1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-30 08:43:09 +00:00
BadFish/src/search.cpp
Michael Chaly f5df517145 Simplify Pv nodes related logic in LMR
Instead of having 2 separate conditions for Pv nodes reductions we can actually write them together. Despite it's not being strictly logically the same bench actually doesn't change up to depth 20, so them interacting is really rare and thus it's just a removal of extra PvNode check most of the time.

passed STC:
https://tests.stockfishchess.org/tests/view/618ce27cd7a085ad008ef4e9
LLR: 2.94 (-2.94,2.94) <-2.25,0.25>
Total: 37488 W: 9424 L: 9279 D: 18785
Ptnml(0-2): 90, 3903, 10634, 4006, 111

passed LTC:
https://tests.stockfishchess.org/tests/view/618d2585d7a085ad008ef527
LLR: 2.95 (-2.94,2.94) <-2.25,0.25>
Total: 49968 W: 12449 L: 12331 D: 25188
Ptnml(0-2): 27, 4745, 15309, 4889, 14

closes https://github.com/official-stockfish/Stockfish/pull/3792

Bench: 6339548
2021-11-15 18:20:10 +01:00

1977 lines
71 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstring> // For std::memset
#include <iostream>
#include <sstream>
#include "evaluate.h"
#include "misc.h"
#include "movegen.h"
#include "movepick.h"
#include "position.h"
#include "search.h"
#include "thread.h"
#include "timeman.h"
#include "tt.h"
#include "uci.h"
#include "syzygy/tbprobe.h"
namespace Stockfish {
namespace Search {
LimitsType Limits;
}
namespace Tablebases {
int Cardinality;
bool RootInTB;
bool UseRule50;
Depth ProbeDepth;
}
namespace TB = Tablebases;
using std::string;
using Eval::evaluate;
using namespace Search;
namespace {
// Different node types, used as a template parameter
enum NodeType { NonPV, PV, Root };
// Futility margin
Value futility_margin(Depth d, bool improving) {
return Value(214 * (d - improving));
}
// Reductions lookup table, initialized at startup
int Reductions[MAX_MOVES]; // [depth or moveNumber]
Depth reduction(bool i, Depth d, int mn, bool rangeReduction) {
int r = Reductions[d] * Reductions[mn];
return (r + 534) / 1024 + (!i && r > 904) + rangeReduction;
}
constexpr int futility_move_count(bool improving, Depth depth) {
return (3 + depth * depth) / (2 - improving);
}
// History and stats update bonus, based on depth
int stat_bonus(Depth d) {
return std::min((6 * d + 229) * d - 215 , 2000);
}
// Add a small random component to draw evaluations to avoid 3-fold blindness
Value value_draw(Thread* thisThread) {
return VALUE_DRAW + Value(2 * (thisThread->nodes & 1) - 1);
}
// Check if the current thread is in a search explosion
ExplosionState search_explosion(Thread* thisThread) {
uint64_t nodesNow = thisThread->nodes;
bool explosive = thisThread->doubleExtensionAverage[WHITE].is_greater(2, 100)
|| thisThread->doubleExtensionAverage[BLACK].is_greater(2, 100);
if (explosive)
thisThread->nodesLastExplosive = nodesNow;
else
thisThread->nodesLastNormal = nodesNow;
if ( explosive
&& thisThread->state == EXPLOSION_NONE
&& nodesNow - thisThread->nodesLastNormal > 6000000)
thisThread->state = MUST_CALM_DOWN;
if ( thisThread->state == MUST_CALM_DOWN
&& nodesNow - thisThread->nodesLastExplosive > 6000000)
thisThread->state = EXPLOSION_NONE;
return thisThread->state;
}
// Skill structure is used to implement strength limit. If we have an uci_elo then
// we convert it to a suitable fractional skill level using anchoring to CCRL Elo
// (goldfish 1.13 = 2000) and a fit through Ordo derived Elo for match (TC 60+0.6)
// results spanning a wide range of k values.
struct Skill {
Skill(int skill_level, int uci_elo) {
if (uci_elo)
level = std::clamp(std::pow((uci_elo - 1346.6) / 143.4, 1 / 0.806), 0.0, 20.0);
else
level = double(skill_level);
}
bool enabled() const { return level < 20.0; }
bool time_to_pick(Depth depth) const { return depth == 1 + int(level); }
Move pick_best(size_t multiPV);
double level;
Move best = MOVE_NONE;
};
template <NodeType nodeType>
Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode);
template <NodeType nodeType>
Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth = 0);
Value value_to_tt(Value v, int ply);
Value value_from_tt(Value v, int ply, int r50c);
void update_pv(Move* pv, Move move, Move* childPv);
void update_continuation_histories(Stack* ss, Piece pc, Square to, int bonus);
void update_quiet_stats(const Position& pos, Stack* ss, Move move, int bonus, int depth);
void update_all_stats(const Position& pos, Stack* ss, Move bestMove, Value bestValue, Value beta, Square prevSq,
Move* quietsSearched, int quietCount, Move* capturesSearched, int captureCount, Depth depth);
// perft() is our utility to verify move generation. All the leaf nodes up
// to the given depth are generated and counted, and the sum is returned.
template<bool Root>
uint64_t perft(Position& pos, Depth depth) {
StateInfo st;
ASSERT_ALIGNED(&st, Eval::NNUE::CacheLineSize);
uint64_t cnt, nodes = 0;
const bool leaf = (depth == 2);
for (const auto& m : MoveList<LEGAL>(pos))
{
if (Root && depth <= 1)
cnt = 1, nodes++;
else
{
pos.do_move(m, st);
cnt = leaf ? MoveList<LEGAL>(pos).size() : perft<false>(pos, depth - 1);
nodes += cnt;
pos.undo_move(m);
}
if (Root)
sync_cout << UCI::move(m, pos.is_chess960()) << ": " << cnt << sync_endl;
}
return nodes;
}
} // namespace
/// Search::init() is called at startup to initialize various lookup tables
void Search::init() {
for (int i = 1; i < MAX_MOVES; ++i)
Reductions[i] = int((21.9 + std::log(Threads.size()) / 2) * std::log(i));
}
/// Search::clear() resets search state to its initial value
void Search::clear() {
Threads.main()->wait_for_search_finished();
Time.availableNodes = 0;
TT.clear();
Threads.clear();
Tablebases::init(Options["SyzygyPath"]); // Free mapped files
}
/// MainThread::search() is started when the program receives the UCI 'go'
/// command. It searches from the root position and outputs the "bestmove".
void MainThread::search() {
if (Limits.perft)
{
nodes = perft<true>(rootPos, Limits.perft);
sync_cout << "\nNodes searched: " << nodes << "\n" << sync_endl;
return;
}
Color us = rootPos.side_to_move();
Time.init(Limits, us, rootPos.game_ply());
TT.new_search();
Eval::NNUE::verify();
if (rootMoves.empty())
{
rootMoves.emplace_back(MOVE_NONE);
sync_cout << "info depth 0 score "
<< UCI::value(rootPos.checkers() ? -VALUE_MATE : VALUE_DRAW)
<< sync_endl;
}
else
{
Threads.start_searching(); // start non-main threads
Thread::search(); // main thread start searching
}
// When we reach the maximum depth, we can arrive here without a raise of
// Threads.stop. However, if we are pondering or in an infinite search,
// the UCI protocol states that we shouldn't print the best move before the
// GUI sends a "stop" or "ponderhit" command. We therefore simply wait here
// until the GUI sends one of those commands.
while (!Threads.stop && (ponder || Limits.infinite))
{} // Busy wait for a stop or a ponder reset
// Stop the threads if not already stopped (also raise the stop if
// "ponderhit" just reset Threads.ponder).
