mirror of
https://github.com/sockspls/badfish
synced 2025-04-29 16:23:09 +00:00
Use templates for end game evaluation functions
Huge simplification and no speed cost penalty. Signed-off-by: Marco Costalba <mcostalba@gmail.com>
This commit is contained in:
parent
088ecc242f
commit
039badfda8
2 changed files with 54 additions and 148 deletions
|
@ -35,39 +35,18 @@
|
|||
/// Evaluation functions
|
||||
|
||||
// Generic "mate lone king" eval
|
||||
KXKEvaluationFunction EvaluateKXK = KXKEvaluationFunction(WHITE);
|
||||
KXKEvaluationFunction EvaluateKKX = KXKEvaluationFunction(BLACK);
|
||||
|
||||
// KBN vs K
|
||||
KBNKEvaluationFunction EvaluateKBNK = KBNKEvaluationFunction(WHITE);
|
||||
KBNKEvaluationFunction EvaluateKKBN = KBNKEvaluationFunction(BLACK);
|
||||
|
||||
// KP vs K
|
||||
KPKEvaluationFunction EvaluateKPK = KPKEvaluationFunction(WHITE);
|
||||
KPKEvaluationFunction EvaluateKKP = KPKEvaluationFunction(BLACK);
|
||||
|
||||
// KR vs KP
|
||||
KRKPEvaluationFunction EvaluateKRKP = KRKPEvaluationFunction(WHITE);
|
||||
KRKPEvaluationFunction EvaluateKPKR = KRKPEvaluationFunction(BLACK);
|
||||
|
||||
// KR vs KB
|
||||
KRKBEvaluationFunction EvaluateKRKB = KRKBEvaluationFunction(WHITE);
|
||||
KRKBEvaluationFunction EvaluateKBKR = KRKBEvaluationFunction(BLACK);
|
||||
|
||||
// KR vs KN
|
||||
KRKNEvaluationFunction EvaluateKRKN = KRKNEvaluationFunction(WHITE);
|
||||
KRKNEvaluationFunction EvaluateKNKR = KRKNEvaluationFunction(BLACK);
|
||||
|
||||
// KQ vs KR
|
||||
KQKREvaluationFunction EvaluateKQKR = KQKREvaluationFunction(WHITE);
|
||||
KQKREvaluationFunction EvaluateKRKQ = KQKREvaluationFunction(BLACK);
|
||||
|
||||
// KBB vs KN
|
||||
KBBKNEvaluationFunction EvaluateKBBKN = KBBKNEvaluationFunction(WHITE);
|
||||
KBBKNEvaluationFunction EvaluateKNKBB = KBBKNEvaluationFunction(BLACK);
|
||||
EvaluationFunction<KXK> EvaluateKXK(WHITE), EvaluateKKX(BLACK);
|
||||
|
||||
// K and two minors vs K and one or two minors
|
||||
KmmKmEvaluationFunction EvaluateKmmKm = KmmKmEvaluationFunction(WHITE);
|
||||
EvaluationFunction<KmmKm> EvaluateKmmKm(WHITE);
|
||||
|
||||
EvaluationFunction<KBNK> EvaluateKBNK(WHITE), EvaluateKKBN(BLACK); // KBN vs K
|
||||
EvaluationFunction<KPK> EvaluateKPK(WHITE), EvaluateKKP(BLACK); // KP vs K
|
||||
EvaluationFunction<KRKP> EvaluateKRKP(WHITE), EvaluateKPKR(BLACK); // KR vs KP
|
||||
EvaluationFunction<KRKB> EvaluateKRKB(WHITE), EvaluateKBKR(BLACK); // KR vs KB
|
||||
EvaluationFunction<KRKN> EvaluateKRKN(WHITE), EvaluateKNKR(BLACK); // KR vs KN
|
||||
EvaluationFunction<KQKR> EvaluateKQKR(WHITE), EvaluateKRKQ(BLACK); // KQ vs KR
|
||||
EvaluationFunction<KBBKN> EvaluateKBBKN(WHITE), EvaluateKNKBB(BLACK); // KBB vs KN
|
||||
|
||||
|
||||
/// Scaling functions
|
||||
|
@ -185,17 +164,6 @@ EndgameEvaluationFunction::EndgameEvaluationFunction(Color c) : strongerSide(c)
|
|||
weakerSide = opposite_color(strongerSide);
|
||||
}
|
||||
|
||||
KXKEvaluationFunction::KXKEvaluationFunction(Color c) : EndgameEvaluationFunction(c) {}
|
||||
KBNKEvaluationFunction::KBNKEvaluationFunction(Color c) : EndgameEvaluationFunction(c) {}
|
||||
KPKEvaluationFunction::KPKEvaluationFunction(Color c) : EndgameEvaluationFunction(c) {}
|
||||
KRKPEvaluationFunction::KRKPEvaluationFunction(Color c) : EndgameEvaluationFunction(c) {}
|
||||
KRKBEvaluationFunction::KRKBEvaluationFunction(Color c) : EndgameEvaluationFunction(c) {}
|
||||
