1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-30 08:43:09 +00:00
BadFish/src/tt.cpp
mstembera 90eca83e7f Simplify away a useless TTEntry::read()
Not needed when we don hit an entry.

closes https://github.com/official-stockfish/Stockfish/pull/5416

No functional change
2024-07-01 19:50:32 +02:00

249 lines
8.5 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "tt.h"
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include "memory.h"
#include "misc.h"
#include "syzygy/tbprobe.h"
#include "thread.h"
namespace Stockfish {
// TTEntry struct is the 10 bytes transposition table entry, defined as below:
//
// key 16 bit
// depth 8 bit
// generation 5 bit
// pv node 1 bit
// bound type 2 bit
// move 16 bit
// value 16 bit
// evaluation 16 bit
//
// These fields are in the same order as accessed by TT::probe(), since memory is fastest sequentially.
// Equally, the store order in save() matches this order.
struct TTEntry {
// Convert internal bitfields to external types
TTData read() const {
return TTData{Move(move16), Value(value16),
Value(eval16), Depth(depth8 + DEPTH_ENTRY_OFFSET),
Bound(genBound8 & 0x3), bool(genBound8 & 0x4)};
}
bool is_occupied() const;
void save(Key k, Value v, bool pv, Bound b, Depth d, Move m, Value ev, uint8_t generation8);
// The returned age is a multiple of TranspositionTable::GENERATION_DELTA
uint8_t relative_age(const uint8_t generation8) const;
private:
friend class TranspositionTable;
uint16_t key16;
uint8_t depth8;
uint8_t genBound8;
Move move16;
int16_t value16;
int16_t eval16;
};
// `genBound8` is where most of the details are. We use the following constants to manipulate 5 leading generation bits
// and 3 trailing miscellaneous bits.
// These bits are reserved for other things.
static constexpr unsigned GENERATION_BITS = 3;
// increment for generation field
static constexpr int GENERATION_DELTA = (1 << GENERATION_BITS);
// cycle length
static constexpr int GENERATION_CYCLE = 255 + GENERATION_DELTA;
// mask to pull out generation number
static constexpr int GENERATION_MASK = (0xFF << GENERATION_BITS) & 0xFF;
// DEPTH_ENTRY_OFFSET exists because 1) we use `bool(depth8)` as the occupancy check, but
// 2) we need to store negative depths for QS. (`depth8` is the only field with "spare bits":
// we sacrifice the ability to store depths greater than 1<<8 less the offset, as asserted in `save`.)
bool TTEntry::is_occupied() const { return bool(depth8); }
// Populates the TTEntry with a new node's data, possibly
// overwriting an old position. The update is not atomic and can be racy.
void TTEntry::save(
Key k, Value v, bool pv, Bound b, Depth d, Move m, Value ev, uint8_t generation8) {
// Preserve the old ttmove if we don't have a new one
if (m || uint16_t(k) != key16)
move16 = m;
// Overwrite less valuable entries (cheapest checks first)
if (b == BOUND_EXACT || uint16_t(k) != key16 || d - DEPTH_ENTRY_OFFSET + 2 * pv > depth8 - 4
|| relative_age(generation8))
{
assert(d > DEPTH_ENTRY_OFFSET);
assert(d < 256 + DEPTH_ENTRY_OFFSET);
key16 = uint16_t(k);
depth8 = uint8_t(d - DEPTH_ENTRY_OFFSET);
genBound8 = uint8_t(generation8 | uint8_t(pv) << 2 | b);
value16 = int16_t(v);
eval16 = int16_t(ev);
}
}
uint8_t TTEntry::relative_age(const uint8_t generation8) const {
// Due to our packed storage format for generation and its cyclic
// nature we add GENERATION_CYCLE (256 is the modulus, plus what
// is needed to keep the unrelated lowest n bits from affecting
// the result) to calculate the entry age correctly even after
// generation8 overflows into the next cycle.
return (GENERATION_CYCLE + generation8 - genBound8) & GENERATION_MASK;
}
// TTWriter is but a very thin wrapper around the pointer
TTWriter::TTWriter(TTEntry* tte) :
entry(tte) {}
void TTWriter::write(