Threads.stop = true;
// Wait until all threads have finished
Threads.wait_for_search_finished();
// When playing in 'nodes as time' mode, subtract the searched nodes from
// the available ones before exiting.
if (Limits.npmsec)
Time.availableNodes += Limits.inc[us] - Threads.nodes_searched();
Thread* bestThread = this;
Skill skill = Skill(Options["Skill Level"], Options["UCI_LimitStrength"] ? int(Options["UCI_Elo"]) : 0);
if ( int(Options["MultiPV"]) == 1
&& !Limits.depth
&& !skill.enabled()
&& rootMoves[0].pv[0] != MOVE_NONE)
bestThread = Threads.get_best_thread();
bestPreviousScore = bestThread->rootMoves[0].score;
// Send again PV info if we have a new best thread
if (bestThread != this)
sync_cout << UCI::pv(bestThread->rootPos, bestThread->completedDepth, -VALUE_INFINITE, VALUE_INFINITE) << sync_endl;
sync_cout << "bestmove " << UCI::move(bestThread->rootMoves[0].pv[0], rootPos.is_chess960());
if (bestThread->rootMoves[0].pv.size() > 1 || bestThread->rootMoves[0].extract_ponder_from_tt(rootPos))
std::cout << " ponder " << UCI::move(bestThread->rootMoves[0].pv[1], rootPos.is_chess960());
std::cout << sync_endl;
}
/// Thread::search() is the main iterative deepening loop. It calls search()
/// repeatedly with increasing depth until the allocated thinking time has been
/// consumed, the user stops the search, or the maximum search depth is reached.
void Thread::search() {
// To allow access to (ss-7) up to (ss+2), the stack must be oversized.
// The former is needed to allow update_continuation_histories(ss-1, ...),
// which accesses its argument at ss-6, also near the root.
// The latter is needed for statScore and killer initialization.
Stack stack[MAX_PLY+10], *ss = stack+7;
Move pv[MAX_PLY+1];
Value alpha, beta, delta;
Move lastBestMove = MOVE_NONE;
Depth lastBestMoveDepth = 0;
MainThread* mainThread = (this == Threads.main() ? Threads.main() : nullptr);
double timeReduction = 1, totBestMoveChanges = 0;
Color us = rootPos.side_to_move();
int iterIdx = 0;
std::memset(ss-7, 0, 10 * sizeof(Stack));
for (int i = 7; i > 0; i--)
(ss-i)->continuationHistory = &this->continuationHistory[0][0][NO_PIECE][0]; // Use as a sentinel
for (int i = 0; i <= MAX_PLY + 2; ++i)
(ss+i)->ply = i;
ss->pv = pv;
bestValue = delta = alpha = -VALUE_INFINITE;
beta = VALUE_INFINITE;
if (mainThread)
{
if (mainThread->bestPreviousScore == VALUE_INFINITE)
for (int i = 0; i < 4; ++i)
mainThread->iterValue[i] = VALUE_ZERO;
else
for (int i = 0; i < 4; ++i)
mainThread->iterValue[i] = mainThread->bestPreviousScore;
}
std::copy(&lowPlyHistory[2][0], &lowPlyHistory.back().back() + 1, &lowPlyHistory[0][0]);
std::fill(&lowPlyHistory[MAX_LPH - 2][0], &lowPlyHistory.back().back() + 1, 0);
size_t multiPV = size_t(Options["MultiPV"]);
Skill skill(Options["Skill Level"], Options["UCI_LimitStrength"] ? int(Options["UCI_Elo"]) : 0);
// When playing with strength handicap enable MultiPV search that we will
// use behind the scenes to retrieve a set of possible moves.
if (skill.enabled())
multiPV = std::max(multiPV, (size_t)4);
multiPV = std::min(multiPV, rootMoves.size());
doubleExtensionAverage[WHITE].set(0, 100); // initialize the running average at 0%
doubleExtensionAverage[BLACK].set(0, 100); // initialize the running average at 0%
nodesLastExplosive = nodes;
nodesLastNormal = nodes;
state = EXPLOSION_NONE;
trend = SCORE_ZERO;
int searchAgainCounter = 0;
// Iterative deepening loop until requested to stop or the target depth is reached
while ( ++rootDepth < MAX_PLY
&& !Threads.stop
&& !(Limits.depth && mainThread && rootDepth > Limits.depth))
{
// Age out PV variability metric
if (mainThread)
totBestMoveChanges /= 2;
// Save the last iteration's scores before first PV line is searched and
// all the move scores except the (new) PV are set to -VALUE_INFINITE.
for (RootMove& rm : rootMoves)
rm.previousScore = rm.score;
size_t pvFirst = 0;
pvLast = 0;
if (!Threads.increaseDepth)
searchAgainCounter++;
// MultiPV loop. We perform a full root search for each PV line
for (pvIdx = 0; pvIdx < multiPV && !Threads.stop; ++pvIdx)
{
if (pvIdx == pvLast)
{
pvFirst = pvLast;
for (pvLast++; pvLast < rootMoves.size(); pvLast++)
if (rootMoves[pvLast].tbRank != rootMoves[pvFirst].tbRank)
break;
}
// Reset UCI info selDepth for each depth and each PV line
selDepth = 0;
// Reset aspiration window starting size
if (rootDepth >= 4)
{
Value prev = rootMoves[pvIdx].averageScore;
delta = Value(17) + int(prev) * prev / 16384;
alpha = std::max(prev - delta,-VALUE_INFINITE);
beta = std::min(prev + delta, VALUE_INFINITE);
// Adjust trend based on root move's previousScore (dynamic contempt)
int tr = 113 * prev / (abs(prev) + 147);
trend = (us == WHITE ? make_score(tr, tr / 2)
: -make_score(tr, tr / 2));
}
// Start with a small aspiration window and, in the case of a fail
// high/low, re-search with a bigger window until we don't fail
// high/low anymore.
int failedHighCnt = 0;
while (true)
{
Depth adjustedDepth = std::max(1, rootDepth - failedHighCnt - searchAgainCounter);
bestValue = Stockfish::search<Root>(rootPos, ss, alpha, beta, adjustedDepth, false);
// Bring the best move to the front. It is critical that sorting
// is done with a stable algorithm because all the values but the
// first and eventually the new best one are set to -VALUE_INFINITE
// and we want to keep the same order for all the moves except the
// new PV that goes to the front. Note that in case of MultiPV
// search the already searched PV lines are preserved.
std::stable_sort(rootMoves.begin() + pvIdx, rootMoves.begin() + pvLast);
// If search has been stopped, we break immediately. Sorting is
// safe because RootMoves is still valid, although it refers to
// the previous iteration.
if (Threads.stop)
break;
// When failing high/low give some update (without cluttering
// the UI) before a re-search.
if ( mainThread
&& multiPV == 1
&& (bestValue <= alpha || bestValue >= beta)
&& Time.elapsed() > 3000)
sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl;
// In case of failing low/high increase aspiration window and
// re-search, otherwise exit the loop.
if (bestValue <= alpha)
{
beta = (alpha + beta) / 2;
alpha = std::max(bestValue - delta, -VALUE_INFINITE);
failedHighCnt = 0;
if (mainThread)
mainThread->stopOnPonderhit = false;
}
else if (bestValue >= beta)
{
beta = std::min(bestValue + delta, VALUE_INFINITE);
++failedHighCnt;
}
else
break;
delta += delta / 4 + 5;
assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE);
}
// Sort the PV lines searched so far and update the GUI
std::stable_sort(rootMoves.begin() + pvFirst, rootMoves.begin() + pvIdx + 1);
if ( mainThread
&& (Threads.stop || pvIdx + 1 == multiPV || Time.elapsed() > 3000))
sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl;
}
if (!Threads.stop)
completedDepth = rootDepth;
if (rootMoves[0].pv[0] != lastBestMove) {
lastBestMove = rootMoves[0].pv[0];
lastBestMoveDepth = rootDepth;
}
// Have we found a "mate in x"?
if ( Limits.mate
&& bestValue >= VALUE_MATE_IN_MAX_PLY
&& VALUE_MATE - bestValue <= 2 * Limits.mate)
Threads.stop = true;
if (!mainThread)
continue;
// If skill level is enabled and time is up, pick a sub-optimal best move
if (skill.enabled() && skill.time_to_pick(rootDepth))
skill.pick_best(multiPV);
// Do we have time for the next iteration? Can we stop searching now?
if ( Limits.use_time_management()
&& !Threads.stop
&& !mainThread->stopOnPonderhit)
{
double fallingEval = (318 + 6 * (mainThread->bestPreviousScore - bestValue)
+ 6 * (mainThread->iterValue[iterIdx] - bestValue)) / 825.0;
fallingEval = std::clamp(fallingEval, 0.5, 1.5);
// If the bestMove is stable over several iterations, reduce time accordingly
timeReduction = lastBestMoveDepth + 9 < completedDepth ? 1.92 : 0.95;
double reduction = (1.47 + mainThread->previousTimeReduction) / (2.32 * timeReduction);
// Use part of the gained time from a previous stable move for the current move
for (Thread* th : Threads)
{
totBestMoveChanges += th->bestMoveChanges;
th->bestMoveChanges = 0;
}
double bestMoveInstability = 1.073 + std::max(1.0, 2.25 - 9.9 / rootDepth)
* totBestMoveChanges / Threads.size();
double totalTime = Time.optimum() * fallingEval * reduction * bestMoveInstability;
// Cap used time in case of a single legal move for a better viewer experience in tournaments
// yielding correct scores and sufficiently fast moves.
