, 7), S(25, 17), // Knights
|
|
S( 31, 22), S( 38, 27), S( 38, 27) },
|
|
{ S(-25,-30), S(-11,-16), S( 3, -2), S(17, 12), S(31, 26), S(45, 40), // Bishops
|
|
S( 57, 52), S( 65, 60), S( 71, 65), S(74, 69), S(76, 71), S(78, 73),
|
|
S( 79, 74), S( 80, 75), S( 81, 76), S(81, 76) },
|
|
{ S(-20,-36), S(-14,-19), S( -8, -3), S(-2, 13), S( 4, 29), S(10, 46), // Rooks
|
|
S( 14, 62), S( 19, 79), S( 23, 95), S(26,106), S(27,111), S(28,114),
|
|
S( 29,116), S( 30,117), S( 31,118), S(32,118) },
|
|
{ S(-10,-18), S( -8,-13), S( -6, -7), S(-3, -2), S(-1, 3), S( 1, 8), // Queens
|
|
S( 3, 13), S( 5, 19), S( 8, 23), S(10, 27), S(12, 32), S(15, 34),
|
|
S( 16, 35), S( 17, 35), S( 18, 35), S(20, 35), S(20, 35), S(20, 35),
|
|
S( 20, 35), S( 20, 35), S( 20, 35), S(20, 35), S(20, 35), S(20, 35),
|
|
S( 20, 35), S( 20, 35), S( 20, 35), S(20, 35), S(20, 35), S(20, 35),
|
|
S( 20, 35), S( 20, 35) }
|
|
};
|
|
|
|
// OutpostBonus[PieceType][Square] contains outpost bonuses of knights and
|
|
// bishops, indexed by piece type and square (from white's point of view).
|
|
const Value OutpostBonus[][64] = {
|
|
{
|
|
// A B C D E F G H
|
|
V(0), V(0), V(0), V(0), V(0), V(0), V(0), V(0), // Knights
|
|
V(0), V(0), V(0), V(0), V(0), V(0), V(0), V(0),
|
|
V(0), V(0), V(4), V(8), V(8), V(4), V(0), V(0),
|
|
V(0), V(4),V(17),V(26),V(26),V(17), V(4), V(0),
|
|
V(0), V(8),V(26),V(35),V(35),V(26), V(8), V(0),
|
|
V(0), V(4),V(17),V(17),V(17),V(17), V(4), V(0),
|
|
V(0), V(0), V(0), V(0), V(0), V(0), V(0), V(0),
|
|
V(0), V(0), V(0), V(0), V(0), V(0), V(0), V(0) },
|
|
{
|
|
V(0), V(0), V(0), V(0), V(0), V(0), V(0), V(0), // Bishops
|
|
V(0), V(0), V(0), V(0), V(0), V(0), V(0), V(0),
|
|
V(0), V(0), V(5), V(5), V(5), V(5), V(0), V(0),
|
|
V(0), V(5),V(10),V(10),V(10),V(10), V(5), V(0),
|
|
V(0),V(10),V(21),V(21),V(21),V(21),V(10), V(0),
|
|
V(0), V(5), V(8), V(8), V(8), V(8), V(5), V(0),
|
|
V(0), V(0), V(0), V(0), V(0), V(0), V(0), V(0),
|
|
V(0), V(0), V(0), V(0), V(0), V(0), V(0), V(0) }
|
|
};
|
|
|
|
// ThreatBonus[attacking][attacked] contains threat bonuses according to
|
|
// which piece type attacks which one.
|
|
const Score ThreatBonus[][8] = {
|
|
{}, {},
|
|
{ S(0, 0), S( 7, 39), S( 0, 0), S(24, 49), S(41,100), S(41,100) }, // KNIGHT
|
|
{ S(0, 0), S( 7, 39), S(24, 49), S( 0, 0), S(41,100), S(41,100) }, // BISHOP
|
|
{ S(0, 0), S(-1, 29), S(15, 49), S(15, 49), S( 0, 0), S(24, 49) }, // ROOK
|
|
{ S(0, 0), S(15, 39), S(15, 39), S(15, 39), S(15, 39), S( 0, 0) } // QUEEN
|
|
};
|
|
|
|
// ThreatedByPawnPenalty[PieceType] contains a penalty according to which
|
|
// piece type is attacked by an enemy pawn.
|
|
const Score ThreatedByPawnPenalty[] = {
|
|
S(0, 0), S(0, 0), S(56, 70), S(56, 70), S(76, 99), S(86, 118)
|
|
};
|
|
|
|
#undef S
|
|
|
|
// Rooks and queens on the 7th rank (modified by Joona Kiiski)
|
|
const Score RookOn7thBonus = make_score(47, 98);
|
|
const Score QueenOn7thBonus = make_score(27, 54);
|
|
|
|
// Rooks on open files (modified by Joona Kiiski)
|
|
const Score RookOpenFileBonus = make_score(43, 43);
|
|
const Score RookHalfOpenFileBonus = make_score(19, 19);
|
|
|
|
// Penalty for rooks trapped inside a friendly king which has lost the
|
|
// right to castle.
|
|
const Value TrappedRookPenalty = Value(180);
|
|
|
|
// The SpaceMask[Color] contains the area of the board which is considered
|
|
// by the space evaluation. In the middle game, each side is given a bonus
|
|
// based on how many squares inside this area are safe and available for
|
|
// friendly minor pieces.