KRKNEvaluationFunction::KRKNEvaluationFunction(Color c) : EndgameEvaluationFunction(c) {}
|
||||
KQKREvaluationFunction::KQKREvaluationFunction(Color c) : EndgameEvaluationFunction(c) {}
|
||||
KBBKNEvaluationFunction::KBBKNEvaluationFunction(Color c) : EndgameEvaluationFunction(c) {}
|
||||
KmmKmEvaluationFunction::KmmKmEvaluationFunction(Color c) : EndgameEvaluationFunction(c) {}
|
||||
|
||||
|
||||
ScalingFunction::ScalingFunction(Color c) : strongerSide(c) {
|
||||
weakerSide = opposite_color(c);
|
||||
}
|
||||
|
@ -215,8 +183,8 @@ KPKPScalingFunction::KPKPScalingFunction(Color c) : ScalingFunction(c) {}
|
|||
/// King and plenty of material vs a lone king. It simply gives the
|
||||
/// attacking side a bonus for driving the defending king towards the edge
|
||||
/// of the board, and for keeping the distance between the two kings small.
|
||||
|
||||
Value KXKEvaluationFunction::apply(const Position& pos) {
|
||||
template<>
|
||||
Value EvaluationFunction<KXK>::apply(const Position& pos) {
|
||||
|
||||
assert(pos.non_pawn_material(weakerSide) == Value(0));
|
||||
assert(pos.piece_count(weakerSide, PAWN) == Value(0));
|
||||
|
@ -241,8 +209,8 @@ Value KXKEvaluationFunction::apply(const Position& pos) {
|
|||
|
||||
/// Mate with KBN vs K. This is similar to KX vs K, but we have to drive the
|
||||
/// defending king towards a corner square of the right color.
|
||||
|
||||
Value KBNKEvaluationFunction::apply(const Position& pos) {
|
||||
template<>
|
||||
Value EvaluationFunction<KBNK>::apply(const Position& pos) {
|
||||
|
||||
assert(pos.non_pawn_material(weakerSide) == Value(0));
|
||||
assert(pos.piece_count(weakerSide, PAWN) == Value(0));
|
||||
|
@ -270,8 +238,8 @@ Value KBNKEvaluationFunction::apply(const Position& pos) {
|
|||
|
||||
|
||||
/// KP vs K. This endgame is evaluated with the help of a bitbase.
|
||||
|
||||
Value KPKEvaluationFunction::apply(const Position& pos) {
|
||||
template<>
|
||||
Value EvaluationFunction<KPK>::apply(const Position& pos) {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == Value(0));
|
||||
assert(pos.non_pawn_material(weakerSide) == Value(0));
|
||||
|
@ -318,8 +286,8 @@ Value KPKEvaluationFunction::apply(const Position& pos) {
|
|||
/// a bitbase. The function below returns drawish scores when the pawn is
|
||||
/// far advanced with support of the king, while the attacking king is far
|
||||
/// away.
|
||||
|
||||
Value KRKPEvaluationFunction::apply(const Position& pos) {
|
||||
template<>
|
||||
Value EvaluationFunction<KRKP>::apply(const Position& pos) {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
|
||||
assert(pos.piece_count(strongerSide, PAWN) == 0);
|
||||
|
@ -375,8 +343,8 @@ Value KRKPEvaluationFunction::apply(const Position& pos) {
|
|||
|
||||
/// KR vs KB. This is very simple, and always returns drawish scores. The
|
||||
/// score is slightly bigger when the defending king is close to the edge.
|
||||
|
||||
Value KRKBEvaluationFunction::apply(const Position& pos) {
|
||||
template<>
|
||||
Value EvaluationFunction<KRKB>::apply(const Position& pos) {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
|
||||
assert(pos.piece_count(strongerSide, PAWN) == 0);
|
||||
|
@ -391,8 +359,8 @@ Value KRKBEvaluationFunction::apply(const Position& pos) {
|
|||
|
||||
/// KR vs KN. The attacking side has slightly better winning chances than
|
||||
/// in KR vs KB, particularly if the king and the knight are far apart.