if (rootMoves.size() == 1)
totalTime = std::min(500.0, totalTime);
// Stop the search if we have exceeded the totalTime
if (Time.elapsed() > totalTime)
{
// If we are allowed to ponder do not stop the search now but
// keep pondering until the GUI sends "ponderhit" or "stop".
if (mainThread->ponder)
mainThread->stopOnPonderhit = true;
else
Threads.stop = true;
}
else if ( Threads.increaseDepth
&& !mainThread->ponder
&& Time.elapsed() > totalTime * 0.58)
Threads.increaseDepth = false;
else
Threads.increaseDepth = true;
}
mainThread->iterValue[iterIdx] = bestValue;
iterIdx = (iterIdx + 1) & 3;
}
if (!mainThread)
return;
mainThread->previousTimeReduction = timeReduction;
// If skill level is enabled, swap best PV line with the sub-optimal one
if (skill.enabled())
std::swap(rootMoves[0], *std::find(rootMoves.begin(), rootMoves.end(),
skill.best ? skill.best : skill.pick_best(multiPV)));
}
namespace {
// search<>() is the main search function for both PV and non-PV nodes
template <NodeType nodeType>
Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode) {
Thread* thisThread = pos.this_thread();
// Step 0. Limit search explosion
if ( ss->ply > 10
&& search_explosion(thisThread) == MUST_CALM_DOWN
&& depth > (ss-1)->depth)
depth = (ss-1)->depth;
constexpr bool PvNode = nodeType != NonPV;
constexpr bool rootNode = nodeType == Root;
const Depth maxNextDepth = rootNode ? depth : depth + 1;
// Check if we have an upcoming move which draws by repetition, or
// if the opponent had an alternative move earlier to this position.
if ( !rootNode
&& pos.rule50_count() >= 3
&& alpha < VALUE_DRAW
&& pos.has_game_cycle(ss->ply))
{
alpha = value_draw(pos.this_thread());
if (alpha >= beta)
return alpha;
}
// Dive into quiescence search when the depth reaches zero
if (depth <= 0)
return qsearch<PvNode ? PV : NonPV>(pos, ss, alpha, beta);
assert(-VALUE_INFINITE <= alpha && alpha < beta && beta <= VALUE_INFINITE);
assert(PvNode || (alpha == beta - 1));
assert(0 < depth && depth < MAX_PLY);
assert(!(PvNode && cutNode));
Move pv[MAX_PLY+1], capturesSearched[32], quietsSearched[64];
StateInfo st;
ASSERT_ALIGNED(&st, Eval::NNUE::CacheLineSize);
TTEntry* tte;
Key posKey;
Move ttMove, move, excludedMove, bestMove;
Depth extension, newDepth;
Value bestValue, value, ttValue, eval, maxValue, probCutBeta;
bool givesCheck, improving, didLMR, priorCapture;
bool captureOrPromotion, doFullDepthSearch, moveCountPruning,
ttCapture, singularQuietLMR;
Piece movedPiece;
int moveCount, captureCount, quietCount, bestMoveCount, improvement;
// Step 1. Initialize node
ss->inCheck = pos.checkers();
priorCapture = pos.captured_piece();
Color us = pos.side_to_move();
moveCount = bestMoveCount = captureCount = quietCount = ss->moveCount = 0;
bestValue = -VALUE_INFINITE;
maxValue = VALUE_INFINITE;
// Check for the available remaining time
if (thisThread == Threads.main())
static_cast<MainThread*>(thisThread)->check_time();
// Used to send selDepth info to GUI (selDepth counts from 1, ply from 0)
if (PvNode && thisThread->selDepth < ss->ply + 1)
thisThread->selDepth = ss->ply + 1;
if (!rootNode)
{
// Step 2. Check for aborted search and immediate draw
if ( Threads.stop.load(std::memory_order_relaxed)
|| pos.is_draw(ss->ply)
|| ss->ply >= MAX_PLY)
return (ss->ply >= MAX_PLY && !ss->inCheck) ? evaluate(pos)
: value_draw(pos.this_thread());
// Step 3. Mate distance pruning. Even if we mate at the next move our score
// would be at best mate_in(ss->ply+1), but if alpha is already bigger because
// a shorter mate was found upward in the tree then there is no need to search
// because we will never beat the current alpha. Same logic but with reversed
// signs applies also in the opposite condition of being mated instead of giving
// mate. In this case return a fail-high score.
alpha = std::max(mated_in(ss->ply), alpha);
beta = std::min(mate_in(ss->ply+1), beta);
if (alpha >= beta)
return alpha;
}
else
thisThread->rootDelta = beta - alpha;
assert(0 <= ss->ply && ss->ply < MAX_PLY);
(ss+1)->ttPv = false;
(ss+1)->excludedMove = bestMove = MOVE_NONE;
(ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE;
ss->doubleExtensions = (ss-1)->doubleExtensions;
ss->depth = depth;
Square prevSq = to_sq((ss-1)->currentMove);
// Update the running average statistics for double extensions
thisThread->doubleExtensionAverage[us].update(ss->depth > (ss-1)->depth);
// Initialize statScore to zero for the grandchildren of the current position.
// So statScore is shared between all grandchildren and only the first grandchild
// starts with statScore = 0. Later grandchildren start with the last calculated
// statScore of the previous grandchild. This influences the reduction rules in
// LMR which are based on the statScore of parent position.
if (!rootNode)
(ss+2)->statScore = 0;
// Step 4. Transposition table lookup. We don't want the score of a partial
// search to overwrite a previous full search TT value, so we use a different
// position key in case of an excluded move.
excludedMove = ss->excludedMove;
posKey = excludedMove == MOVE_NONE ? pos.key() : pos.key() ^ make_key(excludedMove);
tte = TT.probe(posKey, ss->ttHit);
ttValue = ss->ttHit ? value_from_tt(tte->value(), ss->ply, pos.rule50_count()) : VALUE_NONE;
ttMove = rootNode ? thisThread->rootMoves[thisThread->pvIdx].pv[0]
: ss->ttHit ? tte->move() : MOVE_NONE;
ttCapture = ttMove && pos.capture_or_promotion(ttMove);
if (!excludedMove)
ss->ttPv = PvNode || (ss->ttHit && tte->is_pv());
// Update low ply history for previous move if we are near root and position is or has been in PV
if ( ss->ttPv
&& depth > 12
&& ss->ply - 1 < MAX_LPH
&& !priorCapture
&& is_ok((ss-1)->currentMove))
thisThread->lowPlyHistory[ss->ply - 1][from_to((ss-1)->currentMove)] << stat_bonus(depth - 5);
// At non-PV nodes we check for an early TT cutoff
if ( !PvNode
&& ss->ttHit
&& tte->depth() > depth - (thisThread->id() % 2 == 1)
&& ttValue != VALUE_NONE // Possible in case of TT access race
&& (ttValue >= beta ? (tte->bound() & BOUND_LOWER)
: (tte->bound() & BOUND_UPPER)))
{
// If ttMove is quiet, update move sorting heuristics on TT hit
if (ttMove)
{
if (ttValue >= beta)
{
// Bonus for a quiet ttMove that fails high
if (!ttCapture)
update_quiet_stats(pos, ss, ttMove, stat_bonus(depth), depth);
// Extra penalty for early quiet moves of the previous ply
if ((ss-1)->moveCount <= 2 && !priorCapture)
update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, -stat_bonus(depth + 1));
}
// Penalty for a quiet ttMove that fails low
else if (!ttCapture)
{
int penalty = -stat_bonus(depth);
thisThread->mainHistory[us][from_to(ttMove)] << penalty;
update_continuation_histories(ss, pos.moved_piece(ttMove), to_sq(ttMove), penalty);
}
}
// Partial workaround for the graph history interaction problem
// For high rule50 counts don't produce transposition table cutoffs.
