1
0
Fork 0
mirror of https://github.com/sockspls/badfish synced 2025-04-29 16:23:09 +00:00

Use templates for end game evaluation functions

Huge simplification and no speed cost penalty.

Signed-off-by: Marco Costalba <mcostalba@gmail.com>
This commit is contained in:
Marco Costalba 2009-02-12 13:20:22 +01:00
parent 088ecc242f
commit 039badfda8
2 changed files with 54 additions and 148 deletions

View file

@ -35,39 +35,18 @@
/// Evaluation functions
// Generic "mate lone king" eval
KXKEvaluationFunction EvaluateKXK = KXKEvaluationFunction(WHITE);
KXKEvaluationFunction EvaluateKKX = KXKEvaluationFunction(BLACK);
// KBN vs K
KBNKEvaluationFunction EvaluateKBNK = KBNKEvaluationFunction(WHITE);
KBNKEvaluationFunction EvaluateKKBN = KBNKEvaluationFunction(BLACK);
// KP vs K
KPKEvaluationFunction EvaluateKPK = KPKEvaluationFunction(WHITE);
KPKEvaluationFunction EvaluateKKP = KPKEvaluationFunction(BLACK);
// KR vs KP
KRKPEvaluationFunction EvaluateKRKP = KRKPEvaluationFunction(WHITE);
KRKPEvaluationFunction EvaluateKPKR = KRKPEvaluationFunction(BLACK);
// KR vs KB
KRKBEvaluationFunction EvaluateKRKB = KRKBEvaluationFunction(WHITE);
KRKBEvaluationFunction EvaluateKBKR = KRKBEvaluationFunction(BLACK);
// KR vs KN
KRKNEvaluationFunction EvaluateKRKN = KRKNEvaluationFunction(WHITE);
KRKNEvaluationFunction EvaluateKNKR = KRKNEvaluationFunction(BLACK);
// KQ vs KR
KQKREvaluationFunction EvaluateKQKR = KQKREvaluationFunction(WHITE);
KQKREvaluationFunction EvaluateKRKQ = KQKREvaluationFunction(BLACK);
// KBB vs KN
KBBKNEvaluationFunction EvaluateKBBKN = KBBKNEvaluationFunction(WHITE);
KBBKNEvaluationFunction EvaluateKNKBB = KBBKNEvaluationFunction(BLACK);
EvaluationFunction<KXK> EvaluateKXK(WHITE), EvaluateKKX(BLACK);
// K and two minors vs K and one or two minors
KmmKmEvaluationFunction EvaluateKmmKm = KmmKmEvaluationFunction(WHITE);
EvaluationFunction<KmmKm> EvaluateKmmKm(WHITE);
EvaluationFunction<KBNK> EvaluateKBNK(WHITE), EvaluateKKBN(BLACK); // KBN vs K
EvaluationFunction<KPK> EvaluateKPK(WHITE), EvaluateKKP(BLACK); // KP vs K
EvaluationFunction<KRKP> EvaluateKRKP(WHITE), EvaluateKPKR(BLACK); // KR vs KP
EvaluationFunction<KRKB> EvaluateKRKB(WHITE), EvaluateKBKR(BLACK); // KR vs KB
EvaluationFunction<KRKN> EvaluateKRKN(WHITE), EvaluateKNKR(BLACK); // KR vs KN
EvaluationFunction<KQKR> EvaluateKQKR(WHITE), EvaluateKRKQ(BLACK); // KQ vs KR
EvaluationFunction<KBBKN> EvaluateKBBKN(WHITE), EvaluateKNKBB(BLACK); // KBB vs KN
/// Scaling functions
@ -185,17 +164,6 @@ EndgameEvaluationFunction::EndgameEvaluationFunction(Color c) : strongerSide(c)
weakerSide = opposite_color(strongerSide);
}
KXKEvaluationFunction::KXKEvaluationFunction(Color c) : EndgameEvaluationFunction(c) {}
KBNKEvaluationFunction::KBNKEvaluationFunction(Color c) : EndgameEvaluationFunction(c) {}
KPKEvaluationFunction::KPKEvaluationFunction(Color c) : EndgameEvaluationFunction(c) {}
KRKPEvaluationFunction::KRKPEvaluationFunction(Color c) : EndgameEvaluationFunction(c) {}
KRKBEvaluationFunction::KRKBEvaluationFunction(Color c) : EndgameEvaluationFunction(c) {}
KRKNEvaluationFunction::KRKNEvaluationFunction(Color c) : EndgameEvaluationFunction(c) {}
KQKREvaluationFunction::KQKREvaluationFunction(Color c) : EndgameEvaluationFunction(c) {}
KBBKNEvaluationFunction::KBBKNEvaluationFunction(Color c) : EndgameEvaluationFunction(c) {}
KmmKmEvaluationFunction::KmmKmEvaluationFunction(Color c) : EndgameEvaluationFunction(c) {}
ScalingFunction::ScalingFunction(Color c) : strongerSide(c) {
weakerSide = opposite_color(c);
}
@ -215,8 +183,8 @@ KPKPScalingFunction::KPKPScalingFunction(Color c) : ScalingFunction(c) {}
/// King and plenty of material vs a lone king. It simply gives the
/// attacking side a bonus for driving the defending king towards the edge