|
|
const Bitboard SpaceMask[] = {
|
|
(1ULL << SQ_C2) | (1ULL << SQ_D2) | (1ULL << SQ_E2) | (1ULL << SQ_F2) |
|
|
(1ULL << SQ_C3) | (1ULL << SQ_D3) | (1ULL << SQ_E3) | (1ULL << SQ_F3) |
|
|
(1ULL << SQ_C4) | (1ULL << SQ_D4) | (1ULL << SQ_E4) | (1ULL << SQ_F4),
|
|
(1ULL << SQ_C7) | (1ULL << SQ_D7) | (1ULL << SQ_E7) | (1ULL << SQ_F7) |
|
|
(1ULL << SQ_C6) | (1ULL << SQ_D6) | (1ULL << SQ_E6) | (1ULL << SQ_F6) |
|
|
(1ULL << SQ_C5) | (1ULL << SQ_D5) | (1ULL << SQ_E5) | (1ULL << SQ_F5)
|
|
};
|
|
|
|
// King danger constants and variables. The king danger scores are taken
|
|
// from the KingDangerTable[]. Various little "meta-bonuses" measuring
|
|
// the strength of the enemy attack are added up into an integer, which
|
|
// is used as an index to KingDangerTable[].
|
|
//
|
|
// KingAttackWeights[PieceType] contains king attack weights by piece type
|
|
const int KingAttackWeights[] = { 0, 0, 2, 2, 3, 5 };
|
|
|
|
// Bonuses for enemy's safe checks
|
|
const int QueenContactCheckBonus = 6;
|
|
const int RookContactCheckBonus = 4;
|
|
const int QueenCheckBonus = 3;
|
|
const int RookCheckBonus = 2;
|
|
const int BishopCheckBonus = 1;
|
|
const int KnightCheckBonus = 1;
|
|
|
|
// InitKingDanger[Square] contains penalties based on the position of the
|
|
// defending king, indexed by king's square (from white's point of view).
|
|
const int InitKingDanger[] = {
|
|
2, 0, 2, 5, 5, 2, 0, 2,
|
|
2, 2, 4, 8, 8, 4, 2, 2,
|
|
7, 10, 12, 12, 12, 12, 10, 7,
|
|
15, 15, 15, 15, 15, 15, 15, 15,
|
|
15, 15, 15, 15, 15, 15, 15, 15,
|
|
15, 15, 15, 15, 15, 15, 15, 15,
|
|
15, 15, 15, 15, 15, 15, 15, 15,
|
|
15, 15, 15, 15, 15, 15, 15, 15
|
|
};
|
|
|
|
// KingDangerTable[Color][attackUnits] contains the actual king danger
|
|
// weighted scores, indexed by color and by a calculated integer number.
|
|
Score KingDangerTable[2][128];
|
|
|
|
// Pawn and material hash tables, indexed by the current thread id.
|
|
// Note that they will be initialized at 0 being global variables.
|
|
MaterialInfoTable* MaterialTable[MAX_THREADS];
|
|
PawnInfoTable* PawnTable[MAX_THREADS];
|
|
|
|
// Function prototypes
|
|
template<bool HasPopCnt>
|
|
Value do_evaluate(const Position& pos, Value& margin);
|
|
|
|
template<Color Us, bool HasPopCnt>
|
|
void init_eval_info(const Position& pos, EvalInfo& ei);
|
|
|
|
template<Color Us, bool HasPopCnt>
|
|
Score evaluate_pieces_of_color(const Position& pos, EvalInfo& ei, Score& mobility);
|
|
|
|
template<Color Us, bool HasPopCnt>
|
|
Score evaluate_king(const Position& pos, EvalInfo& ei, Value& margin);
|
|
|
|
template<Color Us>
|
|
Score evaluate_threats(const Position& pos, EvalInfo& ei);
|
|
|
|
template<Color Us, bool HasPopCnt>
|
|
int evaluate_space(const Position& pos, EvalInfo& ei);
|
|
|
|
template<Color Us>
|
|
Score evaluate_passed_pawns(const Position& pos, EvalInfo& ei);
|
|
|
|
Score apply_weight(Score v, Score weight);
|
|
Value scale_by_game_phase(const Score& v, Phase ph, const ScaleFactor sf[]);
|
|
Score weight_option(const std::string& mgOpt, const std::string& egOpt, Score internalWeight);
|
|
void init_safety();
|
|
}
|
|
|
|
|
|
////
|
|
//// Functions
|
|
////
|
|
|
|
|
|
/// Prefetches in pawn hash tables
|
|
|
|
void prefetchPawn(Key key, int threadID) {
|
|
|
|
PawnTable[threadID]->prefetch(key);
|
|
}
|
|
|
|
|
|
/// evaluate() is the main evaluation function. It always computes two
|
|
/// values, an endgame score and a middle game score, and interpolates
|
|
/// between them based on the remaining material.
|
|
Value evaluate(const Position& pos, Value& margin) {
|
|
|
|
return CpuHasPOPCNT ? do_evaluate<true>(pos, margin)
|
|
: do_evaluate<false>(pos, margin);
|
|
}
|
|
|
|
namespace {
|
|
|
|
template<bool HasPopCnt>
|
|
Value do_evaluate(const Position& pos, Value& margin) {
|
|
|
|
EvalInfo ei;
|
|
ScaleFactor factor[2];
|
|
Score mobilityWhite, mobilityBlack;
|
|
|
|
assert(pos.is_ok());
|
|
assert(pos.thread() >= 0 && pos.thread() < MAX_THREADS);
|
|
assert(!pos.is_check());
|
|
|
|
// Initialize value by reading the incrementally updated scores included
|
|
// in the position object (material + piece square tables).
|
|
Score bonus = pos.value();
|
|
|
|
// margin is the uncertainty estimation of position's evaluation
|
|
// and typically is used by the search for pruning decisions.