if (pos.rule50_count() < 90)
return ttValue;
}
// Step 5. Tablebases probe
if (!rootNode && TB::Cardinality)
{
int piecesCount = pos.count<ALL_PIECES>();
if ( piecesCount <= TB::Cardinality
&& (piecesCount < TB::Cardinality || depth >= TB::ProbeDepth)
&& pos.rule50_count() == 0
&& !pos.can_castle(ANY_CASTLING))
{
TB::ProbeState err;
TB::WDLScore wdl = Tablebases::probe_wdl(pos, &err);
// Force check of time on the next occasion
if (thisThread == Threads.main())
static_cast<MainThread*>(thisThread)->callsCnt = 0;
if (err != TB::ProbeState::FAIL)
{
thisThread->tbHits.fetch_add(1, std::memory_order_relaxed);
int drawScore = TB::UseRule50 ? 1 : 0;
// use the range VALUE_MATE_IN_MAX_PLY to VALUE_TB_WIN_IN_MAX_PLY to score
value = wdl < -drawScore ? VALUE_MATED_IN_MAX_PLY + ss->ply + 1
: wdl > drawScore ? VALUE_MATE_IN_MAX_PLY - ss->ply - 1
: VALUE_DRAW + 2 * wdl * drawScore;
Bound b = wdl < -drawScore ? BOUND_UPPER
: wdl > drawScore ? BOUND_LOWER : BOUND_EXACT;
if ( b == BOUND_EXACT
|| (b == BOUND_LOWER ? value >= beta : value <= alpha))
{
tte->save(posKey, value_to_tt(value, ss->ply), ss->ttPv, b,
std::min(MAX_PLY - 1, depth + 6),
MOVE_NONE, VALUE_NONE);
return value;
}
if (PvNode)
{
if (b == BOUND_LOWER)
bestValue = value, alpha = std::max(alpha, bestValue);
else
maxValue = value;
}
}
}
}
CapturePieceToHistory& captureHistory = thisThread->captureHistory;
// Step 6. Static evaluation of the position
if (ss->inCheck)
{
// Skip early pruning when in check
ss->staticEval = eval = VALUE_NONE;
improving = false;
improvement = 0;
goto moves_loop;
}
else if (ss->ttHit)
{
// Never assume anything about values stored in TT
ss->staticEval = eval = tte->eval();
if (eval == VALUE_NONE)
ss->staticEval = eval = evaluate(pos);
// Randomize draw evaluation
if (eval == VALUE_DRAW)
eval = value_draw(thisThread);
// Can ttValue be used as a better position evaluation?
if ( ttValue != VALUE_NONE
&& (tte->bound() & (ttValue > eval ? BOUND_LOWER : BOUND_UPPER)))
eval = ttValue;
}
else
{
ss->staticEval = eval = evaluate(pos);
// Save static evaluation into transposition table
if (!excludedMove)
tte->save(posKey, VALUE_NONE, ss->ttPv, BOUND_NONE, DEPTH_NONE, MOVE_NONE, eval);
}
// Use static evaluation difference to improve quiet move ordering
if (is_ok((ss-1)->currentMove) && !(ss-1)->inCheck && !priorCapture)
{
int bonus = std::clamp(-depth * 4 * int((ss-1)->staticEval + ss->staticEval), -1000, 1000);
thisThread->mainHistory[~us][from_to((ss-1)->currentMove)] << bonus;
}
// Set up the improvement variable, which is the difference between the current
// static evaluation and the previous static evaluation at our turn (if we were
// in check at our previous move we look at the move prior to it). The improvement
// margin and the improving flag are used in various pruning heuristics.
improvement = (ss-2)->staticEval != VALUE_NONE ? ss->staticEval - (ss-2)->staticEval
: (ss-4)->staticEval != VALUE_NONE ? ss->staticEval - (ss-4)->staticEval
: 200;
improving = improvement > 0;
// Step 7. Futility pruning: child node (~50 Elo).
// The depth condition is important for mate finding.
if ( !PvNode
&& depth < 9
&& eval - futility_margin(depth, improving) >= beta
&& eval < 15000) // 50% larger than VALUE_KNOWN_WIN, but smaller than TB wins.
return eval;
// Step 8. Null move search with verification search (~40 Elo)
if ( !PvNode
&& (ss-1)->currentMove != MOVE_NULL
&& (ss-1)->statScore < 23767
&& eval >= beta
&& eval >= ss->staticEval
&& ss->staticEval >= beta - 20 * depth - improvement / 15 + 204
&& !excludedMove
&& pos.non_pawn_material(us)
&& (ss->ply >= thisThread->nmpMinPly || us != thisThread->nmpColor))
{
assert(eval - beta >= 0);
// Null move dynamic reduction based on depth and value
Depth R = std::min(int(eval - beta) / 205, 3) + depth / 3 + 4;
ss->currentMove = MOVE_NULL;
ss->continuationHistory = &thisThread->continuationHistory[0][0][NO_PIECE][0];
pos.do_null_move(st);
Value nullValue = -search<NonPV>(pos, ss+1, -beta, -beta+1, depth-R, !cutNode);
pos.undo_null_move();
if (nullValue >= beta)
{
// Do not return unproven mate or TB scores
if (nullValue >= VALUE_TB_WIN_IN_MAX_PLY)
nullValue = beta;
if (thisThread->nmpMinPly || (abs(beta) < VALUE_KNOWN_WIN && depth < 14))
return nullValue;
assert(!thisThread->nmpMinPly); // Recursive verification is not allowed
// Do verification search at high depths, with null move pruning disabled
// for us, until ply exceeds nmpMinPly.
thisThread->nmpMinPly = ss->ply + 3 * (depth-R) / 4;
thisThread->nmpColor = us;
Value v = search<NonPV>(pos, ss, beta-1, beta, depth-R, false);
thisThread->nmpMinPly = 0;
if (v >= beta)
return nullValue;
}
}
probCutBeta = beta + 209 - 44 * improving;
// Step 9. ProbCut (~4 Elo)
// If we have a good enough capture and a reduced search returns a value
// much above beta, we can (almost) safely prune the previous move.
if ( !PvNode
&& depth > 4
&& abs(beta) < VALUE_TB_WIN_IN_MAX_PLY
// if value from transposition table is lower than probCutBeta, don't attempt probCut
// there and in further interactions with transposition table cutoff depth is set to depth - 3
// because probCut search has depth set to depth - 4 but we also do a move before it
// so effective depth is equal to depth - 3
&& !( ss->ttHit
&& tte->depth() >= depth - 3
&& ttValue != VALUE_NONE
&& ttValue < probCutBeta))
{
assert(probCutBeta < VALUE_INFINITE);
MovePicker mp(pos, ttMove, probCutBeta - ss->staticEval, &captureHistory);
bool ttPv = ss->ttPv;
ss->ttPv = false;
while ((move = mp.next_move()) != MOVE_NONE)
if (move != excludedMove && pos.legal(move))
{
assert(pos.capture_or_promotion(move));
assert(depth >= 5);
captureOrPromotion = true;
ss->currentMove = move;
ss->continuationHistory = &thisThread->continuationHistory[ss->inCheck]
[captureOrPromotion]
[pos.moved_piece(move)]
[to_sq(move)];
pos.do_move(move, st);
// Perform a preliminary qsearch to verify that the move holds
value = -qsearch<NonPV>(pos, ss+1, -probCutBeta, -probCutBeta+1);
// If the qsearch held, perform the regular search
if (value >= probCutBeta)
value = -search<NonPV>(pos, ss+1, -probCutBeta, -probCutBeta+1, depth - 4, !cutNode);
pos.undo_move(move);
if (value >= probCutBeta)
{
// if transposition table doesn't have equal or more deep info write probCut data into it
if ( !(ss->ttHit
&& tte->depth() >= depth - 3
&& ttValue != VALUE_NONE))
tte->save(posKey, value_to_tt(value, ss->ply), ttPv,
BOUND_LOWER,
depth - 3, move, ss->staticEval);
return value;
}
}
ss->ttPv = ttPv;
}
// Step 10. If the position is not in TT, decrease depth by 2 or 1 depending on node type
if ( PvNode
&& depth >= 6
&& !ttMove)
depth -= 2;
if ( cutNode
&& depth >= 9
&& !ttMove)
depth--;
moves_loop: // When in check, search starts here
int rangeReduction = 0;
// Step 11. A small Probcut idea, when we are in check
probCutBeta = beta + 409;
if ( ss->inCheck
&& !PvNode
&& depth >= 4
&& ttCapture
&& (tte->bound() & BOUND_LOWER)
&& tte->depth() >= depth - 3
&& ttValue >= probCutBeta
&& abs(ttValue) <= VALUE_KNOWN_WIN
&& abs(beta) <= VALUE_KNOWN_WIN
)
return probCutBeta;
const PieceToHistory* contHist[] = { (ss-1)->continuationHistory, (ss-2)->continuationHistory,
nullptr , (ss-4)->continuationHistory,
nullptr , (ss-6)->continuationHistory };
Move countermove = thisThread->counterMoves[pos.piece_on(prevSq)][prevSq];
MovePicker mp(pos, ttMove, depth, &thisThread->mainHistory,
&thisThread->lowPlyHistory,
&captureHistory,
contHist,
countermove,
ss->killers,
ss->ply);
value = bestValue;
singularQuietLMR = moveCountPruning = false;
// Indicate PvNodes that will probably fail low if the node was searched
// at a depth equal or greater than the current depth, and the result of this search was a fail low.