|
||||
|
||||
Value KRKNEvaluationFunction::apply(const Position& pos) {
|
||||
template<>
|
||||
Value EvaluationFunction<KRKN>::apply(const Position& pos) {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
|
||||
assert(pos.piece_count(strongerSide, PAWN) == 0);
|
||||
|
@ -415,8 +383,8 @@ Value KRKNEvaluationFunction::apply(const Position& pos) {
|
|||
/// defending king towards the edge. If we also take care to avoid null move
|
||||
/// for the defending side in the search, this is usually sufficient to be
|
||||
/// able to win KQ vs KR.
|
||||
|
||||
Value KQKREvaluationFunction::apply(const Position& pos) {
|
||||
template<>
|
||||
Value EvaluationFunction<KQKR>::apply(const Position& pos) {
|
||||
|
||||
assert(pos.non_pawn_material(strongerSide) == QueenValueMidgame);
|
||||
assert(pos.piece_count(strongerSide, PAWN) == 0);
|
||||
|
@ -434,8 +402,8 @@ Value KQKREvaluationFunction::apply(const Position& pos) {
|
|||
return (strongerSide == pos.side_to_move())? result : -result;
|
||||
}
|
||||
|
||||
|
||||
Value KBBKNEvaluationFunction::apply(const Position& pos) {
|
||||
template<>
|
||||
Value EvaluationFunction<KBBKN>::apply(const Position& pos) {
|
||||
|
||||
assert(pos.piece_count(strongerSide, BISHOP) == 2);
|
||||
assert(pos.non_pawn_material(strongerSide) == 2*BishopValueMidgame);
|
||||
|
@ -460,8 +428,8 @@ Value KBBKNEvaluationFunction::apply(const Position& pos) {
|
|||
return (strongerSide == pos.side_to_move() ? result : -result);
|
||||
}
|
||||
|
||||
|
||||
Value KmmKmEvaluationFunction::apply(const Position &pos) {
|
||||
template<>
|
||||
Value EvaluationFunction<KmmKm>::apply(const Position &pos) {
|
||||
return Value(0);
|
||||
}
|
||||
|
||||
|
|
114
src/endgame.h
114
src/endgame.h
|
@ -34,86 +34,41 @@
|
|||
//// Types
|
||||
////
|
||||
|
||||
/// Abstract base class for all special endgame evaluation functions:
|
||||
/// Abstract base class for all special endgame evaluation functions
|
||||
|
||||
class EndgameEvaluationFunction {
|
||||
public:
|
||||
EndgameEvaluationFunction(Color c);
|
||||
virtual ~EndgameEvaluationFunction() { }
|
||||
|
||||
virtual Value apply(const Position &pos) =0;
|
||||
virtual Value apply(const Position &pos) = 0;
|
||||
|
||||
protected:
|
||||
Color strongerSide, weakerSide;
|
||||
};
|
||||
|
||||
|
||||
/// Subclasses for various concrete endgames:
|
||||
/// Template subclass for various concrete endgames
|
||||
|
||||
// Generic "mate lone king" eval:
|
||||
class KXKEvaluationFunction : public EndgameEvaluationFunction {
|
||||
public:
|
||||
KXKEvaluationFunction(Color c);
|
||||
Value apply(const Position &pos);
|
||||
enum EndgameType {
|
||||
KXK, // Generic "mate lone king" eval
|
||||
KBNK, // KBN vs K
|
||||
KPK, // KP vs K
|
||||
KRKP, // KR vs KP
|
||||
KRKB, // KR vs KB
|
||||
KRKN, // KR vs KN
|
||||
KQKR, // KQ vs KR
|
||||
KBBKN, // KBB vs KN
|
||||
KmmKm // K and two minors vs K and one or two minors
|
||||
};
|
||||
|
||||
// KBN vs K:
|
||||
class KBNKEvaluationFunction : public EndgameEvaluationFunction {
|
||||
template<EndgameType>
|
||||
class EvaluationFunction : public EndgameEvaluationFunction {
|
||||
public:
|
||||
KBNKEvaluationFunction(Color c);
|
||||
Value apply(const Position &pos);
|
||||
explicit EvaluationFunction(Color c): EndgameEvaluationFunction(c) {}
|
||||
Value apply(const Position& pos);
|
||||
};
|
||||
|
||||
// KP vs K:
|
||||
