1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-30 16:53:09 +00:00
BadFish/src/position.h
Disservin a107910951 Refactor global variables
This aims to remove some of the annoying global structure which Stockfish has.

Overall there is no major elo regression to be expected.

Non regression SMP STC (paused, early version):
https://tests.stockfishchess.org/tests/view/65983d7979aa8af82b9608f1
LLR: 0.23 (-2.94,2.94) <-1.75,0.25>
Total: 76232 W: 19035 L: 19096 D: 38101
Ptnml(0-2): 92, 8735, 20515, 8690, 84

Non regression STC (early version):
https://tests.stockfishchess.org/tests/view/6595b3a479aa8af82b95da7f
LLR: 2.93 (-2.94,2.94) <-1.75,0.25>
Total: 185344 W: 47027 L: 46972 D: 91345
Ptnml(0-2): 571, 21285, 48943, 21264, 609

Non regression SMP STC:
https://tests.stockfishchess.org/tests/view/65a0715c79aa8af82b96b7e4
LLR: 2.94 (-2.94,2.94) <-1.75,0.25>
Total: 142936 W: 35761 L: 35662 D: 71513
Ptnml(0-2): 209, 16400, 38135, 16531, 193

These global structures/variables add hidden dependencies and allow data
to be mutable from where it shouldn't it be (i.e. options). They also
prevent Stockfish from internal selfplay, which would be a nice thing to
be able to do, i.e. instantiate two Stockfish instances and let them
play against each other. It will also allow us to make Stockfish a
library, which can be easier used on other platforms.

For consistency with the old search code, `thisThread` has been kept,
even though it is not strictly necessary anymore. This the first major
refactor of this kind (in recent time), and future changes are required,
to achieve the previously described goals. This includes cleaning up the
dependencies, transforming the network to be self contained and coming
up with a plan to deal with proper tablebase memory management (see
comments for more information on this).

The removal of these global structures has been discussed in parts with
Vondele and Sopel.