bool likelyFailLow = PvNode
&& ttMove
&& (tte->bound() & BOUND_UPPER)
&& tte->depth() >= depth;
// Step 12. Loop through all pseudo-legal moves until no moves remain
// or a beta cutoff occurs.
while ((move = mp.next_move(moveCountPruning)) != MOVE_NONE)
{
assert(is_ok(move));
if (move == excludedMove)
continue;
// At root obey the "searchmoves" option and skip moves not listed in Root
// Move List. As a consequence any illegal move is also skipped. In MultiPV
// mode we also skip PV moves which have been already searched and those
// of lower "TB rank" if we are in a TB root position.
if (rootNode && !std::count(thisThread->rootMoves.begin() + thisThread->pvIdx,
thisThread->rootMoves.begin() + thisThread->pvLast, move))
continue;
// Check for legality
if (!rootNode && !pos.legal(move))
continue;
ss->moveCount = ++moveCount;
if (rootNode && thisThread == Threads.main() && Time.elapsed() > 3000)
sync_cout << "info depth " << depth
<< " currmove " << UCI::move(move, pos.is_chess960())
<< " currmovenumber " << moveCount + thisThread->pvIdx << sync_endl;
if (PvNode)
(ss+1)->pv = nullptr;
extension = 0;
captureOrPromotion = pos.capture_or_promotion(move);
movedPiece = pos.moved_piece(move);
givesCheck = pos.gives_check(move);
// Calculate new depth for this move
newDepth = depth - 1;
// Step 13. Pruning at shallow depth (~200 Elo). Depth conditions are important for mate finding.
if ( !rootNode
&& pos.non_pawn_material(us)
&& bestValue > VALUE_TB_LOSS_IN_MAX_PLY)
{
// Skip quiet moves if movecount exceeds our FutilityMoveCount threshold
moveCountPruning = moveCount >= futility_move_count(improving, depth);
// Reduced depth of the next LMR search
int lmrDepth = std::max(newDepth - reduction(improving, depth, moveCount, rangeReduction > 2), 0);
if ( captureOrPromotion
|| givesCheck)
{
// Capture history based pruning when the move doesn't give check
if ( !givesCheck
&& lmrDepth < 1
&& captureHistory[movedPiece][to_sq(move)][type_of(pos.piece_on(to_sq(move)))] < 0)
continue;
// SEE based pruning
if (!pos.see_ge(move, Value(-218) * depth)) // (~25 Elo)
continue;
}
else
{
// Continuation history based pruning (~20 Elo)
if (lmrDepth < 5
&& (*contHist[0])[movedPiece][to_sq(move)]
+ (*contHist[1])[movedPiece][to_sq(move)]
+ (*contHist[3])[movedPiece][to_sq(move)] < -3000 * depth + 3000)
continue;
// Futility pruning: parent node (~5 Elo)
if ( !ss->inCheck
&& lmrDepth < 8
&& ss->staticEval + 172 + 145 * lmrDepth <= alpha)
continue;
// Prune moves with negative SEE (~20 Elo)
if (!pos.see_ge(move, Value(-21 * lmrDepth * lmrDepth - 21 * lmrDepth)))
continue;
}
}
// Step 14. Extensions (~75 Elo)
// Singular extension search (~70 Elo). If all moves but one fail low on a
// search of (alpha-s, beta-s), and just one fails high on (alpha, beta),
// then that move is singular and should be extended. To verify this we do
// a reduced search on all the other moves but the ttMove and if the
// result is lower than ttValue minus a margin, then we will extend the ttMove.
if ( !rootNode
&& depth >= 7
&& move == ttMove
&& !excludedMove // Avoid recursive singular search
/* && ttValue != VALUE_NONE Already implicit in the next condition */
&& abs(ttValue) < VALUE_KNOWN_WIN
&& (tte->bound() & BOUND_LOWER)
&& tte->depth() >= depth - 3)
{
Value singularBeta = ttValue - 3 * depth;
Depth singularDepth = (depth - 1) / 2;
ss->excludedMove = move;
value = search<NonPV>(pos, ss, singularBeta - 1, singularBeta, singularDepth, cutNode);
ss->excludedMove = MOVE_NONE;
if (value < singularBeta)
{
extension = 1;
singularQuietLMR = !ttCapture;
// Avoid search explosion by limiting the number of double extensions
if ( !PvNode
&& value < singularBeta - 75
&& ss->doubleExtensions <= 6)
extension = 2;
}
// Multi-cut pruning
// Our ttMove is assumed to fail high, and now we failed high also on a reduced
// search without the ttMove. So we assume this expected Cut-node is not singular,
// that multiple moves fail high, and we can prune the whole subtree by returning
// a soft bound.
else if (singularBeta >= beta)
return singularBeta;
// If the eval of ttMove is greater than beta, we reduce it (negative extension)
else if (ttValue >= beta)
extension = -2;
}
// Capture extensions for PvNodes and cutNodes
else if ( (PvNode || cutNode)
&& captureOrPromotion
&& moveCount != 1)
extension = 1;
// Check extensions
else if ( givesCheck
&& depth > 6
&& abs(ss->staticEval) > 100)
extension = 1;
// Quiet ttMove extensions
else if ( PvNode
&& move == ttMove
&& move == ss->killers[0]
&& (*contHist[0])[movedPiece][to_sq(move)] >= 10000)
extension = 1;
// Add extension to new depth
newDepth += extension;
ss->doubleExtensions = (ss-1)->doubleExtensions + (extension == 2);
// Speculative prefetch as early as possible
prefetch(TT.first_entry(pos.key_after(move)));
// Update the current move (this must be done after singular extension search)
ss->currentMove = move;
ss->continuationHistory = &thisThread->continuationHistory[ss->inCheck]
[captureOrPromotion]
[movedPiece]
[to_sq(move)];
// Step 15. Make the move
pos.do_move(move, st, givesCheck);
// Step 16. Late moves reduction / extension (LMR, ~200 Elo)
// We use various heuristics for the sons of a node after the first son has
// been searched. In general we would like to reduce them, but there are many
// cases where we extend a son if it has good chances to be "interesting".
if ( depth >= 3
&& moveCount > 1 + 2 * rootNode
&& ( !ss->ttPv
|| !captureOrPromotion
|| (cutNode && (ss-1)->moveCount > 1)))
{
Depth r = reduction(improving, depth, moveCount, rangeReduction > 2);
// Decrease reduction at some PvNodes (~2 Elo)
if ( PvNode
&& bestMoveCount <= 3
&& beta - alpha >= thisThread->rootDelta / 4)
r--;
// Decrease reduction if position is or has been on the PV
// and node is not likely to fail low. (~3 Elo)
if ( ss->ttPv
&& !likelyFailLow)
r -= 2;
// Increase reduction at root and non-PV nodes when the best move does not change frequently
if ( (rootNode || !PvNode)
&& thisThread->bestMoveChanges <= 2)
r++;
// Decrease reduction if opponent's move count is high (~1 Elo)
if ((ss-1)->moveCount > 13)
r--;
// Decrease reduction if ttMove has been singularly extended (~1 Elo)
if (singularQuietLMR)
r--;
// Increase reduction for cut nodes (~3 Elo)
if (cutNode && move != ss->killers[0])
r += 2;
// Increase reduction if ttMove is a capture (~3 Elo)
if (ttCapture)
r++;
ss->statScore = thisThread->mainHistory[us][from_to(move)]
+ (*contHist[0])[movedPiece][to_sq(move)]
+ (*contHist[1])[movedPiece][to_sq(move)]
+ (*contHist[3])[movedPiece][to_sq(move)]
- 4923;
// Decrease/increase reduction for moves with a good/bad history (~30 Elo)
r -= ss->statScore / 14721;
// In general we want to cap the LMR depth search at newDepth. But if reductions
// are really negative and movecount is low, we allow this move to be searched
// deeper than the first move (this may lead to hidden double extensions).