|
|
margin = VALUE_ZERO;
|
|
|
|
// Probe the material hash table
|
|
MaterialInfo* mi = MaterialTable[pos.thread()]->get_material_info(pos);
|
|
bonus += mi->material_value();
|
|
|
|
// If we have a specialized evaluation function for the current material
|
|
// configuration, call it and return.
|
|
if (mi->specialized_eval_exists())
|
|
return mi->evaluate(pos);
|
|
|
|
// After get_material_info() call that modifies them
|
|
factor[WHITE] = mi->scale_factor(pos, WHITE);
|
|
factor[BLACK] = mi->scale_factor(pos, BLACK);
|
|
|
|
// Probe the pawn hash table
|
|
ei.pi = PawnTable[pos.thread()]->get_pawn_info(pos);
|
|
bonus += apply_weight(ei.pi->pawns_value(), Weights[PawnStructure]);
|
|
|
|
// Initialize attack and king safety bitboards
|
|
init_eval_info<WHITE, HasPopCnt>(pos, ei);
|
|
init_eval_info<BLACK, HasPopCnt>(pos, ei);
|
|
|
|
// Evaluate pieces and mobility
|
|
bonus += evaluate_pieces_of_color<WHITE, HasPopCnt>(pos, ei, mobilityWhite)
|
|
- evaluate_pieces_of_color<BLACK, HasPopCnt>(pos, ei, mobilityBlack);
|
|
|
|
bonus += apply_weight(mobilityWhite - mobilityBlack, Weights[Mobility]);
|
|
|
|
// Evaluate kings after all other pieces because we need complete attack
|
|
// information when computing the king safety evaluation.
|
|
bonus += evaluate_king<WHITE, HasPopCnt>(pos, ei, margin)
|
|
- evaluate_king<BLACK, HasPopCnt>(pos, ei, margin);
|
|
|
|
// Evaluate tactical threats, we need full attack information including king
|
|
bonus += evaluate_threats<WHITE>(pos, ei)
|
|
- evaluate_threats<BLACK>(pos, ei);
|
|
|
|
// Evaluate passed pawns, we need full attack information including king
|
|
bonus += evaluate_passed_pawns<WHITE>(pos, ei)
|
|
- evaluate_passed_pawns<BLACK>(pos, ei);
|
|
|
|
Phase phase = mi->game_phase();
|
|
|
|
// Evaluate space for both sides, only in middle-game.
|
|
if (phase > PHASE_ENDGAME && mi->space_weight() > 0)
|
|
{
|
|
int s = evaluate_space<WHITE, HasPopCnt>(pos, ei) - evaluate_space<BLACK, HasPopCnt>(pos, ei);
|
|
bonus += apply_weight(make_score(s * mi->space_weight(), 0), Weights[Space]);
|
|
}
|
|
|
|
// If we don't already have an unusual scale factor, check for opposite
|
|
// colored bishop endgames, and use a lower scale for those
|
|
if ( phase < PHASE_MIDGAME
|
|
&& pos.opposite_colored_bishops()
|
|
&& ( (factor[WHITE] == SCALE_FACTOR_NORMAL && eg_value(bonus) > VALUE_ZERO)
|
|
|| (factor[BLACK] == SCALE_FACTOR_NORMAL && eg_value(bonus) < VALUE_ZERO)))
|
|
{
|
|
ScaleFactor sf;
|
|
|
|
// Only the two bishops ?
|
|
if ( pos.non_pawn_material(WHITE) == BishopValueMidgame
|
|
&& pos.non_pawn_material(BLACK) == BishopValueMidgame)
|
|
{
|
|
// Check for KBP vs KB with only a single pawn that is almost
|
|
// certainly a draw or at least two pawns.
|
|
bool one_pawn = (pos.piece_count(WHITE, PAWN) + pos.piece_count(BLACK, PAWN) == 1);
|
|
sf = one_pawn ? ScaleFactor(8) : ScaleFactor(32);
|
|
}
|
|
else
|
|
// Endgame with opposite-colored bishops, but also other pieces. Still
|
|
// a bit drawish, but not as drawish as with only the two bishops.
|
|
sf = ScaleFactor(50);
|
|
|
|
if (factor[WHITE] == SCALE_FACTOR_NORMAL)
|
|
factor[WHITE] = sf;
|
|
if (factor[BLACK] == SCALE_FACTOR_NORMAL)
|
|
factor[BLACK] = sf;
|
|
}
|
|
|
|
// Interpolate between the middle game and the endgame score
|
|
Value v = scale_by_game_phase(bonus, phase, factor);
|
|
return pos.side_to_move() == WHITE ? v : -v;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
|
/// init_eval() initializes various tables used by the evaluation function
|
|
|
|
void init_eval(int threads) {
|
|
|
|
assert(threads <= MAX_THREADS);
|
|
|
|
for (int i = 0; i < MAX_THREADS; i++)
|
|
{
|
|
if (i >= threads)
|
|
{
|
|
delete PawnTable[i];
|
|
delete MaterialTable[i];
|
|
PawnTable[i] = NULL;
|
|
MaterialTable[i] = NULL;
|
|
continue;
|
|
}
|
|
if (!PawnTable[i])
|
|
PawnTable[i] = new PawnInfoTable();
|
|
|
|
if (!MaterialTable[i])
|
|
MaterialTable[i] = new MaterialInfoTable();
|
|
}
|
|
}
|
|
|
|
|
|
/// quit_eval() releases heap-allocated memory at program termination
|
|
|
|
void quit_eval() {
|
|
|
|
init_eval(0);
|
|
}
|
|
|
|
|
|
/// read_weights() reads evaluation weights from the corresponding UCI parameters
|
|
|
|
void read_weights(Color us) {
|
|
|
|
// King safety is asymmetrical. Our king danger level is weighted by
|
|
// "Cowardice" UCI parameter, instead the opponent one by "Aggressiveness".