Key k, Value v, bool pv, Bound b, Depth d, Move m, Value ev, uint8_t generation8) {
entry->save(k, v, pv, b, d, m, ev, generation8);
}
// A TranspositionTable is an array of Cluster, of size clusterCount. Each cluster consists of ClusterSize number
// of TTEntry. Each non-empty TTEntry contains information on exactly one position. The size of a Cluster should
// divide the size of a cache line for best performance, as the cacheline is prefetched when possible.
static constexpr int ClusterSize = 3;
struct Cluster {
TTEntry entry[ClusterSize];
char padding[2]; // Pad to 32 bytes
};
static_assert(sizeof(Cluster) == 32, "Suboptimal Cluster size");
// Sets the size of the transposition table,
// measured in megabytes. Transposition table consists
// of clusters and each cluster consists of ClusterSize number of TTEntry.
void TranspositionTable::resize(size_t mbSize, ThreadPool& threads) {
aligned_large_pages_free(table);
clusterCount = mbSize * 1024 * 1024 / sizeof(Cluster);
table = static_cast<Cluster*>(aligned_large_pages_alloc(clusterCount * sizeof(Cluster)));
if (!table)
{
std::cerr << "Failed to allocate " << mbSize << "MB for transposition table." << std::endl;
exit(EXIT_FAILURE);
}
clear(threads);
}
// Initializes the entire transposition table to zero,
// in a multi-threaded way.
void TranspositionTable::clear(ThreadPool& threads) {
generation8 = 0;
const size_t threadCount = threads.num_threads();
for (size_t i = 0; i < threadCount; ++i)
{
threads.run_on_thread(i, [this, i, threadCount]() {
// Each thread will zero its part of the hash table
const size_t stride = clusterCount / threadCount;
const size_t start = stride * i;
const size_t len = i + 1 != threadCount ? stride : clusterCount - start;
std::memset(&table[start], 0, len * sizeof(Cluster));
});
}
for (size_t i = 0; i < threadCount; ++i)
threads.wait_on_thread(i);
}
// Returns an approximation of the hashtable
// occupation during a search. The hash is x permill full, as per UCI protocol.
// Only counts entries which match the current generation.
int TranspositionTable::hashfull() const {
int cnt = 0;
for (int i = 0; i < 1000; ++i)
for (int j = 0; j < ClusterSize; ++j)
cnt += table[i].entry[j].is_occupied()
&& (table[i].entry[j].genBound8 & GENERATION_MASK) == generation8;
return cnt / ClusterSize;
}
void TranspositionTable::new_search() {
// increment by delta to keep lower bits as is
generation8 += GENERATION_DELTA;
}
uint8_t TranspositionTable::generation() const { return generation8; }
// Looks up the current position in the transposition
// table. It returns true if the position is found.
// Otherwise, it returns false and a pointer to an empty or least valuable TTEntry
// to be replaced later. The replace value of an entry is calculated as its depth
// minus 8 times its relative age. TTEntry t1 is considered more valuable than
// TTEntry t2 if its replace value is greater than that of t2.
std::tuple<bool, TTData, TTWriter> TranspositionTable::probe(const Key key) const {
TTEntry* const tte = first_entry(key);
const uint16_t key16 = uint16_t(key); // Use the low 16 bits as key inside the cluster
for (int i = 0; i < ClusterSize; ++i)
if (tte[i].key16 == key16)
// This gap is the main place for read races.
// After `read()` completes that copy is final, but may be self-inconsistent.
return {tte[i].is_occupied(), tte[i].read(), TTWriter(&tte[i])};
// Find an entry to be replaced according to the replacement strategy
TTEntry* replace = tte;
for (int i = 1; i < ClusterSize; ++i)
if (replace->depth8 - replace->relative_age(generation8) * 2
> tte[i].depth8 - tte[i].relative_age(generation8) * 2)
replace = &tte[i];
return {false, TTData(), TTWriter(replace)};
}
TTEntry* TranspositionTable::first_entry(const Key key) const {
return &table[mul_hi64(key, clusterCount)].entry[0];
}
} // namespace Stockfish