/// of the board, and for keeping the distance between the two kings small.
Value KXKEvaluationFunction::apply(const Position& pos) {
template<>
Value EvaluationFunction<KXK>::apply(const Position& pos) {
assert(pos.non_pawn_material(weakerSide) == Value(0));
assert(pos.piece_count(weakerSide, PAWN) == Value(0));
@ -241,8 +209,8 @@ Value KXKEvaluationFunction::apply(const Position& pos) {
/// Mate with KBN vs K. This is similar to KX vs K, but we have to drive the
/// defending king towards a corner square of the right color.
Value KBNKEvaluationFunction::apply(const Position& pos) {
template<>
Value EvaluationFunction<KBNK>::apply(const Position& pos) {
assert(pos.non_pawn_material(weakerSide) == Value(0));
assert(pos.piece_count(weakerSide, PAWN) == Value(0));
@ -270,8 +238,8 @@ Value KBNKEvaluationFunction::apply(const Position& pos) {
/// KP vs K. This endgame is evaluated with the help of a bitbase.
Value KPKEvaluationFunction::apply(const Position& pos) {
template<>
Value EvaluationFunction<KPK>::apply(const Position& pos) {
assert(pos.non_pawn_material(strongerSide) == Value(0));
assert(pos.non_pawn_material(weakerSide) == Value(0));
@ -318,8 +286,8 @@ Value KPKEvaluationFunction::apply(const Position& pos) {
/// a bitbase. The function below returns drawish scores when the pawn is
/// far advanced with support of the king, while the attacking king is far
/// away.
Value KRKPEvaluationFunction::apply(const Position& pos) {
template<>
Value EvaluationFunction<KRKP>::apply(const Position& pos) {
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
assert(pos.piece_count(strongerSide, PAWN) == 0);
@ -375,8 +343,8 @@ Value KRKPEvaluationFunction::apply(const Position& pos) {
/// KR vs KB. This is very simple, and always returns drawish scores. The
/// score is slightly bigger when the defending king is close to the edge.
Value KRKBEvaluationFunction::apply(const Position& pos) {
template<>
Value EvaluationFunction<KRKB>::apply(const Position& pos) {
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
assert(pos.piece_count(strongerSide, PAWN) == 0);
@ -391,8 +359,8 @@ Value KRKBEvaluationFunction::apply(const Position& pos) {
/// KR vs KN. The attacking side has slightly better winning chances than
/// in KR vs KB, particularly if the king and the knight are far apart.
Value KRKNEvaluationFunction::apply(const Position& pos) {
template<>
Value EvaluationFunction<KRKN>::apply(const Position& pos) {
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
assert(pos.piece_count(strongerSide, PAWN) == 0);
@ -415,8 +383,8 @@ Value KRKNEvaluationFunction::apply(const Position& pos) {
/// defending king towards the edge. If we also take care to avoid null move
/// for the defending side in the search, this is usually sufficient to be
/// able to win KQ vs KR.
Value KQKREvaluationFunction::apply(const Position& pos) {
template<>
Value EvaluationFunction<KQKR>::apply(const Position& pos) {
assert(pos.non_pawn_material(strongerSide) == QueenValueMidgame);
assert(pos.piece_count(strongerSide, PAWN) == 0);
@ -434,8 +402,8 @@ Value KQKREvaluationFunction::apply(const Position& pos) {
return (strongerSide == pos.side_to_move())? result : -result;
}
Value KBBKNEvaluationFunction::apply(const Position& pos) {
template<>
Value EvaluationFunction<KBBKN>::apply(const Position& pos) {
assert(pos.piece_count(strongerSide, BISHOP) == 2);
assert(pos.non_pawn_material(strongerSide) == 2*BishopValueMidgame);
@ -460,8 +428,8 @@ Value KBBKNEvaluationFunction::apply(const Position& pos) {
return (strongerSide == pos.side_to_move() ? result : -result);
}
Value KmmKmEvaluationFunction::apply(const Position &pos) {
template<>
Value EvaluationFunction<KmmKm>::apply(const Position &pos) {
return Value(0);
}