|
|
const int kingDangerUs = (us == WHITE ? KingDangerUs : KingDangerThem);
|
|
const int kingDangerThem = (us == WHITE ? KingDangerThem : KingDangerUs);
|
|
|
|
Weights[Mobility] = weight_option("Mobility (Middle Game)", "Mobility (Endgame)", WeightsInternal[Mobility]);
|
|
Weights[PawnStructure] = weight_option("Pawn Structure (Middle Game)", "Pawn Structure (Endgame)", WeightsInternal[PawnStructure]);
|
|
Weights[PassedPawns] = weight_option("Passed Pawns (Middle Game)", "Passed Pawns (Endgame)", WeightsInternal[PassedPawns]);
|
|
Weights[Space] = weight_option("Space", "Space", WeightsInternal[Space]);
|
|
Weights[kingDangerUs] = weight_option("Cowardice", "Cowardice", WeightsInternal[KingDangerUs]);
|
|
Weights[kingDangerThem] = weight_option("Aggressiveness", "Aggressiveness", WeightsInternal[KingDangerThem]);
|
|
|
|
// If running in analysis mode, make sure we use symmetrical king safety. We do this
|
|
// by replacing both Weights[kingDangerUs] and Weights[kingDangerThem] by their average.
|
|
if (get_option_value_bool("UCI_AnalyseMode"))
|
|
Weights[kingDangerUs] = Weights[kingDangerThem] = (Weights[kingDangerUs] + Weights[kingDangerThem]) / 2;
|
|
|
|
init_safety();
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
// init_eval_info() initializes king bitboards for given color adding
|
|
// pawn attacks. To be done at the beginning of the evaluation.
|
|
|
|
template<Color Us, bool HasPopCnt>
|
|
void init_eval_info(const Position& pos, EvalInfo& ei) {
|
|
|
|
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
|
|
|
Bitboard b = ei.attackedBy[Them][KING] = pos.attacks_from<KING>(pos.king_square(Them));
|
|
ei.kingZone[Us] = (b | (Us == WHITE ? b >> 8 : b << 8));
|
|
ei.attackedBy[Us][PAWN] = ei.pi->pawn_attacks(Us);
|
|
ei.updateKingTables[Us] = pos.piece_count(Us, QUEEN) && pos.non_pawn_material(Us) >= QueenValueMidgame + RookValueMidgame;
|
|
if (ei.updateKingTables[Us])
|
|
{
|
|
b &= ei.attackedBy[Us][PAWN];
|
|
ei.kingAttackersCount[Us] = b ? count_1s_max_15<HasPopCnt>(b) / 2 : EmptyBoardBB;
|
|
ei.kingAdjacentZoneAttacksCount[Us] = ei.kingAttackersWeight[Us] = EmptyBoardBB;
|
|
}
|
|
}
|
|
|
|
|
|
// evaluate_outposts() evaluates bishop and knight outposts squares
|
|
|
|
template<PieceType Piece, Color Us>
|
|
Score evaluate_outposts(const Position& pos, EvalInfo& ei, Square s) {
|
|
|
|
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
|
|
|
assert (Piece == BISHOP || Piece == KNIGHT);
|
|
|
|
// Initial bonus based on square
|
|
Value bonus = OutpostBonus[Piece == BISHOP][relative_square(Us, s)];
|
|
|
|
// Increase bonus if supported by pawn, especially if the opponent has
|
|
// no minor piece which can exchange the outpost piece.
|
|
if (bonus && bit_is_set(ei.attackedBy[Us][PAWN], s))
|
|
{
|
|
if ( pos.pieces(KNIGHT, Them) == EmptyBoardBB
|
|
&& (SquaresByColorBB[square_color(s)] & pos.pieces(BISHOP, Them)) == EmptyBoardBB)
|
|
bonus += bonus + bonus / 2;
|
|
else
|
|
bonus += bonus / 2;
|
|
}
|
|
return make_score(bonus, bonus);
|
|
}
|
|
|
|
|
|
// evaluate_pieces<>() assigns bonuses and penalties to the pieces of a given color
|
|
|
|
template<PieceType Piece, Color Us, bool HasPopCnt>
|
|
Score evaluate_pieces(const Position& pos, EvalInfo& ei, Score& mobility, Bitboard no_mob_area) {
|
|
|
|
Bitboard b;
|
|
Square s, ksq;
|
|
int mob;
|
|
File f;
|
|
Score bonus = SCORE_ZERO;
|
|
|
|
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
|
const Square* ptr = pos.piece_list_begin(Us, Piece);
|
|
|
|
ei.attackedBy[Us][Piece] = EmptyBoardBB;
|
|
|
|
while ((s = *ptr++) != SQ_NONE)
|
|
{
|
|
// Find attacked squares, including x-ray attacks for bishops and rooks
|
|
if (Piece == KNIGHT || Piece == QUEEN)
|
|
b = pos.attacks_from<Piece>(s);
|
|
else if (Piece == BISHOP)
|
|
b = bishop_attacks_bb(s, pos.occupied_squares() & ~pos.pieces(QUEEN, Us));
|
|
else if (Piece == ROOK)
|
|
b = rook_attacks_bb(s, pos.occupied_squares() & ~pos.pieces(ROOK, QUEEN, Us));
|
|
else
|
|
assert(false);
|
|
|
|
// Update attack info
|
|
ei.attackedBy[Us][Piece] |= b;
|
|
|
|
// King attacks
|
|
if (ei.updateKingTables[Us] && (b & ei.kingZone[Us]))
|
|
{
|
|
ei.kingAttackersCount[Us]++;
|
|
ei.kingAttackersWeight[Us] += KingAttackWeights[Piece];
|
|
Bitboard bb = (b & ei.attackedBy[Them][KING]);
|
|
if (bb)
|
|
ei.kingAdjacentZoneAttacksCount[Us] += count_1s_max_15<HasPopCnt>(bb);
|
|
}
|
|
|
|
// Mobility
|
|
mob = (Piece != QUEEN ? count_1s_max_15<HasPopCnt>(b & no_mob_area)
|
|
: count_1s<HasPopCnt>(b & no_mob_area));
|
|
|
|
mobility += MobilityBonus[Piece][mob];
|
|
|
|
// Decrease score if we are attacked by an enemy pawn. Remaining part
|
|
// of threat evaluation must be done later when we have full attack info.