int deeper = r >= -1 ? 0
: moveCount <= 5 ? 2
: PvNode && depth > 6 ? 1
: cutNode && moveCount <= 7 ? 1
: 0;
Depth d = std::clamp(newDepth - r, 1, newDepth + deeper);
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, d, true);
// Range reductions (~3 Elo)
if (ss->staticEval - value < 30 && depth > 7)
rangeReduction++;
// If the son is reduced and fails high it will be re-searched at full depth
doFullDepthSearch = value > alpha && d < newDepth;
didLMR = true;
}
else
{
doFullDepthSearch = !PvNode || moveCount > 1;
didLMR = false;
}
// Step 17. Full depth search when LMR is skipped or fails high
if (doFullDepthSearch)
{
value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode);
// If the move passed LMR update its stats
if (didLMR && !captureOrPromotion)
{
int bonus = value > alpha ? stat_bonus(newDepth)
: -stat_bonus(newDepth);
update_continuation_histories(ss, movedPiece, to_sq(move), bonus);
}
}
// For PV nodes only, do a full PV search on the first move or after a fail
// high (in the latter case search only if value < beta), otherwise let the
// parent node fail low with value <= alpha and try another move.
if (PvNode && (moveCount == 1 || (value > alpha && (rootNode || value < beta))))
{
(ss+1)->pv = pv;
(ss+1)->pv[0] = MOVE_NONE;
value = -search<PV>(pos, ss+1, -beta, -alpha,
std::min(maxNextDepth, newDepth), false);
}
// Step 18. Undo move
pos.undo_move(move);
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
// Step 19. Check for a new best move
// Finished searching the move. If a stop occurred, the return value of
// the search cannot be trusted, and we return immediately without
// updating best move, PV and TT.
if (Threads.stop.load(std::memory_order_relaxed))
return VALUE_ZERO;
if (rootNode)
{
RootMove& rm = *std::find(thisThread->rootMoves.begin(),
thisThread->rootMoves.end(), move);
rm.averageScore = rm.averageScore != -VALUE_INFINITE ? (2 * value + rm.averageScore) / 3 : value;
// PV move or new best move?
if (moveCount == 1 || value > alpha)
{
rm.score = value;
rm.selDepth = thisThread->selDepth;
rm.pv.resize(1);
assert((ss+1)->pv);
for (Move* m = (ss+1)->pv; *m != MOVE_NONE; ++m)
rm.pv.push_back(*m);
// We record how often the best move has been changed in each iteration.
// This information is used for time management and LMR. In MultiPV mode,
// we must take care to only do this for the first PV line.
if ( moveCount > 1
&& !thisThread->pvIdx)
++thisThread->bestMoveChanges;
}
else
// All other moves but the PV are set to the lowest value: this
// is not a problem when sorting because the sort is stable and the
// move position in the list is preserved - just the PV is pushed up.
rm.score = -VALUE_INFINITE;
}
if (value > bestValue)
{
bestValue = value;
if (value > alpha)
{
bestMove = move;
if (PvNode && !rootNode) // Update pv even in fail-high case
update_pv(ss->pv, move, (ss+1)->pv);
if (PvNode && value < beta) // Update alpha! Always alpha < beta
{
alpha = value;
bestMoveCount++;
}
else
{
assert(value >= beta); // Fail high
break;
}
}
}
// If the move is worse than some previously searched move, remember it to update its stats later
if (move != bestMove)
{
if (captureOrPromotion && captureCount < 32)
capturesSearched[captureCount++] = move;
else if (!captureOrPromotion && quietCount < 64)
quietsSearched[quietCount++] = move;
}
}
// The following condition would detect a stop only after move loop has been
// completed. But in this case bestValue is valid because we have fully
// searched our subtree, and we can anyhow save the result in TT.
/*
if (Threads.stop)
return VALUE_DRAW;
*/
// Step 20. Check for mate and stalemate
// All legal moves have been searched and if there are no legal moves, it
// must be a mate or a stalemate. If we are in a singular extension search then
// return a fail low score.
assert(moveCount || !ss->inCheck || excludedMove || !MoveList<LEGAL>(pos).size());
if (!moveCount)
bestValue = excludedMove ? alpha :
ss->inCheck ? mated_in(ss->ply)
: VALUE_DRAW;
// If there is a move which produces search value greater than alpha we update stats of searched moves
else if (bestMove)
update_all_stats(pos, ss, bestMove, bestValue, beta, prevSq,
quietsSearched, quietCount, capturesSearched, captureCount, depth);
// Bonus for prior countermove that caused the fail low
else if ( (depth >= 3 || PvNode)
&& !priorCapture)
update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, stat_bonus(depth) * (1 + (PvNode || cutNode)));
if (PvNode)
bestValue = std::min(bestValue, maxValue);
// If no good move is found and the previous position was ttPv, then the previous
// opponent move is probably good and the new position is added to the search tree.
if (bestValue <= alpha)
ss->ttPv = ss->ttPv || ((ss-1)->ttPv && depth > 3);
// Otherwise, a counter move has been found and if the position is the last leaf
// in the search tree, remove the position from the search tree.
else if (depth > 3)
ss->ttPv = ss->ttPv && (ss+1)->ttPv;
// Write gathered information in transposition table
if (!excludedMove && !(rootNode && thisThread->pvIdx))
tte->save(posKey, value_to_tt(bestValue, ss->ply), ss->ttPv,
bestValue >= beta ? BOUND_LOWER :
PvNode && bestMove ? BOUND_EXACT : BOUND_UPPER,
depth, bestMove, ss->staticEval);
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
return bestValue;
}
// qsearch() is the quiescence search function, which is called by the main search
// function with zero depth, or recursively with further decreasing depth per call.
template <NodeType nodeType>
Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) {
static_assert(nodeType != Root);
constexpr bool PvNode = nodeType == PV;
assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE);
assert(PvNode || (alpha == beta - 1));
assert(depth <= 0);
Move pv[MAX_PLY+1];
StateInfo st;
ASSERT_ALIGNED(&st, Eval::NNUE::CacheLineSize);
TTEntry* tte;
Key posKey;
Move ttMove, move, bestMove;
Depth ttDepth;
Value bestValue, value, ttValue, futilityValue, futilityBase;
bool pvHit, givesCheck, captureOrPromotion;
int moveCount;
if (PvNode)
{
(ss+1)->pv = pv;
ss->pv[0] = MOVE_NONE;
}
Thread* thisThread = pos.this_thread();
bestMove = MOVE_NONE;
ss->inCheck = pos.checkers();
moveCount = 0;
// Check for an immediate draw or maximum ply reached
if ( pos.is_draw(ss->ply)
|| ss->ply >= MAX_PLY)
return (ss->ply >= MAX_PLY && !ss->inCheck) ? evaluate(pos) : VALUE_DRAW;
assert(0 <= ss->ply && ss->ply < MAX_PLY);
// Decide whether or not to include checks: this fixes also the type of
// TT entry depth that we are going to use. Note that in qsearch we use
// only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS.
ttDepth = ss->inCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS
: DEPTH_QS_NO_CHECKS;
// Transposition table lookup
posKey = pos.key();
tte = TT.probe(posKey, ss->ttHit);
ttValue = ss->ttHit ? value_from_tt(tte->value(), ss->ply, pos.rule50_count()) : VALUE_NONE;
ttMove = ss->ttHit ? tte->move() : MOVE_NONE;
pvHit = ss->ttHit && tte->is_pv();
if ( !PvNode
&& ss->ttHit
&& tte->depth() >= ttDepth
&& ttValue != VALUE_NONE // Only in case of TT access race
&& (ttValue >= beta ? (tte->bound() & BOUND_LOWER)
: (tte->bound() & BOUND_UPPER)))
return ttValue;
// Evaluate the position statically
if (ss->inCheck)
{
ss->staticEval = VALUE_NONE;
bestValue = futilityBase = -VALUE_INFINITE;
}
else
{
if (ss->ttHit)
{
// Never assume anything about values stored in TT
if ((ss->staticEval = bestValue = tte->eval()) == VALUE_NONE)
ss->staticEval = bestValue = evaluate(pos);
// Can ttValue be used as a better position evaluation?