closes https://github.com/official-stockfish/Stockfish/pull/4968

No functional change
2024-01-13 19:40:53 +01:00

366 lines
12 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef POSITION_H_INCLUDED
#define POSITION_H_INCLUDED
#include <cassert>
#include <deque>
#include <iosfwd>
#include <memory>
#include <string>
#include "bitboard.h"
#include "nnue/nnue_accumulator.h"
#include "nnue/nnue_architecture.h"
#include "types.h"
namespace Stockfish {
class TranspositionTable;
// StateInfo struct stores information needed to restore a Position object to
// its previous state when we retract a move. Whenever a move is made on the
// board (by calling Position::do_move), a StateInfo object must be passed.
struct StateInfo {
// Copied when making a move
Key materialKey;
Key pawnKey;
Value nonPawnMaterial[COLOR_NB];
int castlingRights;
int rule50;
int pliesFromNull;
Square epSquare;
// Not copied when making a move (will be recomputed anyhow)
Key key;
Bitboard checkersBB;
StateInfo* previous;
Bitboard blockersForKing[COLOR_NB];
Bitboard pinners[COLOR_NB];
Bitboard checkSquares[PIECE_TYPE_NB];
Piece capturedPiece;
int repetition;
// Used by NNUE
Eval::NNUE::Accumulator<Eval::NNUE::TransformedFeatureDimensionsBig> accumulatorBig;
Eval::NNUE::Accumulator<Eval::NNUE::TransformedFeatureDimensionsSmall> accumulatorSmall;
DirtyPiece dirtyPiece;
};
// A list to keep track of the position states along the setup moves (from the
// start position to the position just before the search starts). Needed by
// 'draw by repetition' detection. Use a std::deque because pointers to
// elements are not invalidated upon list resizing.
using StateListPtr = std::unique_ptr<std::deque<StateInfo>>;
// Position class stores information regarding the board representation as
// pieces, side to move, hash keys, castling info, etc. Important methods are
// do_move() and undo_move(), used by the search to update node info when
// traversing the search tree.
class Position {
public:
static void init();
Position() = default;
Position(const Position&) = delete;
Position& operator=(const Position&) = delete;
// FEN string input/output
Position& set(const std::string& fenStr, bool isChess960, StateInfo* si);
Position& set(const std::string& code, Color c, StateInfo* si);
std::string fen() const;
// Position representation
Bitboard pieces(PieceType pt = ALL_PIECES) const;
template<typename... PieceTypes>
Bitboard pieces(PieceType pt, PieceTypes... pts) const;
Bitboard pieces(Color c) const;
template<typename... PieceTypes>
Bitboard pieces(Color c, PieceTypes... pts) const;
Piece piece_on(Square s) const;
Square ep_square() const;
bool empty(Square s) const;
template<PieceType Pt>
int count(Color c) const;
template<PieceType Pt>
int count() const;
template<PieceType Pt>
Square square(Color c) const;
// Castling
CastlingRights castling_rights(Color c) const;
bool can_castle(CastlingRights cr) const;
bool castling_impeded(CastlingRights cr) const;
Square castling_rook_square(CastlingRights cr) const;
// Checking
Bitboard checkers() const;
Bitboard blockers_for_king(Color c) const;
Bitboard check_squares(PieceType pt) const;
Bitboard pinners(Color c) const;
// Attacks to/from a given square
Bitboard attackers_to(Square s) const;
Bitboard attackers_to(Square s, Bitboard occupied) const;
void update_slider_blockers(Color c) const;
template<PieceType Pt>
Bitboard attacks_by(Color c) const;
// Properties of moves
bool legal(Move m) const;
bool pseudo_legal(const Move m) const;
bool capture(Move m) const;
bool capture_stage(Move m) const;
bool gives_check(Move m) const;
Piece moved_piece(Move m) const;
Piece captured_piece() const;
// Doing and undoing moves
void do_move(Move m, StateInfo& newSt);
void do_move(Move m, StateInfo& newSt, bool givesCheck);
void undo_move(Move m);
void do_null_move(StateInfo& newSt, TranspositionTable& tt);
void undo_null_move();
// Static Exchange Evaluation
bool see_ge(Move m, int threshold = 0) const;
// Accessing hash keys
Key key() const;
Key key_after(Move m) const;
Key material_key() const;
Key pawn_key() const;
// Other properties of the position
Color side_to_move() const;
int game_ply() const;
bool is_chess960() const;
bool is_draw(int ply) const;
bool has_game_cycle(int ply) const;
bool has_repeated() const;
int rule50_count() const;
Value non_pawn_material(Color c) const;
Value non_pawn_material() const;
// Position consistency check, for debugging
bool pos_is_ok() const;
void flip();
// Used by NNUE
StateInfo* state() const;
void put_piece(Piece pc, Square s);
void remove_piece(Square s);
private:
// Initialization helpers (used while setting up a position)
void set_castling_right(Color c, Square rfrom);
void set_state() const;
void set_check_info() const;
// Other helpers
void move_piece(Square from, Square to);
template<bool Do>
void do_castling(Color us, Square from, Square& to, Square& rfrom, Square& rto);
template<bool AfterMove>
Key adjust_key50(Key k) const;
// Data members
Piece board[SQUARE_NB];
Bitboard byTypeBB[PIECE_TYPE_NB];
Bitboard byColorBB[COLOR_NB];
int pieceCount[PIECE_NB];