|
|
if (bit_is_set(ei.attackedBy[Them][PAWN], s))
|
|
bonus -= ThreatedByPawnPenalty[Piece];
|
|
|
|
// Bishop and knight outposts squares
|
|
if ((Piece == BISHOP || Piece == KNIGHT) && pos.square_is_weak(s, Us))
|
|
bonus += evaluate_outposts<Piece, Us>(pos, ei, s);
|
|
|
|
// Queen or rook on 7th rank
|
|
if ( (Piece == ROOK || Piece == QUEEN)
|
|
&& relative_rank(Us, s) == RANK_7
|
|
&& relative_rank(Us, pos.king_square(Them)) == RANK_8)
|
|
{
|
|
bonus += (Piece == ROOK ? RookOn7thBonus : QueenOn7thBonus);
|
|
}
|
|
|
|
// Special extra evaluation for rooks
|
|
if (Piece == ROOK)
|
|
{
|
|
// Open and half-open files
|
|
f = square_file(s);
|
|
if (ei.pi->file_is_half_open(Us, f))
|
|
{
|
|
if (ei.pi->file_is_half_open(Them, f))
|
|
bonus += RookOpenFileBonus;
|
|
else
|
|
bonus += RookHalfOpenFileBonus;
|
|
}
|
|
|
|
// Penalize rooks which are trapped inside a king. Penalize more if
|
|
// king has lost right to castle.
|
|
if (mob > 6 || ei.pi->file_is_half_open(Us, f))
|
|
continue;
|
|
|
|
ksq = pos.king_square(Us);
|
|
|
|
if ( square_file(ksq) >= FILE_E
|
|
&& square_file(s) > square_file(ksq)
|
|
&& (relative_rank(Us, ksq) == RANK_1 || square_rank(ksq) == square_rank(s)))
|
|
{
|
|
// Is there a half-open file between the king and the edge of the board?
|
|
if (!ei.pi->has_open_file_to_right(Us, square_file(ksq)))
|
|
bonus -= make_score(pos.can_castle(Us) ? (TrappedRookPenalty - mob * 16) / 2
|
|
: (TrappedRookPenalty - mob * 16), 0);
|
|
}
|
|
else if ( square_file(ksq) <= FILE_D
|
|
&& square_file(s) < square_file(ksq)
|
|
&& (relative_rank(Us, ksq) == RANK_1 || square_rank(ksq) == square_rank(s)))
|
|
{
|
|
// Is there a half-open file between the king and the edge of the board?
|
|
if (!ei.pi->has_open_file_to_left(Us, square_file(ksq)))
|
|
bonus -= make_score(pos.can_castle(Us) ? (TrappedRookPenalty - mob * 16) / 2
|
|
: (TrappedRookPenalty - mob * 16), 0);
|
|
}
|
|
}
|
|
}
|
|
return bonus;
|
|
}
|
|
|
|
|
|
// evaluate_threats<>() assigns bonuses according to the type of attacking piece
|
|
// and the type of attacked one.
|
|
|
|
template<Color Us>
|
|
Score evaluate_threats(const Position& pos, EvalInfo& ei) {
|
|
|
|
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
|
|
|
Bitboard b;
|
|
Score bonus = SCORE_ZERO;
|
|
|
|
// Enemy pieces not defended by a pawn and under our attack
|
|
Bitboard weakEnemies = pos.pieces_of_color(Them)
|
|
& ~ei.attackedBy[Them][PAWN]
|
|
& ei.attackedBy[Us][0];
|
|
if (!weakEnemies)
|
|
return SCORE_ZERO;
|
|
|
|
// Add bonus according to type of attacked enemy piece and to the
|
|
// type of attacking piece, from knights to queens. Kings are not
|
|
// considered because are already handled in king evaluation.
|
|
for (PieceType pt1 = KNIGHT; pt1 < KING; pt1++)
|
|
{
|
|
b = ei.attackedBy[Us][pt1] & weakEnemies;
|
|
if (b)
|
|
for (PieceType pt2 = PAWN; pt2 < KING; pt2++)
|
|
if (b & pos.pieces(pt2))
|
|
bonus += ThreatBonus[pt1][pt2];
|
|
}
|
|
return bonus;
|
|
}
|
|
|
|
|
|
// evaluate_pieces_of_color<>() assigns bonuses and penalties to all the
|
|
// pieces of a given color.