if ( ttValue != VALUE_NONE
&& (tte->bound() & (ttValue > bestValue ? BOUND_LOWER : BOUND_UPPER)))
bestValue = ttValue;
}
else
// In case of null move search use previous static eval with a different sign
ss->staticEval = bestValue =
(ss-1)->currentMove != MOVE_NULL ? evaluate(pos)
: -(ss-1)->staticEval;
// Stand pat. Return immediately if static value is at least beta
if (bestValue >= beta)
{
// Save gathered info in transposition table
if (!ss->ttHit)
tte->save(posKey, value_to_tt(bestValue, ss->ply), false, BOUND_LOWER,
DEPTH_NONE, MOVE_NONE, ss->staticEval);
return bestValue;
}
if (PvNode && bestValue > alpha)
alpha = bestValue;
futilityBase = bestValue + 155;
}
const PieceToHistory* contHist[] = { (ss-1)->continuationHistory, (ss-2)->continuationHistory,
nullptr , (ss-4)->continuationHistory,
nullptr , (ss-6)->continuationHistory };
// Initialize a MovePicker object for the current position, and prepare
// to search the moves. Because the depth is <= 0 here, only captures,
// queen promotions, and other checks (only if depth >= DEPTH_QS_CHECKS)
// will be generated.
MovePicker mp(pos, ttMove, depth, &thisThread->mainHistory,
&thisThread->captureHistory,
contHist,
to_sq((ss-1)->currentMove));
// Loop through the moves until no moves remain or a beta cutoff occurs
while ((move = mp.next_move()) != MOVE_NONE)
{
assert(is_ok(move));
// Check for legality
if (!pos.legal(move))
continue;
givesCheck = pos.gives_check(move);
captureOrPromotion = pos.capture_or_promotion(move);
moveCount++;
// Futility pruning and moveCount pruning
if ( bestValue > VALUE_TB_LOSS_IN_MAX_PLY
&& !givesCheck
&& futilityBase > -VALUE_KNOWN_WIN
&& type_of(move) != PROMOTION)
{
if (moveCount > 2)
continue;
futilityValue = futilityBase + PieceValue[EG][pos.piece_on(to_sq(move))];
if (futilityValue <= alpha)
{
bestValue = std::max(bestValue, futilityValue);
continue;
}
if (futilityBase <= alpha && !pos.see_ge(move, VALUE_ZERO + 1))
{
bestValue = std::max(bestValue, futilityBase);
continue;
}
}
// Do not search moves with negative SEE values
if ( bestValue > VALUE_TB_LOSS_IN_MAX_PLY
&& !pos.see_ge(move))
continue;
// Speculative prefetch as early as possible
prefetch(TT.first_entry(pos.key_after(move)));
ss->currentMove = move;
ss->continuationHistory = &thisThread->continuationHistory[ss->inCheck]
[captureOrPromotion]
[pos.moved_piece(move)]
[to_sq(move)];
// Continuation history based pruning
if ( !captureOrPromotion
&& bestValue > VALUE_TB_LOSS_IN_MAX_PLY
&& (*contHist[0])[pos.moved_piece(move)][to_sq(move)] < CounterMovePruneThreshold
&& (*contHist[1])[pos.moved_piece(move)][to_sq(move)] < CounterMovePruneThreshold)
continue;
// Make and search the move
pos.do_move(move, st, givesCheck);
value = -qsearch<nodeType>(pos, ss+1, -beta, -alpha, depth - 1);
pos.undo_move(move);
assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
// Check for a new best move
if (value > bestValue)
{
bestValue = value;
if (value > alpha)
{
bestMove = move;
if (PvNode) // Update pv even in fail-high case
update_pv(ss->pv, move, (ss+1)->pv);
if (PvNode && value < beta) // Update alpha here!
alpha = value;
else
break; // Fail high
}
}
}
// All legal moves have been searched. A special case: if we're in check
// and no legal moves were found, it is checkmate.
if (ss->inCheck && bestValue == -VALUE_INFINITE)
{
assert(!MoveList<LEGAL>(pos).size());
return mated_in(ss->ply); // Plies to mate from the root
}
// Save gathered info in transposition table
tte->save(posKey, value_to_tt(bestValue, ss->ply), pvHit,
bestValue >= beta ? BOUND_LOWER : BOUND_UPPER,
ttDepth, bestMove, ss->staticEval);
assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
return bestValue;
}
// value_to_tt() adjusts a mate or TB score from "plies to mate from the root" to
// "plies to mate from the current position". Standard scores are unchanged.
// The function is called before storing a value in the transposition table.
Value value_to_tt(Value v, int ply) {
assert(v != VALUE_NONE);
return v >= VALUE_TB_WIN_IN_MAX_PLY ? v + ply
: v <= VALUE_TB_LOSS_IN_MAX_PLY ? v - ply : v;
}
// value_from_tt() is the inverse of value_to_tt(): it adjusts a mate or TB score
// from the transposition table (which refers to the plies to mate/be mated from
// current position) to "plies to mate/be mated (TB win/loss) from the root". However,
// for mate scores, to avoid potentially false mate scores related to the 50 moves rule
// and the graph history interaction, we return an optimal TB score instead.
Value value_from_tt(Value v, int ply, int r50c) {
if (v == VALUE_NONE)
return VALUE_NONE;
if (v >= VALUE_TB_WIN_IN_MAX_PLY) // TB win or better
{
if (v >= VALUE_MATE_IN_MAX_PLY && VALUE_MATE - v > 99 - r50c)
return VALUE_MATE_IN_MAX_PLY - 1; // do not return a potentially false mate score
return v - ply;
}
if (v <= VALUE_TB_LOSS_IN_MAX_PLY) // TB loss or worse
{
if (v <= VALUE_MATED_IN_MAX_PLY && VALUE_MATE + v > 99 - r50c)
return VALUE_MATED_IN_MAX_PLY + 1; // do not return a potentially false mate score
return v + ply;
}
return v;
}
// update_pv() adds current move and appends child pv[]
void update_pv(Move* pv, Move move, Move* childPv) {
for (*pv++ = move; childPv && *childPv != MOVE_NONE; )
*pv++ = *childPv++;
*pv = MOVE_NONE;
}
// update_all_stats() updates stats at the end of search() when a bestMove is found
void update_all_stats(const Position& pos, Stack* ss, Move bestMove, Value bestValue, Value beta, Square prevSq,
Move* quietsSearched, int quietCount, Move* capturesSearched, int captureCount, Depth depth) {
int bonus1, bonus2;
Color us = pos.side_to_move();
Thread* thisThread = pos.this_thread();
CapturePieceToHistory& captureHistory = thisThread->captureHistory;
Piece moved_piece = pos.moved_piece(bestMove);
PieceType captured = type_of(pos.piece_on(to_sq(bestMove)));
bonus1 = stat_bonus(depth + 1);
bonus2 = bestValue > beta + PawnValueMg ? bonus1 // larger bonus
: stat_bonus(depth); // smaller bonus
if (!pos.capture_or_promotion(bestMove))
{
// Increase stats for the best move in case it was a quiet move
update_quiet_stats(pos, ss, bestMove, bonus2, depth);
// Decrease stats for all non-best quiet moves
for (int i = 0; i < quietCount; ++i)
{
thisThread->mainHistory[us][from_to(quietsSearched[i])] << -bonus2;
update_continuation_histories(ss, pos.moved_piece(quietsSearched[i]), to_sq(quietsSearched[i]), -bonus2);
}
}
else
// Increase stats for the best move in case it was a capture move
captureHistory[moved_piece][to_sq(bestMove)][captured] << bonus1;
// Extra penalty for a quiet early move that was not a TT move or
// main killer move in previous ply when it gets refuted.