View file

@ -34,86 +34,41 @@
//// Types
////
/// Abstract base class for all special endgame evaluation functions:
/// Abstract base class for all special endgame evaluation functions
class EndgameEvaluationFunction {
public:
EndgameEvaluationFunction(Color c);
virtual ~EndgameEvaluationFunction() { }
virtual Value apply(const Position &pos) =0;
virtual Value apply(const Position &pos) = 0;
protected:
Color strongerSide, weakerSide;
};
/// Subclasses for various concrete endgames:
/// Template subclass for various concrete endgames
// Generic "mate lone king" eval:
class KXKEvaluationFunction : public EndgameEvaluationFunction {
public:
KXKEvaluationFunction(Color c);
Value apply(const Position &pos);
enum EndgameType {
KXK, // Generic "mate lone king" eval
KBNK, // KBN vs K
KPK, // KP vs K
KRKP, // KR vs KP
KRKB, // KR vs KB
KRKN, // KR vs KN
KQKR, // KQ vs KR
KBBKN, // KBB vs KN
KmmKm // K and two minors vs K and one or two minors
};
// KBN vs K:
class KBNKEvaluationFunction : public EndgameEvaluationFunction {
template<EndgameType>
class EvaluationFunction : public EndgameEvaluationFunction {
public:
KBNKEvaluationFunction(Color c);
Value apply(const Position &pos);
explicit EvaluationFunction(Color c): EndgameEvaluationFunction(c) {}
Value apply(const Position& pos);
};
// KP vs K:
class KPKEvaluationFunction : public EndgameEvaluationFunction {
public:
KPKEvaluationFunction(Color c);
Value apply(const Position &pos);
};
// KR vs KP:
class KRKPEvaluationFunction : public EndgameEvaluationFunction {
public:
KRKPEvaluationFunction(Color c);
Value apply(const Position &pos);
};
// KR vs KB:
class KRKBEvaluationFunction : public EndgameEvaluationFunction {
public:
KRKBEvaluationFunction(Color c);
Value apply(const Position &pos);
};
// KR vs KN:
class KRKNEvaluationFunction : public EndgameEvaluationFunction {
public:
KRKNEvaluationFunction(Color c);
Value apply(const Position &pos);
};
// KQ vs KR:
class KQKREvaluationFunction : public EndgameEvaluationFunction {
public:
KQKREvaluationFunction(Color c);
Value apply(const Position &pos);
};
// KBB vs KN:
class KBBKNEvaluationFunction : public EndgameEvaluationFunction {
public:
KBBKNEvaluationFunction(Color C);
Value apply(const Position &pos);
};
// K and two minors vs K and one or two minors:
class KmmKmEvaluationFunction : public EndgameEvaluationFunction {
public:
KmmKmEvaluationFunction(Color c);
Value apply(const Position &pos);
};
/// Abstract base class for all evaluation scaling functions:
class ScalingFunction {
@ -198,32 +153,15 @@ public:
//// Constants and variables
////
// Generic "mate lone king" eval:
extern KXKEvaluationFunction EvaluateKXK, EvaluateKKX;
// KBN vs K:
extern KBNKEvaluationFunction EvaluateKBNK, EvaluateKKBN;
// KP vs K:
extern KPKEvaluationFunction EvaluateKPK, EvaluateKKP;
// KR vs KP:
extern KRKPEvaluationFunction EvaluateKRKP, EvaluateKPKR;
// KR vs KB:
extern KRKBEvaluationFunction EvaluateKRKB, EvaluateKBKR;
// KR vs KN:
extern KRKNEvaluationFunction EvaluateKRKN, EvaluateKNKR;
// KQ vs KR:
extern KQKREvaluationFunction EvaluateKQKR, EvaluateKRKQ;
// KBB vs KN:
extern KBBKNEvaluationFunction EvaluateKBBKN, EvaluateKNKBB;
// K and two minors vs K and one or two minors:
extern KmmKmEvaluationFunction EvaluateKmmKm;
extern EvaluationFunction<KXK> EvaluateKXK, EvaluateKKX; // Generic "mate lone king" eval
extern EvaluationFunction<KBNK> EvaluateKBNK, EvaluateKKBN; // KBN vs K
extern EvaluationFunction<KPK> EvaluateKPK, EvaluateKKP; // KP vs K
extern EvaluationFunction<KRKP> EvaluateKRKP, EvaluateKPKR; // KR vs KP
extern EvaluationFunction<KRKB> EvaluateKRKB, EvaluateKBKR; // KR vs KB
extern EvaluationFunction<KRKN> EvaluateKRKN, EvaluateKNKR; // KR vs KN
extern EvaluationFunction<KQKR> EvaluateKQKR, EvaluateKRKQ; // KQ vs KR
extern EvaluationFunction<KBBKN> EvaluateKBBKN, EvaluateKNKBB; // KBB vs KN
extern EvaluationFunction<KmmKm> EvaluateKmmKm; // K and two minors vs K and one or two minors:
// KBP vs K:
extern KBPKScalingFunction ScaleKBPK, ScaleKKBP;