|
|
|
|
template<Color Us, bool HasPopCnt>
|
|
Score evaluate_pieces_of_color(const Position& pos, EvalInfo& ei, Score& mobility) {
|
|
|
|
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
|
|
|
Score bonus = mobility = SCORE_ZERO;
|
|
|
|
// Do not include in mobility squares protected by enemy pawns or occupied by our pieces
|
|
const Bitboard no_mob_area = ~(ei.attackedBy[Them][PAWN] | pos.pieces_of_color(Us));
|
|
|
|
bonus += evaluate_pieces<KNIGHT, Us, HasPopCnt>(pos, ei, mobility, no_mob_area);
|
|
bonus += evaluate_pieces<BISHOP, Us, HasPopCnt>(pos, ei, mobility, no_mob_area);
|
|
bonus += evaluate_pieces<ROOK, Us, HasPopCnt>(pos, ei, mobility, no_mob_area);
|
|
bonus += evaluate_pieces<QUEEN, Us, HasPopCnt>(pos, ei, mobility, no_mob_area);
|
|
|
|
// Sum up all attacked squares
|
|
ei.attackedBy[Us][0] = ei.attackedBy[Us][PAWN] | ei.attackedBy[Us][KNIGHT]
|
|
| ei.attackedBy[Us][BISHOP] | ei.attackedBy[Us][ROOK]
|
|
| ei.attackedBy[Us][QUEEN] | ei.attackedBy[Us][KING];
|
|
return bonus;
|
|
}
|
|
|
|
|
|
// evaluate_king<>() assigns bonuses and penalties to a king of a given color
|
|
|
|
template<Color Us, bool HasPopCnt>
|
|
Score evaluate_king(const Position& pos, EvalInfo& ei, Value& margin) {
|
|
|
|
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
|
|
|
Bitboard undefended, b, b1, b2, safe;
|
|
int attackUnits;
|
|
const Square ksq = pos.king_square(Us);
|
|
|
|
// King shelter
|
|
Score bonus = ei.pi->king_shelter<Us>(pos, ksq);
|
|
|
|
// King safety. This is quite complicated, and is almost certainly far
|
|
// from optimally tuned.
|
|
if ( ei.updateKingTables[Them]
|
|
&& ei.kingAttackersCount[Them] >= 2
|
|
&& ei.kingAdjacentZoneAttacksCount[Them])
|
|
{
|
|
// Find the attacked squares around the king which has no defenders
|
|
// apart from the king itself
|
|
undefended = ei.attackedBy[Them][0] & ei.attackedBy[Us][KING];
|
|
undefended &= ~( ei.attackedBy[Us][PAWN] | ei.attackedBy[Us][KNIGHT]
|
|
| ei.attackedBy[Us][BISHOP] | ei.attackedBy[Us][ROOK]
|
|
| ei.attackedBy[Us][QUEEN]);
|
|
|
|
// Initialize the 'attackUnits' variable, which is used later on as an
|
|
// index to the KingDangerTable[] array. The initial value is based on
|
|
// the number and types of the enemy's attacking pieces, the number of
|
|
// attacked and undefended squares around our king, the square of the
|
|
// king, and the quality of the pawn shelter.
|
|
attackUnits = Min(25, (ei.kingAttackersCount[Them] * ei.kingAttackersWeight[Them]) / 2)
|
|
+ 3 * (ei.kingAdjacentZoneAttacksCount[Them] + count_1s_max_15<HasPopCnt>(undefended))
|
|
+ InitKingDanger[relative_square(Us, ksq)]
|
|
- mg_value(ei.pi->king_shelter<Us>(pos, ksq)) / 32;
|
|
|
|
// Analyse enemy's safe queen contact checks. First find undefended
|
|
// squares around the king attacked by enemy queen...
|
|
b = undefended & ei.attackedBy[Them][QUEEN] & ~pos.pieces_of_color(Them);
|
|
if (b)
|
|
{
|
|
// ...then remove squares not supported by another enemy piece
|
|
b &= ( ei.attackedBy[Them][PAWN] | ei.attackedBy[Them][KNIGHT]
|
|
| ei.attackedBy[Them][BISHOP] | ei.attackedBy[Them][ROOK]);
|
|
if (b)
|
|
attackUnits += QueenContactCheckBonus
|
|
* count_1s_max_15<HasPopCnt>(b)
|
|
* (Them == pos.side_to_move() ? 2 : 1);
|
|
}
|
|
|
|
// Analyse enemy's safe rook contact checks. First find undefended
|
|
// squares around the king attacked by enemy rooks...