int castlingRightsMask[SQUARE_NB];
Square castlingRookSquare[CASTLING_RIGHT_NB];
Bitboard castlingPath[CASTLING_RIGHT_NB];
StateInfo* st;
int gamePly;
Color sideToMove;
bool chess960;
};
std::ostream& operator<<(std::ostream& os, const Position& pos);
inline Color Position::side_to_move() const { return sideToMove; }
inline Piece Position::piece_on(Square s) const {
assert(is_ok(s));
return board[s];
}
inline bool Position::empty(Square s) const { return piece_on(s) == NO_PIECE; }
inline Piece Position::moved_piece(Move m) const { return piece_on(m.from_sq()); }
inline Bitboard Position::pieces(PieceType pt) const { return byTypeBB[pt]; }
template<typename... PieceTypes>
inline Bitboard Position::pieces(PieceType pt, PieceTypes... pts) const {
return pieces(pt) | pieces(pts...);
}
inline Bitboard Position::pieces(Color c) const { return byColorBB[c]; }
template<typename... PieceTypes>
inline Bitboard Position::pieces(Color c, PieceTypes... pts) const {
return pieces(c) & pieces(pts...);
}
template<PieceType Pt>
inline int Position::count(Color c) const {
return pieceCount[make_piece(c, Pt)];
}
template<PieceType Pt>
inline int Position::count() const {
return count<Pt>(WHITE) + count<Pt>(BLACK);
}
template<PieceType Pt>
inline Square Position::square(Color c) const {
assert(count<Pt>(c) == 1);
return lsb(pieces(c, Pt));
}
inline Square Position::ep_square() const { return st->epSquare; }
inline bool Position::can_castle(CastlingRights cr) const { return st->castlingRights & cr; }
inline CastlingRights Position::castling_rights(Color c) const {
return c & CastlingRights(st->castlingRights);
}
inline bool Position::castling_impeded(CastlingRights cr) const {
assert(cr == WHITE_OO || cr == WHITE_OOO || cr == BLACK_OO || cr == BLACK_OOO);
return pieces() & castlingPath[cr];
}
inline Square Position::castling_rook_square(CastlingRights cr) const {
assert(cr == WHITE_OO || cr == WHITE_OOO || cr == BLACK_OO || cr == BLACK_OOO);
return castlingRookSquare[cr];
}
inline Bitboard Position::attackers_to(Square s) const { return attackers_to(s, pieces()); }
template<PieceType Pt>
inline Bitboard Position::attacks_by(Color c) const {
if constexpr (Pt == PAWN)
return c == WHITE ? pawn_attacks_bb<WHITE>(pieces(WHITE, PAWN))
: pawn_attacks_bb<BLACK>(pieces(BLACK, PAWN));
else
{
Bitboard threats = 0;
Bitboard attackers = pieces(c, Pt);
while (attackers)
threats |= attacks_bb<Pt>(pop_lsb(attackers), pieces());
return threats;
}
}
inline Bitboard Position::checkers() const { return st->checkersBB; }
inline Bitboard Position::blockers_for_king(Color c) const { return st->blockersForKing[c]; }
inline Bitboard Position::pinners(Color c) const { return st->pinners[c]; }
inline Bitboard Position::check_squares(PieceType pt) const { return st->checkSquares[pt]; }
inline Key Position::key() const { return adjust_key50<false>(st->key); }
template<bool AfterMove>
inline Key Position::adjust_key50(Key k) const {
return st->rule50 < 14 - AfterMove ? k : k ^ make_key((st->rule50 - (14 - AfterMove)) / 8);
}
inline Key Position::pawn_key() const { return st->pawnKey; }
inline Key Position::material_key() const { return st->materialKey; }
inline Value Position::non_pawn_material(Color c) const { return st->nonPawnMaterial[c]; }
inline Value Position::non_pawn_material() const {
return non_pawn_material(WHITE) + non_pawn_material(BLACK);
}
inline int Position::game_ply() const { return gamePly; }
inline int Position::rule50_count() const { return st->rule50; }
inline bool Position::is_chess960() const { return chess960; }
inline bool Position::capture(Move m) const {
assert(m.is_ok());
return (!empty(m.to_sq()) && m.type_of() != CASTLING) || m.type_of() == EN_PASSANT;
}
// Returns true if a move is generated from the capture stage, having also
// queen promotions covered, i.e. consistency with the capture stage move generation
// is needed to avoid the generation of duplicate moves.
inline bool Position::capture_stage(Move m) const {
assert(m.is_ok());
return capture(m) || m.promotion_type() == QUEEN;
}
inline Piece Position::captured_piece() const { return st->capturedPiece; }
inline void Position::put_piece(Piece pc, Square s) {
board[s] = pc;
byTypeBB[ALL_PIECES] |= byTypeBB[type_of(pc)] |= s;
byColorBB[color_of(pc)] |= s;
pieceCount[pc]++;
pieceCount[make_piece(color_of(pc), ALL_PIECES)]++;
}
inline void Position::remove_piece(Square s) {
Piece pc = board[s];
byTypeBB[ALL_PIECES] ^= s;
byTypeBB[type_of(pc)] ^= s;
byColorBB[color_of(pc)] ^= s;
board[s] = NO_PIECE;
pieceCount[pc]--;
pieceCount[make_piece(color_of(pc), ALL_PIECES)]--;
}
inline void Position::move_piece(Square from, Square to) {
Piece pc = board[from];
Bitboard fromTo = from | to;
byTypeBB[ALL_PIECES] ^= fromTo;
byTypeBB[type_of(pc)] ^= fromTo;
byColorBB[color_of(pc)] ^= fromTo;
board[from] = NO_PIECE;
board[to] = pc;
}
inline void Position::do_move(Move m, StateInfo& newSt) { do_move(m, newSt, gives_check(m)); }
inline StateInfo* Position::state() const { return st; }
} // namespace Stockfish
#endif // #ifndef POSITION_H_INCLUDED