class KPKEvaluationFunction : public EndgameEvaluationFunction {
|
||||
public:
|
||||
KPKEvaluationFunction(Color c);
|
||||
Value apply(const Position &pos);
|
||||
};
|
||||
|
||||
// KR vs KP:
|
||||
class KRKPEvaluationFunction : public EndgameEvaluationFunction {
|
||||
public:
|
||||
KRKPEvaluationFunction(Color c);
|
||||
Value apply(const Position &pos);
|
||||
};
|
||||
|
||||
// KR vs KB:
|
||||
class KRKBEvaluationFunction : public EndgameEvaluationFunction {
|
||||
public:
|
||||
KRKBEvaluationFunction(Color c);
|
||||
Value apply(const Position &pos);
|
||||
};
|
||||
|
||||
// KR vs KN:
|
||||
class KRKNEvaluationFunction : public EndgameEvaluationFunction {
|
||||
public:
|
||||
KRKNEvaluationFunction(Color c);
|
||||
Value apply(const Position &pos);
|
||||
};
|
||||
|
||||
// KQ vs KR:
|
||||
class KQKREvaluationFunction : public EndgameEvaluationFunction {
|
||||
public:
|
||||
KQKREvaluationFunction(Color c);
|
||||
Value apply(const Position &pos);
|
||||
};
|
||||
|
||||
// KBB vs KN:
|
||||
class KBBKNEvaluationFunction : public EndgameEvaluationFunction {
|
||||
public:
|
||||
KBBKNEvaluationFunction(Color C);
|
||||
Value apply(const Position &pos);
|
||||
};
|
||||
|
||||
// K and two minors vs K and one or two minors:
|
||||
class KmmKmEvaluationFunction : public EndgameEvaluationFunction {
|
||||
public:
|
||||
KmmKmEvaluationFunction(Color c);
|
||||
Value apply(const Position &pos);
|
||||
};
|
||||
|
||||
|
||||
/// Abstract base class for all evaluation scaling functions:
|
||||
|
||||
class ScalingFunction {
|
||||
|
@ -198,32 +153,15 @@ public:
|
|||
//// Constants and variables
|
||||
////
|
||||
|
||||
// Generic "mate lone king" eval:
|
||||
extern KXKEvaluationFunction EvaluateKXK, EvaluateKKX;
|
||||
|
||||
// KBN vs K:
|
||||
extern KBNKEvaluationFunction EvaluateKBNK, EvaluateKKBN;
|
||||
|
||||
// KP vs K:
|
||||
extern KPKEvaluationFunction EvaluateKPK, EvaluateKKP;
|
||||
|
||||
// KR vs KP:
|
||||
extern KRKPEvaluationFunction EvaluateKRKP, EvaluateKPKR;
|
||||
|
||||
// KR vs KB:
|
||||
extern KRKBEvaluationFunction EvaluateKRKB, EvaluateKBKR;
|
||||
|
||||
// KR vs KN:
|
||||
extern KRKNEvaluationFunction EvaluateKRKN, EvaluateKNKR;
|
||||
|
||||
// KQ vs KR:
|
||||
extern KQKREvaluationFunction EvaluateKQKR, EvaluateKRKQ;
|
||||
|
||||
// KBB vs KN:
|
||||
extern KBBKNEvaluationFunction EvaluateKBBKN, EvaluateKNKBB;
|
||||
|
||||
// K and two minors vs K and one or two minors:
|
||||
extern KmmKmEvaluationFunction EvaluateKmmKm;
|
||||
extern EvaluationFunction<KXK> EvaluateKXK, EvaluateKKX; // Generic "mate lone king" eval
|
||||
extern EvaluationFunction<KBNK> EvaluateKBNK, EvaluateKKBN; // KBN vs K
|
||||
extern EvaluationFunction<KPK> EvaluateKPK, EvaluateKKP; // KP vs K
|
||||
extern EvaluationFunction<KRKP> EvaluateKRKP, EvaluateKPKR; // KR vs KP
|
||||
extern EvaluationFunction<KRKB> EvaluateKRKB, EvaluateKBKR; // KR vs KB
|
||||
extern EvaluationFunction<KRKN> EvaluateKRKN, EvaluateKNKR; // KR vs KN
|
||||
extern EvaluationFunction<KQKR> EvaluateKQKR, EvaluateKRKQ; // KQ vs KR
|
||||
extern EvaluationFunction<KBBKN> EvaluateKBBKN, EvaluateKNKBB; // KBB vs KN
|
||||
extern EvaluationFunction<KmmKm> EvaluateKmmKm; // K and two minors vs K and one or two minors:
|
||||
|
||||
// KBP vs K:
|
||||
extern KBPKScalingFunction ScaleKBPK, ScaleKKBP;
|
||||
|
|
Loading…
Add table
Reference in a new issue