|
|
b = undefended & ei.attackedBy[Them][ROOK] & ~pos.pieces_of_color(Them);
|
|
|
|
// Consider only squares where the enemy rook gives check
|
|
b &= RookPseudoAttacks[ksq];
|
|
|
|
if (b)
|
|
{
|
|
// ...then remove squares not supported by another enemy piece
|
|
b &= ( ei.attackedBy[Them][PAWN] | ei.attackedBy[Them][KNIGHT]
|
|
| ei.attackedBy[Them][BISHOP] | ei.attackedBy[Them][QUEEN]);
|
|
if (b)
|
|
attackUnits += RookContactCheckBonus
|
|
* count_1s_max_15<HasPopCnt>(b)
|
|
* (Them == pos.side_to_move() ? 2 : 1);
|
|
}
|
|
|
|
// Analyse enemy's safe distance checks for sliders and knights
|
|
safe = ~(pos.pieces_of_color(Them) | ei.attackedBy[Us][0]);
|
|
|
|
b1 = pos.attacks_from<ROOK>(ksq) & safe;
|
|
b2 = pos.attacks_from<BISHOP>(ksq) & safe;
|
|
|
|
// Enemy queen safe checks
|
|
b = (b1 | b2) & ei.attackedBy[Them][QUEEN];
|
|
if (b)
|
|
attackUnits += QueenCheckBonus * count_1s_max_15<HasPopCnt>(b);
|
|
|
|
// Enemy rooks safe checks
|
|
b = b1 & ei.attackedBy[Them][ROOK];
|
|
if (b)
|
|
attackUnits += RookCheckBonus * count_1s_max_15<HasPopCnt>(b);
|
|
|
|
// Enemy bishops safe checks
|
|
b = b2 & ei.attackedBy[Them][BISHOP];
|
|
if (b)
|
|
attackUnits += BishopCheckBonus * count_1s_max_15<HasPopCnt>(b);
|
|
|
|
// Enemy knights safe checks
|
|
b = pos.attacks_from<KNIGHT>(ksq) & ei.attackedBy[Them][KNIGHT] & safe;
|
|
if (b)
|
|
attackUnits += KnightCheckBonus * count_1s_max_15<HasPopCnt>(b);
|
|
|
|
// To index KingDangerTable[] attackUnits must be in [0, 99] range
|
|
attackUnits = Min(99, Max(0, attackUnits));
|
|
|
|
// Finally, extract the king danger score from the KingDangerTable[]
|
|
// array and subtract the score from evaluation. Set also margins[]
|
|
// value that will be used for pruning because this value can sometimes
|
|
// be very big, and so capturing a single attacking piece can therefore
|
|
// result in a score change far bigger than the value of the captured piece.
|
|
bonus -= KingDangerTable[Us][attackUnits];
|
|
if (pos.side_to_move() == Us)
|
|
margin += mg_value(KingDangerTable[Us][attackUnits]);
|
|
}
|
|
return bonus;
|
|
}
|
|
|
|
|
|
// evaluate_passed_pawns<>() evaluates the passed pawns of the given color
|
|
|
|
template<Color Us>
|
|
Score evaluate_passed_pawns(const Position& pos, EvalInfo& ei) {
|
|
|
|
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
|
|
|
Score bonus = SCORE_ZERO;
|
|
Bitboard squaresToQueen, defendedSquares, unsafeSquares, supportingPawns;
|
|
Bitboard b = ei.pi->passed_pawns(Us);
|
|
|
|
if (!b)
|
|
return SCORE_ZERO;
|
|
|
|
do {
|
|
Square s = pop_1st_bit(&b);
|
|
|
|
assert(pos.pawn_is_passed(Us, s));
|
|
|
|
int r = int(relative_rank(Us, s) - RANK_2);
|
|
int rr = r * (r - 1);
|
|
|
|
// Base bonus based on rank
|
|
Value mbonus = Value(20 * rr);
|
|
Value ebonus = Value(10 * (rr + r + 1));
|
|
|
|
if (rr)
|
|
{
|
|
Square blockSq = s + pawn_push(Us);
|
|
|
|
// Adjust bonus based on kings proximity
|
|
ebonus -= Value(square_distance(pos.king_square(Us), blockSq) * 3 * rr);
|
|
ebonus -= Value(square_distance(pos.king_square(Us), blockSq + pawn_push(Us)) * rr);
|
|
ebonus += Value(square_distance(pos.king_square(Them), blockSq) * 6 * rr);
|
|
|
|
// If the pawn is free to advance, increase bonus
|
|
if (pos.square_is_empty(blockSq))
|
|
{
|
|
squaresToQueen = squares_in_front_of(Us, s);
|
|
defendedSquares = squaresToQueen & ei.attackedBy[Us][0];
|
|
|
|
// If there is an enemy rook or queen attacking the pawn from behind,
|
|
// add all X-ray attacks by the rook or queen. Otherwise consider only
|
|
// the squares in the pawn's path attacked or occupied by the enemy.
|
|
if ( (squares_behind(Us, s) & pos.pieces(ROOK, QUEEN, Them))
|
|
&& (squares_behind(Us, s) & pos.pieces(ROOK, QUEEN, Them) & pos.attacks_from<ROOK>(s)))
|
|
unsafeSquares = squaresToQueen;
|
|
else
|
|
unsafeSquares = squaresToQueen & (ei.attackedBy[Them][0] | pos.pieces_of_color(Them));
|
|
|
|
// If there aren't enemy attacks or pieces along the path to queen give
|
|
// huge bonus. Even bigger if we protect the pawn's path.
|
|
if (!unsafeSquares)
|
|
ebonus += Value(rr * (squaresToQueen == defendedSquares ? 17 : 15));
|
|
else
|
|
// OK, there are enemy attacks or pieces (but not pawns). Are those
|
|
// squares which are attacked by the enemy also attacked by us ?
|
|
// If yes, big bonus (but smaller than when there are no enemy attacks),
|
|
// if no, somewhat smaller bonus.
|
|
ebonus += Value(rr * ((unsafeSquares & defendedSquares) == unsafeSquares ? 13 : 8));
|
|
|
|
// At last, add a small bonus when there are no *friendly* pieces
|
|
// in the pawn's path.
|
|
if (!(squaresToQueen & pos.pieces_of_color(Us)))
|
|
ebonus += Value(rr);
|
|
}
|
|
} // rr != 0
|
|
|
|
// Increase the bonus if the passed pawn is supported by a friendly pawn
|
|
// on the same rank and a bit smaller if it's on the previous rank.