if ( ((ss-1)->moveCount == 1 + (ss-1)->ttHit || ((ss-1)->currentMove == (ss-1)->killers[0]))
&& !pos.captured_piece())
update_continuation_histories(ss-1, pos.piece_on(prevSq), prevSq, -bonus1);
// Decrease stats for all non-best capture moves
for (int i = 0; i < captureCount; ++i)
{
moved_piece = pos.moved_piece(capturesSearched[i]);
captured = type_of(pos.piece_on(to_sq(capturesSearched[i])));
captureHistory[moved_piece][to_sq(capturesSearched[i])][captured] << -bonus1;
}
}
// update_continuation_histories() updates histories of the move pairs formed
// by moves at ply -1, -2, -4, and -6 with current move.
void update_continuation_histories(Stack* ss, Piece pc, Square to, int bonus) {
for (int i : {1, 2, 4, 6})
{
// Only update first 2 continuation histories if we are in check
if (ss->inCheck && i > 2)
break;
if (is_ok((ss-i)->currentMove))
(*(ss-i)->continuationHistory)[pc][to] << bonus;
}
}
// update_quiet_stats() updates move sorting heuristics
void update_quiet_stats(const Position& pos, Stack* ss, Move move, int bonus, int depth) {
// Update killers
if (ss->killers[0] != move)
{
ss->killers[1] = ss->killers[0];
ss->killers[0] = move;
}
Color us = pos.side_to_move();
Thread* thisThread = pos.this_thread();
thisThread->mainHistory[us][from_to(move)] << bonus;
update_continuation_histories(ss, pos.moved_piece(move), to_sq(move), bonus);
// Update countermove history
if (is_ok((ss-1)->currentMove))
{
Square prevSq = to_sq((ss-1)->currentMove);
thisThread->counterMoves[pos.piece_on(prevSq)][prevSq] = move;
}
// Update low ply history
if (depth > 11 && ss->ply < MAX_LPH)
thisThread->lowPlyHistory[ss->ply][from_to(move)] << stat_bonus(depth - 7);
}
// When playing with strength handicap, choose best move among a set of RootMoves
// using a statistical rule dependent on 'level'. Idea by Heinz van Saanen.
Move Skill::pick_best(size_t multiPV) {
const RootMoves& rootMoves = Threads.main()->rootMoves;
static PRNG rng(now()); // PRNG sequence should be non-deterministic
// RootMoves are already sorted by score in descending order
Value topScore = rootMoves[0].score;
int delta = std::min(topScore - rootMoves[multiPV - 1].score, PawnValueMg);
int maxScore = -VALUE_INFINITE;
double weakness = 120 - 2 * level;
// Choose best move. For each move score we add two terms, both dependent on
// weakness. One is deterministic and bigger for weaker levels, and one is
// random. Then we choose the move with the resulting highest score.
for (size_t i = 0; i < multiPV; ++i)
{
// This is our magic formula
int push = int(( weakness * int(topScore - rootMoves[i].score)
+ delta * (rng.rand<unsigned>() % int(weakness))) / 128);
if (rootMoves[i].score + push >= maxScore)
{
maxScore = rootMoves[i].score + push;
best = rootMoves[i].pv[0];
}
}
return best;
}
} // namespace
/// MainThread::check_time() is used to print debug info and, more importantly,
/// to detect when we are out of available time and thus stop the search.
void MainThread::check_time() {
if (--callsCnt > 0)
return;
// When using nodes, ensure checking rate is not lower than 0.1% of nodes
callsCnt = Limits.nodes ? std::min(1024, int(Limits.nodes / 1024)) : 1024;
static TimePoint lastInfoTime = now();
TimePoint elapsed = Time.elapsed();
TimePoint tick = Limits.startTime + elapsed;
if (tick - lastInfoTime >= 1000)
{
lastInfoTime = tick;
dbg_print();
}
// We should not stop pondering until told so by the GUI
if (ponder)
return;
if ( (Limits.use_time_management() && (elapsed > Time.maximum() - 10 || stopOnPonderhit))
|| (Limits.movetime && elapsed >= Limits.movetime)
|| (Limits.nodes && Threads.nodes_searched() >= (uint64_t)Limits.nodes))
Threads.stop = true;
}
/// UCI::pv() formats PV information according to the UCI protocol. UCI requires
/// that all (if any) unsearched PV lines are sent using a previous search score.
string UCI::pv(const Position& pos, Depth depth, Value alpha, Value beta) {
std::stringstream ss;
TimePoint elapsed = Time.elapsed() + 1;
const RootMoves& rootMoves = pos.this_thread()->rootMoves;
size_t pvIdx = pos.this_thread()->pvIdx;
size_t multiPV = std::min((size_t)Options["MultiPV"], rootMoves.size());
uint64_t nodesSearched = Threads.nodes_searched();
uint64_t tbHits = Threads.tb_hits() + (TB::RootInTB ? rootMoves.size() : 0);
for (size_t i = 0; i < multiPV; ++i)
{
bool updated = rootMoves[i].score != -VALUE_INFINITE;
if (depth == 1 && !updated && i > 0)
continue;
Depth d = updated ? depth : std::max(1, depth - 1);
Value v = updated ? rootMoves[i].score : rootMoves[i].previousScore;
if (v == -VALUE_INFINITE)
v = VALUE_ZERO;
bool tb = TB::RootInTB && abs(v) < VALUE_MATE_IN_MAX_PLY;
v = tb ? rootMoves[i].tbScore : v;
if (ss.rdbuf()->in_avail()) // Not at first line
ss << "\n";
ss << "info"
<< " depth " << d
<< " seldepth " << rootMoves[i].selDepth
<< " multipv " << i + 1
<< " score " << UCI::value(v);
if (Options["UCI_ShowWDL"])
ss << UCI::wdl(v, pos.game_ply());
if (!tb && i == pvIdx)
ss << (v >= beta ? " lowerbound" : v <= alpha ? " upperbound" : "");
ss << " nodes " << nodesSearched
<< " nps " << nodesSearched * 1000 / elapsed;
if (elapsed > 1000) // Earlier makes little sense
ss << " hashfull " << TT.hashfull();
ss << " tbhits " << tbHits
<< " time " << elapsed
<< " pv";
for (Move m : rootMoves[i].pv)
ss << " " << UCI::move(m, pos.is_chess960());
}
return ss.str();
}
/// RootMove::extract_ponder_from_tt() is called in case we have no ponder move
/// before exiting the search, for instance, in case we stop the search during a
/// fail high at root. We try hard to have a ponder move to return to the GUI,
/// otherwise in case of 'ponder on' we have nothing to think on.
bool RootMove::extract_ponder_from_tt(Position& pos) {
StateInfo st;
ASSERT_ALIGNED(&st, Eval::NNUE::CacheLineSize);
bool ttHit;
assert(pv.size() == 1);
if (pv[0] == MOVE_NONE)
return false;
pos.do_move(pv[0], st);
TTEntry* tte = TT.probe(pos.key(), ttHit);
if (ttHit)
{
Move m = tte->move(); // Local copy to be SMP safe
if (MoveList<LEGAL>(pos).contains(m))
pv.push_back(m);
}
pos.undo_move(pv[0]);
return pv.size() > 1;
}
void Tablebases::rank_root_moves(Position& pos, Search::RootMoves& rootMoves) {
RootInTB = false;
UseRule50 = bool(Options["Syzygy50MoveRule"]);
ProbeDepth = int(Options["SyzygyProbeDepth"]);
Cardinality = int(Options["SyzygyProbeLimit"]);
bool dtz_available = true;
// Tables with fewer pieces than SyzygyProbeLimit are searched with
// ProbeDepth == DEPTH_ZERO
if (Cardinality > MaxCardinality)
{
Cardinality = MaxCardinality;
ProbeDepth = 0;
}
if (Cardinality >= popcount(pos.pieces()) && !pos.can_castle(ANY_CASTLING))
{
// Rank moves using DTZ tables
RootInTB = root_probe(pos, rootMoves);
if (!RootInTB)
{
// DTZ tables are missing; try to rank moves using WDL tables
dtz_available = false;
RootInTB = root_probe_wdl(pos, rootMoves);
}
}
if (RootInTB)
{
// Sort moves according to TB rank
std::stable_sort(rootMoves.begin(), rootMoves.end(),
[](const RootMove &a, const RootMove &b) { return a.tbRank > b.tbRank; } );
// Probe during search only if DTZ is not available and we are winning
if (dtz_available || rootMoves[0].tbScore <= VALUE_DRAW)
Cardinality = 0;
}
else
{
// Clean up if root_probe() and root_probe_wdl() have failed
for (auto& m : rootMoves)
m.tbRank = 0;
}
}
} // namespace Stockfish