|
|
supportingPawns = pos.pieces(PAWN, Us) & neighboring_files_bb(s);
|
|
if (supportingPawns & rank_bb(s))
|
|
ebonus += Value(r * 20);
|
|
else if (supportingPawns & rank_bb(s - pawn_push(Us)))
|
|
ebonus += Value(r * 12);
|
|
|
|
// Rook pawns are a special case: They are sometimes worse, and
|
|
// sometimes better than other passed pawns. It is difficult to find
|
|
// good rules for determining whether they are good or bad. For now,
|
|
// we try the following: Increase the value for rook pawns if the
|
|
// other side has no pieces apart from a knight, and decrease the
|
|
// value if the other side has a rook or queen.
|
|
if (square_file(s) == FILE_A || square_file(s) == FILE_H)
|
|
{
|
|
if (pos.non_pawn_material(Them) <= KnightValueMidgame)
|
|
ebonus += ebonus / 4;
|
|
else if (pos.pieces(ROOK, QUEEN, Them))
|
|
ebonus -= ebonus / 4;
|
|
}
|
|
bonus += make_score(mbonus, ebonus);
|
|
|
|
} while (b);
|
|
|
|
// Add the scores to the middle game and endgame eval
|
|
return apply_weight(bonus, Weights[PassedPawns]);
|
|
}
|
|
|
|
|
|
// evaluate_space() computes the space evaluation for a given side. The
|
|
// space evaluation is a simple bonus based on the number of safe squares
|
|
// available for minor pieces on the central four files on ranks 2--4. Safe
|
|
// squares one, two or three squares behind a friendly pawn are counted
|
|
// twice. Finally, the space bonus is scaled by a weight taken from the
|
|
// material hash table. The aim is to improve play on game opening.
|
|
template<Color Us, bool HasPopCnt>
|
|
int evaluate_space(const Position& pos, EvalInfo& ei) {
|
|
|
|
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
|
|
|
// Find the safe squares for our pieces inside the area defined by
|
|
// SpaceMask[]. A square is unsafe if it is attacked by an enemy
|
|
// pawn, or if it is undefended and attacked by an enemy piece.
|
|
Bitboard safe = SpaceMask[Us]
|
|
& ~pos.pieces(PAWN, Us)
|
|
& ~ei.attackedBy[Them][PAWN]
|
|
& (ei.attackedBy[Us][0] | ~ei.attackedBy[Them][0]);
|
|
|
|
// Find all squares which are at most three squares behind some friendly pawn
|
|
Bitboard behind = pos.pieces(PAWN, Us);
|
|
behind |= (Us == WHITE ? behind >> 8 : behind << 8);
|
|
behind |= (Us == WHITE ? behind >> 16 : behind << 16);
|
|
|
|
return count_1s_max_15<HasPopCnt>(safe) + count_1s_max_15<HasPopCnt>(behind & safe);
|
|
}
|
|
|
|
|
|
// apply_weight() applies an evaluation weight to a value trying to prevent overflow
|
|
|
|
inline Score apply_weight(Score v, Score w) {
|
|
return make_score((int(mg_value(v)) * mg_value(w)) / 0x100,
|
|
(int(eg_value(v)) * eg_value(w)) / 0x100);
|
|
}
|
|
|
|
|
|
// scale_by_game_phase() interpolates between a middle game and an endgame score,
|
|
// based on game phase. It also scales the return value by a ScaleFactor array.
|
|
|
|
Value scale_by_game_phase(const Score& v, Phase ph, const ScaleFactor sf[]) {
|
|
|
|
assert(mg_value(v) > -VALUE_INFINITE && mg_value(v) < VALUE_INFINITE);
|
|
assert(eg_value(v) > -VALUE_INFINITE && eg_value(v) < VALUE_INFINITE);
|
|
assert(ph >= PHASE_ENDGAME && ph <= PHASE_MIDGAME);
|
|
|
|
Value eg = eg_value(v);
|
|
ScaleFactor f = sf[eg > VALUE_ZERO ? WHITE : BLACK];
|
|
Value ev = Value((eg * int(f)) / SCALE_FACTOR_NORMAL);
|
|
|
|
int result = (mg_value(v) * int(ph) + ev * int(128 - ph)) / 128;
|
|
return Value(result & ~(GrainSize - 1));
|
|
}
|
|
|
|
|
|
// weight_option() computes the value of an evaluation weight, by combining
|
|
// two UCI-configurable weights (midgame and endgame) with an internal weight.
|
|
|
|
Score weight_option(const std::string& mgOpt, const std::string& egOpt, Score internalWeight) {
|
|
|
|
// Scale option value from 100 to 256
|
|
int mg = get_option_value_int(mgOpt) * 256 / 100;
|
|
int eg = get_option_value_int(egOpt) * 256 / 100;
|
|
|
|
return apply_weight(make_score(mg, eg), internalWeight);
|
|
}
|
|
|
|
|
|
// init_safety() initizes the king safety evaluation, based on UCI
|
|
// parameters. It is called from read_weights().
|
|
|
|
void init_safety() {
|
|
|
|
const Value MaxSlope = Value(30);
|
|
const Value Peak = Value(1280);
|
|
Value t[100];
|
|
|
|
// First setup the base table
|
|
for (int i = 0; i < 100; i++)
|
|
{
|
|
t[i] = Value(int(0.4 * i * i));
|
|
|
|
if (i > 0)
|
|
t[i] = Min(t[i], t[i - 1] + MaxSlope);
|
|
|
|
t[i] = Min(t[i], Peak);
|
|
}
|
|
|
|
// Then apply the weights and get the final KingDangerTable[] array
|
|
for (Color c = WHITE; c <= BLACK; c++)
|
|
for (int i = 0; i < 100; i++)
|
|
KingDangerTable[c][i] = apply_weight(make_score(t[i], 0), Weights[KingDangerUs + c]);
|
|
}
|
|
}
|